Endokrynologia Polska 5/2015-Thyroid hormones in the central nervous system (CNS) and their effect on neoplasm formation, particularly on the development and course of glioblastoma multiforme – research hypothesis


Thyroid hormones in the central nervous system (CNS) and their effect on neoplasm formation, particularly on the development and course of glioblastoma multiforme – research hypothesis

Hormony tarczycy w ośrodkowym układzie nerwowym (OUN) i ich wpływ na nowotworze nie, zwłaszcza na rozwój i przebieg glioblastoma multiforme – hipoteza badawcza

Paweł Nauman

Department of Neurosurgery, the Institute of Psychiatry and Neurology, Warsaw, Poland

Paweł Nauman M.D., Department of Neurosurgery, the Institute of Psychiatry and Neurology in Warsaw, e-mail: pnauman@ipin.edu.pl


The present study is aimed to present the potential role of thyroid hormones (TH) in the pathogenesis of glioblastoma multiforme (GBM). In first part of this presentation the effect of general homeostasis of TH on GBM formation and course was shown. Then the evidence concerning present state of the knowledge about active transport of TH to the brain, the role of iodothyronine deiodinase type 2 and 3 in the setting concentration of T3 in the brain and GBM cells, and finally knowledge about the role of genomic (TH nuclear receptors THRA and THRB) and non-genomic modes (membrane integrin receptor ανβ3) of action of TH and its importance for GBM was outlined. The last part of this presentation was devoted to generally approved signalling pathways leading to the formation and the clinical course of GBM, showing at the same time evidence that each of the pathways is affected by particular TH actions. In conclusion it is suggested that TH is one of the pathogenetic factors for GBM and as such can have practical implications for the formation and course and treatment of this tumour.

(Endokrynol Pol 2015; 66 (5): 444-459)

Key words: thyroid hormones (TH); glioblastoma multiforme (CBM)


Niniejsza praca stanowi próbę przedstawienia potencjalnej roli hormonów tarczycy (TH) w patogenezie glejaka wielopostaciowego (GBM, glioblastoma multiform). W pierwszej części pracy przedstawiono wpływ ogólnoustrojowej homeostazy hormonów tarczycy na przebieg GBM a następnie omówiono transport TH do mózgu, rolę jodotyroninowych dejodynaz typu 2 (D-2) i typu 3 (D-3) w utrzymywaniu określonych poziomów T3 i T4 w mózgu, a wreszcie rolę genomowego (receptory jądrowe TH THRA i THRB) i niegenomowego mechanizmu działania TH (błonowy receptor integrynowy ανβ3) w mózgu, uwzględniając wiedzę o zaburzeniach sygnału hormonalnego T3 i T4 w GBM i ich udziału w zaburzeniach proliferacji różnicowania, apoptozy oraz wpływu TH na typowe dla rozwoju i przebiegu GBM szlaki sygnałowe. Na podstawie przedstawionych faktów i dodatkowych danych dotyczących wpływu TH na mikro-glej sformułowano hipotezę, że HT poprzez swoje współdziałanie i wpływ na charakterystyczne dla GBM szlaki sygnałowe jest jednym z czynników patogenetycznych dla rozwoju i przebiegu tego nowotworu mózgu.

(Endokrynol Pol 2015; 66 (5): 444-459)

Słowa kluczowe: hormony tarczycy (TH); glejak wielopostaciowy (GBM)


Thyroid hormones (TH) 3.5.3’.5’-tetraiodothyronine (thyroxine-T4) and 3.3’.5-triiodothyronine (T3) are essential for brain development and maturation in foetal life and during the first two to three years after birth [1, 2]. It is now evident [3, 4] that TH deficiency in early foetal life (first two trimesters) and resulting disturbances in brain development are the consequences of insufficient transplacental passage mainly of T4 from pregnant woman. This is either the result of hypothyroidism, or iodine deficiency in pregnant women’s diets. In the third trimester the thyroid gland of the foetus already secretes TH, but still almost 50% of TH present in the foetal blood stream is of pregnant mother’s origin [3, 4]. Contrary to previous opinions that TH has no impact on a mature brain or that their significance is negligible, there is now good evidence [2] that throughout the life of a human being T4 and T3 significantly affect brain morphology through stimulation of myelination processes, glial cell proliferation, the development of synaptic connections, and finally their effects on dendrite and axonal „branching”.

Also, throughout the life of a human being thyroid hormones have an impact on the broadly understood brain activity and can modulate pathological processes occurring in the brain, including hyperplastic processes [5-7]. In recent years attention has been paid to the effect of thyroid hormones on the properties and activity of microglial cells [8-10]. These cells significantly affect defensive functions in the brain, but in the specific microenvironment formed by gliomas and particularly glioblastoma multiforme (GBM) their defensive properties can change and microglia begin to intensify and deepen tire neoplastic process [10, 11]. It was suggested that tire special microenvironment in GBM is in part affected by the action of transforming growth factor Beta [12]. The comprehensive effect of TGF-β in physiology and pathology was recently summarised [13].

The presence of thyroid hormones in the brain and their effect depends on numerous factors, including:

  • A normal or disturbed thyroid function and normal or altered levels of T4 and T3 hormones in blood serum.
  • Normal or disturbed concentrations and function of T4 and T3 transporting proteins through the blood-brain barrier and the cerebrospinal fluid (CSF), namely monocarboxylate transporters 8 and 10 (MCT8 and MCT10) and organic anion transporting polypeptide (OATP1 1), playing a role in the transport of T3 and T4 hormones to glial cells, astrocytes, and neurones.
  • Normal or disturbed concentrations and the activity of iodothyronine deiodinase of the second type (D2) and iodothyronine deiodinase activity of the third type (D3) in brain cells and tumours located in the central nervous system.
  • The presence of normal „wild-type” nuclear thyroid hormone receptors – A and B, namely THRA1, THRB1, and THRB2 in brain cells, or receptor isoforms, or their mutants in tumour cells located in the central nervous system, especially in GBM.
  • The signalling of T3 and T4 hormones through the interaction with the membrane integrin receptor ανβ3 in brain cells and tumour cells, especially GBM.

Thyroid hormones, as well as controlling metabolic processes, affect proliferation, growth, differentiation of cells, and natural cell death (apoptosis). These mechanisms vary between different organs and depend on the period of human body development. All of these TH effects, however, are disturbed in the majority of types of neoplasms [14-16].

The goal of this paper is to summarise the current knowledge of the alterations of thyroxine and triiodothyronine hormonal signalling in the most malignant brain tumour – glioblastoma multiforme (GBM). The second goal is to present the consequences of the most important genetic disturbances typical for GBM, such as uncontrolled proliferation of neoplastic cells, their cellular infiltration, inhibition of apoptosis, GBM hypoxia, and the development of pathological vascularisation. The final goal of this paper is to present and document the hypothesis that thyroid hormones and their signalling interact with classical pathogenic mechanisms of GBM on the molecular level. If it is so, it would means that TH signalling in fact affects both the formation and clinical course of GBM.

Systemic homeostasis of thyroid hormones and brain neoplastic diseases

Some recent review papers [15, 16] focusing on the participation of thyroid hormones and their receptors in neoplasm development and the course of neoplastic diseases gave evidence indicating that the current hyperthyroidism, or the past history of thyroid hyperactivity increase the risk of developing various neoplasms and affect the course of the developed neoplastic diseases. The heterogeneity of this phenomenon was also presented: in liver cancer, as opposed to other neoplastic diseases, hypothyroidism was a risk factor. In our own study concerning the concentration of thyroid hormones in the blood serum of patients with gliomas [17]. TSH and fT4 levels did not exceed normal limits while T3 levels were decreased, especially in the cases of gliosarcoma and glioblastoma multiforme. There is limited evidence concerning T3 and T4 levels in OUN, but the results of studies conducted to date [7] indicate that in adult individuals thyroid hormone concentrations in the brain are about five times lower than in blood serum. So far, apart from our own investigation [17], no research has been performed to estimate thyroid hormone concentrations (levels) in gliomas and the surrounding cerebral tissue without any neoplastic changes.

In our own study [17], T4 and T3 hormone levels measured in non-neoplastic cerebral tissue obtained during surgery served as reference values for the results obtained in the investigated gliomas. The mean level of T4 in astrocytoma (G II according to WHO grade) and anaplastic astrocytoma (G III) did not differ from the estimated level in the cerebral tissue without any neoplastic changes. The T4 level, however, was decreased in the surgically removed tumours, namely gliosarcoma (G-IV) and glioblastoma multiforme (G-IV). The total T3 level in tumour cells was decreased in all the patients with gliomas, particularly in those with GBM, and was well below the range found in non-neoplastic cerebral tissue. The significance of thyroid hormone levels in patients with GBM is indirectly confirmed by the studies [18] involving tamoxifen and prophylothiouracyl treatment in patients with glioblastoma. This treatment in all patients led to decreased levels of IGF-1. In about half of the patients the therapy led also to an increase of serum TSH levels and decrease of serum T4 typical for subclinical or very moderate hypothyroidism. The average lifespan of patients with hypothyroidism was about eight months longer compared with the group of patients who, despite treatment, still were in euthyroid state. The effect of thyroid hormone levels on patient survival was also confirmed in a patient with GBM located in the optic chiasm [19]. Such localisation of GBM is especially malignant. The administration of PTU and evoked hypothyroidism resulted in tumour shrinkage and clinical remission of symptoms for 2.5 years; the time between the diagnosis and the patient’s death was prolonged to 4.5 years [19]. The results obtained from this study as well as those obtained from other studies indicate the significance of thyroid hormone levels in the development, course, and invasiveness of brain tumours, including the most malignant one: GBM [20]. The results of studies available in literature, especially these concerning hypothyroidism, suggest that also general homeostasis of thyroid hormones may affect the clinical course of GBM.

Transport of thyroid hormone from circulation to the brain

The passage of TH from blood serum to the brain is restricted by the blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier (B-CSF). Now is well established that this transport depends mainly on the presence and activity of the specific thyroid hormone cell membrane transporters, MCT8, MCT10, and OATP1C1 [21-23]. These proteins are characterised by a higher affinity to T4 than to T3 [24]. Under experimental conditions, both thyroid hormones crossing the blood-brain barrier were mainly associated with MCT8 reaching the extracellular space in the brain, close to the capillaries. Next, T4 is transported to astrocytes and microglial cells, and this process is mediated by MCT8 and OATP1C1. The second transporter has high affinity to T4 and rT3, but does not bind T3. Recently, however, it was found that, contrary to rodent brain, in humans the presence of OATP1C1 is very limited, which is indicative of the dominant role of MCT8 protein [25, 26]. It cannot be excluded that the factors transporting organic ions, namely LAT1 and LAT2, also take part in the transport of thyroid hormones to the cells, since they have been identified both in astrocytes, neurons, and microglial cells [25, 27]. The significance of TH transporters was additionally emphasised based on the results obtained from mice deprived of genes for MCT8 and OATP1C1. These mice developed CNS function impairment similar, but not identical, to that observed in congenital hypothyroidism [27]. Transporter function disorders have not been identified so far in tumours located in the central nervous system, including gliomas; we should therefore assume that the transport of thyroid hormones to glial cells (including GBM cells) remains undisturbed.

Homeostasis of thyroid hormones in brain and its disorders in brain tumours – the role of iodothyronine deiodinases type 2 (D-2) and type 3 (D-3)

Brain cells are especially sensitive to thyroid hormone activity, which is manifested by maintaining their own thyroid hormone homeostasis, different from that present in other organs [28, 29]. Type 2 and 3 iodothyronine deiodinases play an important role in the formation of this homeostasis. Monodeiodination of thyroxine to triiodothyronine catalysed by D-2 occurs mainly in specialised glial cells named tanycytes, located in the hypothalamus, and in astrocytes, present in the entire brain [28-30]. In the brains of adult rats about 80% of T3 that is bound to specific nuclear receptors of thyroid hormones (THRs) is produced locally in the course of monodeiodination of T4 to T3 [29]. In the case of deficiency or a decreased activity of D-2, triiodothyronine bound to THR originate from the circulation, or THRs react with the hormone present in the cerebrospinal fluid after T4 deiodination in tanycytes [31, 32]. Although it is not certain, some data indicate [8, 33, 34] that THRs are absent in glial cells and that such receptors are mainly present in neurons. Due to paracrine signalling, T3 is transferred from astrocytes to neural cells, where the hormone binds to THRs [33]. THRs in turn react with the triiodothyronine response element (TRE) of genes sensitive to thyroid hormones and activate or inhibit the gene transcription process depending on whether the TRE is positive or negative [34, 35]. On the other hand, there is accumulating evidence that THRs are also present in intact glial cells and gliomas [10, 36]. T3 concentration in neurons, and thus hormone availability for THRs, is additionally regulated by D-3, which is present in these cells [37, 38]. This enzyme inactivates an excess of T3 and T4 through deiodination of T4 to reverse T3 (rT3) and T3 to T2 [31, 37]. The activity of D-2 and D-3 is disturbed in brain tumours, which has been confirmed both by the results of our own study [17] and by others [39, 40]. In our own study the levels of T4 in tumours were similar to those found in non-neoplastic tissues, and the levels of T3 were significantly decreased in GBMs, while the activity of D-2 and D-3 in tumours significantly increased [17]. The decreased level of T3 in GBM could have resulted from the decreased T4 level (substrate for deiodination reaction) or the changes in D-3 structure. In our own study on pituitary gland tumours and disturbed alternative splicing of genes for DI01 (gene coding D-l) and DI02 (gene coding D-2), the presence of isoforms of both deiodinases was identified [41]. It was also found [41] that these changes were due to the increased activity of splicing factors SF2/ASF. The role of alternative splicing in the pathology of the endocrine system have been summarised previously [42].

The activity of thyroid hormones in the brain – the role of nuclear receptors

Nuclear receptors of thyroid hormones THRA1, THRB1, and the isoforms of these receptors are present in brain cells in humans from the 8th-10th weeks of foetal life [43, 44]. During this period, the presence of THRA1 prevails, particularly in the external part of the cerebral cortex and in the hypothalamus [43, 44]. From about the 15th week of foetal life also THRB1 and THRB2 are detected in the developing brain. From the second trimester and then after birth and in adult life THRA1 constitutes about 70% of receptor protein in the brain while THRB1 constitutes 20% and THRB2 constitutes 10% of this protein in the brain [45]. The effect of thyroid hormones in every period of foetal life has been thoroughly investigated and discussed in recent years [1-6]. This paper focuses only on such aspects of thyroid hormone activity and brain development that might affect, in future, the development of neoplasms, mainly gliomas. It is known [2] that throughout our entire life, both in foetal life and after birth, thyroid hormones stimulate the processes of myelination, proliferation of glial cells, axon formation and the „growth” (development) of dendrites and axons. We know that tire thyroid gland develops at about 12-14 hbd of pregnancy, but the hormonal activity of the hypothalamus-pituitary gland and tire formation of the hypothalamus-pituitary-thyroid axis occur at about 20 hbd of foetal life [1-3]. Through tire entire foetal life, particularly in the first two trimesters of pregnancy, normal development of the central nervous system (and the whole foetus) occurs almost entirely due to thyroid hormones originating from the pregnant mother [2, 3]. In the last trimester the participation of the thyroid hormones from the foetus covers about 50% of its needs [2]. It is still unknown in which particular moment of foetal life hormones are transferred from tire mother’s thyroid to the developing foetus. It is believed [2, 3] that the transfer starts soon after nesting of the inseminated ovum in the woman’s uterus and ends at the moment of birth. On the other hand, the results of single studies suggest [1] that the transfer of TH begins at between 3 and 5 hbd of gestation The rise in thyroid hormone secretion, particularly thyroxine by the thyroid of pregnant women, requires a significant increase (additionally 150-200 ug iodine/day) in iodine supply [43]. In the initial period of foetal life, only about 25% of THRs present in the brain are occupied by T3. Free nuclear receptor THRs called aporeceptors play an important role in brain maturation, particularly in the period when T3 is still unavailable in the central nervous system [48].

In 2000, data concerning the function and role of THRs in the human brain were published [49], and in 2002 [50] the prospective role of THRs and triiodothyronine signalling in glioma pathogenesis was proposed for the first time. This was based mainly on the results of our own studies on THR gene expression and on the amount of receptor proteins in glioma cells, including glioblastoma multiforme [50]. The results indicated that both gene expression for THRs and the amount of receptor proteins encoded by these genes were disturbed in different ways in gliomas when compared with findings in non-neoplastic brain tissue of the same patients. In 2011 the disturbances of thyroid hormone nuclear receptor expression were confirmed in a study based on glioma cell lines [36]. The changes in THRA and THRB or mutated receptors can alter the mechanism and consequences of the their interaction with the TRE of genes sensitive to thyroid hormones. These changes can also affect the protein-protein interaction (e.g. THRAP-53), especially in neoplastic cells. Moreover, mutated THRB1 loses its suppressor functions [51].

Thyroid hormones in the brain – non-genomic TH signalling and the role of integrin membrane receptor αVβ3

In 2003 a study on knockout mice with no THRs clearly showed [52] that disturbances in brain development in these animals differed from those occurring in thyroid-deprived mice, and that it can be partly relieved after thyroxine administration. Further studies showed that an effect similar to that of T4 can be evoked by administration of rT3, previously considered an inactive product of T4 monodeiodination catalysed on the periphery by D-l and in the brain by D3. At present it is believed that only D-2 and D-3 are present in the brain [3, 5]. Thus, part of the rT3 present in the brain probably originated from the circulation and ogans containing Dl. During the following years a hypothesis was forwarded that thyroxine can act by means of a non-genomic mechanism, mainly through the activation of actin polymerisation [53]. It has been found that in hypothyroidism only 40-60% of actin is polymerised, and this in turn leads to disturbances in the development and function of the cellular skeleton and microfilaments [53]. Administration of T4 or rT3 to such animals resulted in normalisation of polymerisation after 10-20 minutes, but had no effect on the total content of actin in cells [53]. This was indirect evidence for a non-genomic mechanism of T4 activity. However, the real breakthrough, which turned out to be important not only for knowledge about the activity of hormones in the brain, but also for understanding the „mechanism of developing neoplasms” (including gliomas), came from a study on the role the membrane integrin receptor αVβ3 in TH signalling [54], This receptor is also present and active in neurons [55]. It has two thyroid hormone binding sites. The SI binding site reacts only with T3 and as a consequence of this reaction it activates PI3K signalling pathway [56]. In neoplastic cells this signalling pathway is also activated by THRA and THRB, affects the proliferation and growth of cells, and is an inhibitor of apoptosis [57]. On the other hand, the PI3K pathway affects expression of hypoxia-inducible factor – 1 alpha subunit – HIF1 and in neoplastic cells would affects angiogenesis, cellular adaptation to hypoxia, and may also increase cell invasion and metastasis [58]. The S2 binding site mainly binds T4, although it can bind T3 with a very low affinity. S2-T4 interaction activates mitogen-activated protein kinase – ERK1/2 pathway (extracellular signal-regulated 1/2 kinase), and this pathway in turn activates a gene for fibroblast growth factor 2 (FGF2) and promotes angiogenesis [57]. In studies on cellular lines of gliomas, the interaction between thyroid hormones and integrin receptor avp3 resulted in glioma growth [7]. The effects of thyroid hormone activity via interactions with integrin receptor can be blocked or even „reversed” by the application of thyroxine deaminated metabolite TRAK. The studies conducted to date indicate that this metabolite blocks alfavBeta3 receptor reactions, both with T3 and with T4, and consequently blocks vascular endothelial growth factor (VEGF) as well as the activity of basic fibroblast growth factor (bFGF) and, finally, decreases EGFR gene transcription [60, 61]. The role of thyroid hormones in GBM (as previously mentioned) is also confirmed by the fact that pharmacologically evoked hypothyroidism led to more than two-year regression of GBM located in the optic chiasm and significantly prolonged the patient’s life [19]. A significant life prolongation was also obtained in a group of patients after PTU administration, which seems to confirm the effect of thyroid hormones on the course of GBM [18]. The reduction of thyroid hormone levels to a lower range of the normal values (the so-called euthyroid hypothyroxinaemia) by Methimazole administration, combined with the administration of low doses of thyroxine, also prolonged some patients’ lifespan during the final stage of neoplastic diseases of the brain, lungs, pancreas, breast, salivary glands, or soft tissue sarcomas; this finding is confirmed by the more generalised effect of thyroid hormones on the development and course of neoplastic diseases [20].

Between 2010 and 2015, experimental and clinical studies showed a number of genetic and epigenetic disturbances, leading to the development of GBM and to different but always unfavourable clinical courses in humans [62-66]. It is now generally recognised that in addition to these factors the development and clinical course of GBM, as well as resistance to radiation and pharmacological therapy, depend also on hypoxia, a peculiar role played by micro-glia [68, 69]. and by the presence of glioblastoma stem cells (GBMSCs) called also cancer stem cells (CSCs) [70, 71]. It was therefore assumed that in order to optimise diagnostic and therapeutic procedures as well as likely prognosis it would be justifiable to refer to, on the one hand, the fundamental GBM division into primary and secondary GBM [72], and on the other hand, the four defined GBM subtypes, namely: proneural, neural, classic, and mesenchymal [73]. It was hoped that such division would enable the development of personalised forms of treatment. In recent years several biological substances have been developed and tested to block pro-proliferative and growth signals, block factors contributing to GBM vascularisation, and to reset blocked neoplastic cell apoptosis. The meta-analysis of the trials conducted thus far involving biological treatment [64] have clearly indicated that, despite all the tested medications from this group showing the expected effect under in vitro conditions or on glioma cell lines, they all failed in clinical trials. This seems to suggest that there might be some additional pathogenic factor that plays a role in the pathogenesis of GBM. The hypothesis presented below assumes that thyroid hormone signalling alteration in patients with GBM is this additional factor.

Although the number of genetic and epigenetic alterations in GBM is growing every year the role of a few signalling pathways are generally approved as the most important for the development and clinical course of GBM: EGFR/PTEN/Akt/mTOR pathway, TP53/MDM2/p14ARF pathway, P16/RB1 pathway, and the pathway dependent on gene mutation for isocitrate dehydrogenase (IDH) [62, 64, 72, 74].

Endothelial growth factor receptor (EGFR) belongs to the group of tyrosine kinase activity receptors. Disturbances of this pathway occur in about 60% of patients with primary glioblastoma multiforme and in at least 10% of patients with secondary GBM. They are mainly dependent on the effects of EGFR amplification, (multiplication of the number of its copies), and in some rare cases the effects of EGFR mutations. Such mutations, if present, concern several axons encoding a part of the extracellular domain, and are detected relatively rarely, but lead to significant signal disturbances. The EGFR (EGFR-vIII) mutant does not bind the ligand, but it is subject to continuous uncontrolled hyperactivation. Excessive EGFR activation causes accumulation of phosphafidylinositol 3-kinases (PI3K) in the cell membrane. PI3K belongs to the family of lipid kinases that phosphorylate phosphafidylinositol hydroxyl groups. PI3Kis activated by EGFR phosphorylate phosphatidynositol-4.5-biphosphate (PIP2) to phosphatidynoinositol-3-phosphate (PIP3). In addition to the EGFR-dependent PI3K activation, the PI3K mutants were found in GBM cells. PI3K mutants are strong stimulants of PIP 3 generation and may show some resistance to PTEN suppressor activity. PIP-3, in turn, activates effector proteins, namely protein B kinase, also called serine-threonine protein kinase (AKT/PKB) and mammalian target of rapamycin (mTOR). The high activity of both AKT/PBK and mTOR stimulates glioma cell proliferation, inhibiting at the same time the apoptosis phenomenon. Additionally, silencing or mutating phosphate and tensin homolog deleted on the chromosome 10 (PTEN) gene, characteristic for primary GBM, plays an important role in pro-neoplastic activity of the „activated EGFR signal pathway” [72]. PTEN is phosphafidylinositol phosphatase and acts as a PI3K antagonist, and as a result, through PIP3 inhibition, it inhibits Akt/PKB and mTOR activity. PTEN belongs to suppressor factors and causes reduction of the pro-proliferative effect in glioblastoma multiforme cells, activating apoptosis process [73].

Thyroid hormones affect gene expression for EGFR since they belongs to genes whose transcription depends on triiodothyronin and contains positive TRE. The activity of the „wild-type”, and of even more active mutated THRA1 in GBM, may thus strongly stimulate this gene transcription and EGFR protein formation. Flow ever, there is no proof that TE1RA or TE1RB mutants are present in GBM cells. Such a possibility is currently only supported by the fact that such mutants were found in some cancers and TE1RB mutants lost their suppressive function and instead possessed the ability to excessively express T3-dependent genes [14, 15, 51]. The effect of thyroid hormone on PI3K activity was also documented. In the non-genomic mechanism, triiodothyronine and thyroxine, through binding to integrin receptor, activate PI3K, evoke a proliferative effect, and inhibit apoptosis [54, 59]. Given these facts, there is no doubt that regardless of EGFR natural ligands, namely epidermal growth factor (EGF), tumour growth factor alpha (TGF-α), and tumour growth factor beta (TGF-β), thyroid hormones can be powerful stimulants of EGFR signal pathway activity.

The TP53/MDM2/pl4ARF pathway plays an important role in the tumorigenesis of secondary GBM formation and the secondary course of GBM. Disturbances of this signalling pathway are present in more than 60% of patients with this type of glioma and in fewer than 30% of primary GBM cases [72]. TP53 protein plays an important role in the regulation of multiple processes: repair of damaged DNA, apoptosis, and/or the development of new vessels. However, regulation of the cellular cycle is the most important process affecting TP53. In the case of secondary GBM, about 55% of TP53 is subject to mutations concerning 248 and 273 codons. The TP53 is coupled with MDM2 protein, which, binding to TP53 reciprocally, inhibits TP53 activity and its capability of stimulating the transcription process. MDM2 gene transcription, in turn, is activated by TP53. Additionally, particularly in neoplastic cells, p i 4ARF protein expression has an inhibiting effect on TP53 activity.

The effect of thyroid hormone on TP53 activity can be direct and indirect. Inhibition of TP53 activity is the consequence of the direct interaction between receptor proteins for thyroid hormone (THRs) and TP53 protein [75]. The indirect mechanism of TP53 inhibition depends on the presence of two positive TREs in the gene promoter for MDM2 [76]. The triiodothyronine-dependent overexpression of the MDM gene and the resulting activation of tins protein lead to TP53 inhibition and, as a result, stimulate transition of GBM cells from division phase G1 to S phase. The increased amount of MDM2 protein due to TH activity can, regardless of TP53, activate promoters of E2F1 genes and cyclin A (by acting on MDM2-protein Rb) and eliminate the Rb effect on cellular cycle inhibition in the G1 phase [76, 77].

Signalling pathway P16INK4a/RB1 is important for the proliferation process because RBI protein, similar to TP53 protein, regulates the cellular cycle controlling the transition from G1 phase to S phase. Disturbances of this pathway occur both in the primary and secondary GBM [77, 78] and involve P16INK4a deletion and méthylation of the RBI gene (the gene for retinoblastoma) promoter. Méthylation of the RBI gene is mainly typical for secondary glioma; in primary glioma it occurs only in about 14% of cases [74]. The cyclin D1-CDK4 (cyclin-dependent kinase 4) complex phosphorylâtes RBlprotein, leading to the release of E2F transcription factor, which in turn activates genes participating in the cellular cycle and its transition from G1 phase to S phase. P16INK4a protein, binding to CDK4 cyclin, activates cyclin DlCDK4 complex, inhibiting transition from G1 cycle to S phase [77].

Thyroid hormones have a direct effect on the signalling pathway as the gene for E2F, encoding E2F protein has negative TRE, reacting both with THRA1 and THRB1 [79]. In this way the THRs complex bound to T3 leads to transcription inhibition in gene for E2F and the resulting inhibition of transition from G1 phase to S phase [80].

Isocitrate dehydrogenase (IDH) and the products of its mutated gene have been for many years regarded as an important factor leading to the development of glioblastoma GBM [79]. Mutations in this protein gene are mainly typical for secondary GBM and occur in 70-80% of patients, but are also present in about 5% of primary GBM cases [81-83]. IDH protein is present in three basic isoforms: IDH1, IDH2, and IDH3, but the last isoform has not been identified in GBM [84]. The IDH1 isoform is present in cytosol while the IDH2 isoform is present in the mitochondria [83]. When the non-mutated, „wild type” IDH1 is present it stimulates isocitrate oxidative decarboxylation to α-ketoglutarate (α-KG) and reduces NADP+ to NADPH (nicotinamide adenine dinucleotide). The IDH1 mutant, in turn, can have a limited capability of stimulating oxidative decarboxylation, which can lead to limitation of α-KG formation [81]. This change subsequently leads to a decrease in proline dehydrogenase activity, which, despite the lack of glial hypoxia, enhances the activity of the transcription factor induced in HIF-1 (hypoxia inducible factor) hypoxia [85].

The increased HIFI activity results in oncogene activation, reduced expression and activity of suppressor genes and an increase in metalloproteinase activity, extracellular matrix, and release of cellular growth factors. Moreover, an increased HIFI activity may enhance the process of angiogenesis [85]. It is believed that these disturbances of IDH1 signalling pathway may be important for the early stages of secondary glioblastoma formation, as well as for the development of the primary GBM tumour [81, 86]. Another consequence of the presence of IDH mutant may involve the limitation of cellular differentiation process and a simultaneous increase of its proliferation [83]. Finally, HIF significantly enhances proliferation and angiogenesis processes in glioblastoma cells [83, 85]. Besides, IDH1 and IDH2 mutants can alter cellular energy metabolism. Under normal activity conditions, IDH1 and IDH2 catalyse reversible isocitrate to α-ketoglutarate. The reciprocal relationship between these two substances is determined by the energy state of the cell. IDH mutants may also stimulate α-KG conversions to 2 hydroxy glutarate (2HG). Excess of 2HG activates HIFI and disturbs the process of DNA histone methylation in glioblastoma cells [84].

Thyroid hormones, indirectly through PI3K stimulation, through genome, or by the membrane integrin receptor, are stimulators of the transcription factor activity induced by HIF-l-originated hypoxia, which enables synthesis of the proteins required for further neoplasm progression.


In this paper the effects of thyroid hormones signalling on the brain and on the most lethal brain tumour – glioblastoma multiforme – were presented and discussed. In addition, the most important genetic alterations identified in GBM and their effects upon cellular gene-related signalling pathways were also summarised. Both genetic and pathological signalling are generally considered to be important for the development and course of glioblastoma multiforme [62, 64-67, 77]. It was also documented that the disturbances in the thyroid hormone signalling may activate growth and proliferation of neoplastic cells, and would inhibit processes of differentiation and apoptosis [7, 14, 15, 17, 50, 51, 54, 56]. In addition, some evidence indicates [59, 60] that thyroid hormones directly and indirectly stimulate the process of angiogenesis in GBM. Furthermore, studies documenting the effect of thyroid hormones on microglia growth and its important functions, such as migrations, mobility, and phagocytic ability of microglia, were also shown [8, 10]. All these data and the results of other studies [66, 71-76, 79, 81, 87, 88] strongly suggest the direct and indirect effect of both thyroxine and triiodothyronine on the pathogenesis of glioblastoma multiforme. Moreover, it is known that resistance to the radiation and anti-GBM therapy, besides aggressiveness of GBM, are important factors further limiting the lifespan of patients with GBM. Recently, P-glycoprotein, also called multidrug resistance protein-P (MDR1), was found in normal cells and particularly in some neoplastic cells, and was suggested to be responsible for the failure of pharmacological treatment. Thyroid hormones were shown to stimulate transcription of the gene for this protein and to affect its activity through integrin receptor [89]. What seems to be most important is the evidence showing that TH signalling can potentiate the EGFR/PTEN/Akt/mTOR pathway, the TP53/MDM2/pl4ARF pathway, the P16/RBI pathway, and the pathway dependent on gene mutation for isocitrate dehydrogenase (IDH) – the signalling generally accepted for the development and clinical course of GBM.

Assuming that the hypothesis of the role of thyroid hormones in GBM pathogenesis would be accepted, it has to be recognised that complex, extensive studies must be performed to sort out several unknowns. First, functional studies of THRA and THRB in GBM are badly needed. The results of prospective studies on the effect of thyroid hormones on GBM-disturbed epigenetic processes would also be important [11, 63, 69], as well as studies on the effect of hormones on GBM stem cells [68, 70]. The numerous facts presented in this paper were based on studies of GBM samples or cell lines derived from GBM. Regardless of some unknowns and taking to the account the current knowledge, we should accept the role of thyroid hormones in glioblastoma multiforme pathogenesis. Moreover, we should realise that participation of TH in GBM pathology can have a practical dimension. Reduction of TH levels in blood serum prolonged the remission and lifespan in patients with glioblastoma multiforme; generally the patients’ lifespan is extremely short in GBM [18, 19]. The local application of T4 – TRAK metabolite (tetraiodothyroacetic acid) in studies conducted in vitro and on cell lines inhibited glial cell proliferation and activity of vascular endothelial growth factor (VEGF), an important stimulator of neo-angiogenesis in oncology [88]. At the same time, TRAK enhanced the apoptosis process [60]. The current state of knowledge gives us some hope that soon it might be possible to prolong the life of patients with GBM. Some hopes might be also connected with studies that are being carried out on introducing „wild type” normal THRB to the neoplasm.


Thyroid hormones affect the pathogenesis and the course of glioblastoma multiforme, although numerous further studies are required to solve the remaining unknowns. Nevertheless, the practical application of knowledge concerning the role of TH signalling in GBM is likely to be possible soon.


  1. Morreale de Escobar G, Oregon MJ, Escobar del Rey F. Role of thyroid hormone during early brain development. Eur J Endocrinol 2004; 151: (Suppl. 3) U25-37.
  2. Bernal J. Thyroid hormones in brain development and function In: De Groot LJ, Beck-Peccoz P, Chrousos G et al (ed.). Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.; 2000-2012(Free books & Documents).
  3. Forrest D. The developing brain and maternal thyroid hormone: finding the links. Endocrinology 2006; 145: 4034MD36.
  4. Laurberg P. Thyroid function: thyroid hormones, iodine and the brain-an important concern. Nat Rev Endocrinol 2009; 5: 475-610.
  5. Schroeder M, Privalsky ML. Thyroid hormones, T3 and T4 in the brain. Front Endocrinol 2014; 5: 1-6.
  6. Williams GR. Neurodevelopmental and neurophysiological actions of thyroid hormones. J Endocrinol 2008; 20: 784-794.
  7. Davis FB, Tang HY, Shih A et al. Acting via a cell surface receptor, thyroid hormone is a growth factor for glioma cells. Cancer Res 2006; 66: 7270-7275.
  8. Mohasccsik P, Zeold A, Bianco AC et al. Thyroid hormone and the neuroglia: both source and target. J Thyroid Res 2011; 2011:16.
  9. Charles NA, Holland EC, Gilbertson R et al. The brain tumor microenvironment. GLIA 2011; 59: 1169-1180.
  10. Mori Y, Tomonaga D, Kalashnikova A et al. Effects of 3,3’,5-triiodothyronine on microglial functions. GLIA 2015; 63: 906-920.
  11. Kaminska B, Gabrusiewicz K, Sielska M. Characteristics of phenotype and pro-tumorogenic role of glioma infiltrating microglia/mascrophages. J Neurol Neuorophysiol 2011; S5. DOI: 10.4172/2155-9562. S5-001
  12. Taylor TE, Furnari FB, Carvenee WK. Targeting EGFR for treatment og glioblastoma: moledcular basis to overcome resistance. Urr Cancer Drug Targets 2012; 12: 197-209.
  13. Kajdaniuk D, Marek B, Borgiel-Marek H et al. Transforming growth factor pi (TGFpl) in physiology and pathology. Endokrynol Pol 2013; 64: 384-396.
  14. Rosen MD, Privalsky ML. Thyroid hormone receptor mutations in cancer and resistance to thyroid hormone perspective and prognosis. J Thyroid Res 2011. DOI: 10.4061/2011/361304.
  15. Kim WG, Cheng SY. Thyroid hormone receptors and cancer. Biochim Biophys Acta 2013; 1830: 3928-3936.
  16. Moeller LC, Fuhrer D. Thyroid hormone, thyroid hormone receptors and cancer: a clinical perspective. Endocr Rel Cancer 2013; 20: 19-29.
  17. Nauman P, Bonicki W, Michalik R et al. The concentration of thyroid hormones and activities of iodothyronine deiodinases are altered In human brain gliomas. Acta Neuropathol 2004; 42: 67-73.
  18. Hercbergs A, Goyal LK, Suh JH et al. Propythiouracyl-induced chemical hypothyroidism with high dose tamoxifen prolongs survival in recurrent high grade glioma: a phase l/II study. Anticancer Res 2003; 23: 617-626.
  19. Ashur-Fabiano O, Blumenthal DT, Bakon M etal. Long-term response in high-grade optic glioma treated with medically induced Hypothyroidism and carboplatin: a case report and review of the literature. Anticancer drugs 2013; 24: 315-323.
  20. Hercbergers A, Johnson RE, Ashur-Fabian O et al. Medically induced ejuthyroid hypothyroxinemia may extend survival in compassionate need cancer patients: an observational study. Oncologist 2015; 20: 72-76
  21. Dratman MB, Crutchfield FL, Schoenhoff MB. Transport of iodothyronines from bloodstream to brain: contribution by blood :brain and choroid plexus: cerebrospinal fluid barriers. Brain Res 1991; 554: 229-236.
  22. Friessma EC, Jansen J, Millid C et al. Thyroid hormone transporters. Vitamines and Hormones 2005; 70: 137-167.
  23. Heuer H. The importance of thyroid hormones transporters for brain development and function. Best Pract Res Clin Endocrinol Metab 2009; 21: 265-276.
  24. Friesma ECH, Jansen J, Jachtenberg EW et al. Effective cellular uptake and efflux of thyroid hormones by human monocarboxylate transporter 10. Mol Endocrinol 2008; 22: 1357-1369
  25. Roberts LM, Woodford K, Zhou M et al. Expression of the thyroid hormone transporters monocarboxylate transporter 8 and organic ion transporter-14 at the blood: brain barrier. Endocrinology 2008; 149: 6251-6261.
  26. Braun D, Kinne A, Brauer AU et al. Developmental and cell-type-specific expression of thyroid hormone transporters in the mouse brain and primary brain cells. Glia 2011; 59: 463-471.
  27. Ceballos A, Belinchon MM, SDanchez-Mendoza E et al. Importance of monocarboxylate transporter 8 for the blood-brain barrier dependent availability of 3,5,3’ triiodoL-thyronine. Endocrinology 2009; 150: 2491-2496.
  28. Riskind PM, Kolodny JM, Larsen PN. The regional distribution of II type 5’ monodeiodinase in euthyroid and hypothyroid rats. Brain Res 1987; 420: 194–198.
  29. Crantz FR, Silva JE, Larsen PR. An analysis of the sources and quantity of 3,5,3’ triiodothyronine specifically bound to nuclear receptor in rat cerebral cortex and cerebellum. Endocrinology 1982; 110: 367-375.
  30. Lechan RM, Fekete C. Infundibular tanocytes as modulators of neuroendocrine functiom: hypothetical role in the regulation of the thyroid and gonadal axis. Acta Biomed 2007; 78: (Suppl. 1) :84-98.
  31. Bianco AC, Larsen PR. Cellular and structural biology of the deiodinases. Thyroid 2005; 15: 777-786.
  32. Galton VA, Wood ET, St Germain EA et al. Thyroid hormone homeostasis and action in the type 2 deiodinase deficient rodents brain during development. Endocrinology 2007; 148: 3080-3088.
  33. Freitas BCG, Gereben B, Castillo M et al. Paracrine signaling by glial cell-derived triiodothyronine activates neuronal gene expression in the rodent brain and human cells. J Clin Invest 2010; 120: 2206-2217.
  34. Morte B, Bernal J. Thyroid hormone action: astrocyte-neuron communication. Front Endocrinol 2014; 56: 1-5.
  35. Schroeder AC, Privalsky ML. Thyroid hormones; T3 and T4 in the brain. Front Endocrinol 2014; 5: 1-6.
  36. Liappas A, Mourouzis J, Zisakis A et al. Cell-type-dependent thyroid hormone effects on glioma cell lines. J Thyroid Res. 2011; 2011: 1-8. DOI: 10.4061/2011/856050.
  37. Hernandez A. Structure and function of the type 3 deiodinase gene. Thyroid 2005; 15: 865-874.
  38. Ciavardelli D, Bellomo M, Cresdmanno C et al. Type 3 deiodinase: role in growth, sternness and metabolism. Front Endocrinol 2014; 5: 1-7.
  39. Mori K, Yoshida K, Kayama T et al. Thyroxine deiodinase in human brain tumors. J Clin Endocrinol, Metab 19193; 77:1198-1202
  40. Murakami M, Araki O, Morimura Tosoi Y et al. Expression of type II iodothyronin e deiodinase in brain tumors. J Clin Endocrinol Metab 2000; 85: 4403-4406.
  41. Piekiełko-Witkowaska A, Kędzierska H, Popławski P et al. Alternative splicing of iodothyronine deiodinases in pituitary adenomas. Regulation by oncoprotein SF2/ASF. Biochim Biophys Acta 2013; 1832: 763-772.
  42. Piekielko-Witkowska A, Nauman A. Alternative splicing and its role in pathologies of endocrine system. Endocrynol Pol 2011; 62: 160-170.
  43. Morreale de Escobar G, Obregón MJ, Escobar del Rey F. Iodine deficiency and brain development in the first half of pregnancy. Public Health Nutr 2007; 10: 1554-1570.
  44. Wallis K, Dudazy S, van Hogerlinden M et al. The thyroid hormone receptor THRA1 protein is expressed in embryonic postmitotic neurons and persists in most adult neurons. Mol Endocrinol 2010; 24: 1904-1916.
  45. Dezonne RS, Lima FR, Trentin AG et al. Thyroid hormone and astroglia: endocrine control of the neural environment. J Neuroendocrinol 2015; 27: 435-445.
  46. Alkemade A. Thyroid hormone and the developing hypothalamus. Front Neuroanat 2015; 9: 15-22.
  47. Ercan-Fang S, Schwartz HL, Oppenheimer JH. Isoform specific 3,5,3-triiodothyronine receptor binding capacity and messenger ribonucleic add content in rat adenohypophysis: Effect of thyroidal state and comparison with extra pituitary tissues. Endocrinology 1996; 137: 3228-3233.
  48. Bernal J, Morte B. Thyroid hormone receptor activity In the absence of ligand : physiological and developmental implications. Biochi Biophys Acta 2013; 1830: 3893-3899.
  49. Nauman P. Ekspresja i funkcja jądrowych receptorów triiodotyroniny w mózgu człowieka. Endokrynol Pol 2000; 51: 451.
  50. Nauman P, Czernicki Z. Glejopochodne guzy mózgu (Część II). Potencjalna rola hormonu tarczycy i jego receptorów jądrowych (TR). Neurol Neurochir Pol 2002; 36: 981-992.
  51. Park JW, Zhao L, Willingham M et al. Oncogenic mutations of thyroid hormone receptor B. Oncotarget 2015; 6: 8115-8131.
  52. FalmantF, Samarut J. Thyroid hormone receptors: lessons from knockout and knock-in mutant mice. Trends Endocrinol Metab 2003; 14: 85-90.
  53. Leonard JL. Nongenomic actions of thyroid hormone in brain development. Steroids 2008; 73: 1008-1912.
  54. Bergh JJ, Lin HY, Lansing L et al. Integrin 9alphaVbeta3 contains a cell surface receptor site for thyroid hormone that is linked to activation of mitogen-activated protein kinase and induction of angio-genesis. Endocrinology 2005; 146: 2864-2871.
  55. Yonkers MA, Ribera AB. Molecular components underlying nongenomic thyroid hormone signaling in embryonic zebrafish neurons. Neural Development 2009; 4: 20-33.
  56. Davis PJ, Davis FB, Mousa SA et al. Membrane receptor for thyroid hormone: physiologic and pharmacologic implications. Annu Rev Pharmacol Toxicol 2011; 51: 99-115.
  57. Chalhoub N, Baker SJ. PTEN and the PI3-kinase pathway in cancer. Ann Rev Pathol 2009; 4: 127-150.
  58. Semenza GL Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene 2009; 29: 625-634.
  59. Lin HY, Sun M, Tang HY et al. L-thyroxine vs. 3,5,3-triiodo-thyronine and cell proliferation: activation of mitogen-activated protein kinase and phosphatidylinositol 3-kinase. Am J Physiol. Cell Physiology 2009; 296: C980-C991.
  60. Mousa SA, Bergh JJ, Dier E et al. Tetraiodothyroacetic add a small molecdule integrin ligand blocks angiogenesis induced by vasculasr growth factor and basic fibroblast growth factor. Angiogenesis 2008; 11: 183-190.
  61. Davis PJ, Lin HY, Sudha T et al. Nanotetrac targets integrin ανβ3 on tumor cells to disorder cell defense patways and block angiogenesis. Oncotargets and Therapy 2014; 7: 1619-1624.
  62. Olar A, Aldape KD. Using the molecular classification of glioblastoma to inform Personalized treatment. J Pathol 2014; 232: 165-177.
  63. Maleszewska M, Kamińska B. Is glioblastoma multiforme an epigenetic malignancy? Cancers 2013; 5: 1120-1139.
  64. Wilson TA, Karajannis MA, Harter DH. Glioblastoma multiforme: State of the art and future therapeutics. Surg Neurol Int 2014; 5: 1-47.
  65. Appin CL, Brat D. Molecular genetics of gliomas. Cancer J2014; 20: 66-72.
  66. Li R, Li H, Yan W et al. Genetics and clinical characteristisc of primary and secondary glioblastoma is assodated with differential molecular subtype distribution. Oncotarget 2015; 6: 7318-7324.
  67. Szala S, Jarosz M, Smolarczyk R et al. „Vidous circles” of glioblastoma tumors: vascularization and invasiveness. Post Hig Med Dośw 2012; 66: 888-900.
  68. Markovic DS, Vinnakota K, Chirasani S et al. Gliomas induce and exploit microglial MT1-MMP expression for tumor expansion. Proc Nat Acad Sd USA 2009; 106: 12530-12535.
  69. Kaminska B, Gabrusiewicz K, Sielska M. Characteristics of phenotype and pro-tumorigenic role of glioma infiltrating microglia/macrophages. J Neurol Neurophysiol 2011; S5. DOI: 10.4172/2155-9562.S5-001.
  70. Dimov I, Tasic-Dimov D, Conic I et al. Glioblastoma multiforme stem cells. Sd World J 2011; 11: 930-958.
  71. Juhanwar-Uniyal M, Labagnara M, Friedman M et al. Glioblastoma: molecular pathways, stem cells and therapeutic targets. Cancers 2015; 7: 538-555.
  72. Ohgaki H, Kleihues P. The definition of primary and secondary glioblastoma. Clin Cancer Res 2013; 19: 764-772.
  73. Verhaak RG, Hoadley KA, Purdom E et al. The cancer genome atlas research network. Integrated analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PTGFRA, IDH1, EGFR, and NF1. Cancer Cell 2010; 17: 98-110.
  74. Ohgaki H, Dessen P, Jourde B et al. Genetic pathways to glioblastoma; a population based study. Cancer Res 2004; 64: 6892-6899.
  75. Barrera-Hernandez G, Zhan Q, Wong R et al. Thyroid hormone receptor is a negative regulator in TP53-mediated signaling pathways. DNA Cell Biol 1998; 17: 743-750.
  76. Qui JS, Yuan Y, Desai-Yajnik VI et al. Regulation of MDM2 oncogene by thyroid hormone receptor. Mol Cell Biol 1999; 19: 864-872.
  77. Biernat W, Tchma Y, Yonekawa Y et al. Alteration of cell cycle regulatory genes in primary (de novo) and secondary glioblastoma. Acta Neuropathol 1997; 94: 303-309.
  78. Nakamura M, Yonekawa Y, Klejhues P et al. Promotor methylation of the RBI gene in glioblastomas. Lab Invest 2001; 81: 77-82.
  79. Nygard M, Wahlstrom GM, Gustafsson MV et al. Hormone dependent repression of the E2F-1 gene by thyroid hormone receptors. Mol Endocrinol 2003; 17: 79-92.
  80. Moeller LC, Broecker-Preuss M. Transcriptional regulation by nonclassical action of thyroid hormone. Thyroid Res 2011; (Suppl. 1): S6.
  81. Turkalp Z, Karamchandani J, Das S. IDH mutations in glioma. New insight and promises for the future. JAMA Neurology 2014; 71: 1319-1325.
  82. Nobusawa S, Watanabe T, Kleihues P et al. IDH mutations as molecular signature and predictive factor of secondary glioblastoma. Clin Cancer Res 2009; 15: 6002-6007.
  83. Yan H, Parsons W, Jin G et al. IDH1 and IDH2 mutations in gliomas. N Engl J Med 2009; 360: 765-773.
  84. Krell D, Assoku M, Galloway M et al. Screen for IDH1, IDH2, IDH3, D2HGDH and L2HGDH mutations in glioblastoma. PLOS ONE 2011; 6: e19868.
  85. Kaur B, Khwaja FW, Severson EA et al. Hypoxia and the hypoxia inducible factor pathway in glioma growth and angiogenesis. Neuro Oncol 2005; 7: 134-153.
  86. Agonihotri S, Dai K, Gelareh MD. Isocitrate dfehydrogenase and molecular subclasses of Glioma and glioblastoma. Neurosurg Focus 2014; 37: 1-9.
  87. Moeller LC, Dumitrescu AM, Refetoff SA. Cytosolic action of thyroid hormone leads to induction of hypoxia-inducible factor-1 and glycolytic genes. Mol Endocrinol 2005; 19: 2955-2963.
  88. Cavrol F, DiaZ-Flaque MC, Fernando T et al. Integrin ανβ3 acting as membrane receptor for thyroid hormones mediates angiogenesis in malignant T cells. Blood 2015; 125: 841-851.
  89. Davis PJ, Incerpi S, Lin HY et al. Thyroid hormone and P-glycoprotein in tumor cells. Biomed Res International 2015. DOI: 10.1155/2015/168427.
  90. Kajdaniuk D, Marek B, Foltyn W et al. Vascular endothdelial growth factor (VEGF)-part 2: in endocrinology and oncology. Endokrynol Pol 2011; 62: 456-484.

Polish version


Hormony tarczycy (HT, thyroid hormones) – 3,5,3’,5’-tetrajodotyronina (tyroksyna) i 3,3’,5-trijodotyromna (T3) mają decydujący wpływ na rozwój mózgu w życiu płodowym oraz w pierwszych 2-3 latach po urodzeniu [1, 2]. Z badań klinicznych od dawna wiadomo, że niedobór hormonów tarczycy w życiu płodowym uwarunkowany jest w pierwszych dwóch trymestrach przede wszystkim niedostatecznym transferem TH ciężarnej lub niedoborem jodu w diecie ciężarnej i prowadzi do ciężkich zaburzeń w rozwoju mózgu i jego czynności [3, 4].

Wbrew poprzednim poglądom, według których w dorosłym mózgu hormony tarczycy nie działają lub mają znikome znaczenie obecnie wiadomo, że przez cale życie człowieka T4 i T3 w istotny sposób wpływają na morfologię mózgu poprzez stymulację procesów mielinizacji, proliferacji komórek gleju, rozwoju połączeń synaptycznych i wreszcie procesu „rozgałęziania” dendrytów i aksonów [2]. Również przez cale życie TH mają wpływ na szeroko pojętą czynność mózgu, a również mogą modulować zachodzące w nim procesy patologiczne w tym rozrostowe [5-7]. W ostatnich latach zwrócono uwagę na wpływ TH na właściwości i czynność komórek mikrogleju [8-10]. Komórki te w istotny sposób wpływają na funkcje obronne w mózgu, ale w określonym mikro-środowisku tworzonym między innymi przez komórki glejaka, a zwłaszcza komórki glejaka wielopostaciowego (GBM, glioblastoma multiforme) ich właściwości obronne mogą ulec zmianie i mikroglej zaczyna nasilać proces nowotworowy [10, 11]. Zasugerowano, że charakterystyczne mikrośrodowisko GBM powstaje w wyniku działania transformującego czynnika wzrostu beta 1 (TGF-β1) [12]. Złożone mechanizmy działania TGF-pi w stanie fizjologii i patologii ostatnio szczegółowo omówiono [13].

Obecność hormonów tarczycy w mózgu i efekt ich działania zależy od wielu czynników, a mianowicie:

  • prawidłowej lub zaburzonej funkcji tarczycy i prawidłowego lub zmienionego stężenia T4 i T3 w surowicy krwi;
  • prawidłowego lub zaburzonego stężenia i czynności białek transportujących T4 i T3 przez barierę krew-mózg i krew-płyn mózgowo-rdzeniowy, a więc MCT8 i MCT10 (monocarboxylate transporters 8 and 10), OATP1 (organic anion transporting polypeptide 1) odgrywających rolę w transporcie T3 i T4 do komórek gleju, astrocytów i neuronów;
  • prawidłowego lub zaburzonego stężenia i aktywności jodotyroninowej dejodynazy typu drugiego (D-2) i jodotyroninowej dejodynazy typu trzeciego (D3) w komórkach mózgu i w guzach OUN;
  • obecności prawidłowych, „dzikich” receptorów jądrowych hormonów tarczycy THRA1, THRB1 i THRB2 (thyroid hormones receptors A and B) w komórkach mózgu lub izoform receptorów czy ich mutantów w komórkach guzów OUN zwłaszcza w GBM;
  • działania T3 i T4 przez interakcję z błonowym receptorem integrynowym ανβ3 w komórkach mózgu i w guzach zwłaszcza w GBM.

Hormony tarczycy poza kontrolą procesów metabolicznych wpływają na proliferację i wzrost komórek, różnicowanie komórek i zjawisko naturalnej śmierci komórek. Te mechanizmy działania są zróżnicowane narządowo i zależne od okresu rozwojowego organizmu. Zaburzenia tych efektów działania TH są charakterystyczne dla wszystkich rodzajów nowotworów [14-16].

Celem niniejszego opracowania jest z jednej strony podsumowanie aktualnej wiedzy dotyczącej zaburzeń sygnału hormonalnego tyroksyny i trijodotyroniny przede wszystkim w najbardziej złośliwym nowotworze mózgu jakim jest glejak wielopostaciowy, a z drugiej porównanie następstw najważniejszych zaburzeń genetycznych typowych dla GBM jakimi są niekontrolowana proliferacja komórek nowotworowych, ich komórkowe naciekanie, zahamowanie apoptozy, niedotlenienie GBM i rozwój patologicznego unaczynienia. Ostatecznym celem niniejszej pracy było przedstawienie i udokumentowanie hipotezy o molekularnym współudziale hormonów tarczycy z klasycznymi mechanizmami patogenetycznymi GBM.

Ogólnoustrojowa homeostaza hormonów tarczycy a choroby nowotworowe mózgu

W pracach poglądowych dotyczących udziału hormonów tarczycy i ich receptorów w nowotworzeniu i przebiegu chorób nowotworowych [15, 16] przedstawiono wyniki badań wskazujące, że aktualna hypertyreoza lub przebyta w przeszłości nadczynność tarczycy zwiększa ryzyko pojawienia się u człowieka różnych nowotworów i wpływa na ich przebieg. Przedstawiono również heterogenność tego zjawiska, a mianowicie w raku wątroby w odróżnieniu od innych nowotworów czynnikiem ryzyka była niedoczynność tarczycy. W pracy własnej dotyczącej stężenia hormonów tarczycy u chorych z glejakami [17] stężenia TSH i fT4 nie odbiegały od granic przyjętych wartości referencyjnych, natomiast stężenie T3 było obniżone, szczególnie w gliosarcoma i GBM. Z przeprowadzonych badań wiadomo [7], że u dorosłych ludzi stężenie TH w mózgu jest około 5-krotnie niższe niż w surowicy krwi. Dotychczas, poza pracą własną [17], nie przeprowadzono badań nad stężeniem TH w glejakach i niezmienionej nowotworowo tkance mózgu. W badaniach własnych [17] stężenia T4 i T3 w tkance mózgowej nienowotworowej uznano za granice „normy „, do których odnoszono wyniki badań w komórkach glejaków, brak bowiem uznanych norm w piśmiennictwie (oczywista niedostępność materiału do badań). Średnie stężenie T4 w astrocytoma (G II wg klasyfikacji WHO) i anaplastic astrocytoma (G III) nie różniło się od oznaczanego w niezmienionej nowotworowo tkance mózgowej. Stężenie T4 było natomiast obniżone w operowanych gliosarcoma (G-IV) i GBM (G-IV). Stężenie całkowitej T3 w surowicy krwi było obniżone u wszystkich chorych z glejakami, a zwłaszcza u chorych z GBM i mieściło się w granicach poniżej wartości referencyjnej stwierdzanej w zdrowej tkance mózgowej. Pośrednio znaczenie stężenia hormonów tarczycy u chorych z GBM potwierdzają badania [19], w których chorych z tym nowotworem poddano leczeniu za pomocą Tamoxifenu i Prophylothiouracylu. U połowy tak leczonych wystąpiły objawy niedoczynności tarczycy, a u wszystkich obniżeniu uległo stężenie IGF-1. Średni czas przeżycia chorych, u których wystąpiła niedoczynność tarczycy był dłuższy o około 8 miesięcy w porównaniu z grupą chorych, którzy mimo leczenia pozostali w eutyreozie. Pozytywny wpływ obniżenia stężenia hormonów tarczycy za pomocą PTU potwierdzono w innym przypadku, mianowicie u chorego z GBM umiejscowionym w skrzyżowaniu nerwów ocznych. Guzy takie mają złośliwy przebieg i krótki czas przeżycia. Podanie PTU i wywołanie niedoczynności tarczycy wywołało zmniejszenie guza i kliniczną remisję przez 2,5 roku, a czas przeżycia od rozpoznania do zgonu wydłużył się do 4,5 roku [19]. Wyniki badań uzyskanych w tej pracy i w badaniach innych wskazują na znaczenie stężenia hormonów tarczycy w rozwoju, przebiegu i inwazyjności choroby nowotworowej mózgu, w tym najbardziej złośliwego glejaka [20]. Dostępne w piśmiennictwie wyniki badań, a zwłaszcza wpływ niedoczynności tarczycy, mogą sugerować, że ogólna homeostaza hormonów tarczycy wpływa na przebieg kliniczny GBM.

Transport hormonów tarczycy z krwiobiegu do mózgu

Obecnie wiadomo, że transport T4 i T3 z krwiobiegu do mózgu ma charakter aktywny i zależy przede wszystkim od obecności i aktywności błonowych, specyficznych dla TH białek transportujących MCT8, MCT10 i OATP1C1 [21-23]. Białka te mają większe powinowactwo do T4 niż do T3 [24]. W warunkach doświadczalnych oba hormony tarczycy przekraczają granicę bariery krew-mózg głównie związane z MCT8, dostając się do przestrzeni pozakomórkowej mózgu bliskiej naczyniom kapilarnym. Następnie T4 jest transportowana do astrocytów i komórek mikro-gleju za pośrednictwem zarówno MCT8, jak i OATP1C1. Ten drugi transporter ma powinowactwo do T4 i rT3, natomiast nie wiąże T3. W ostatnim czasie stwierdzono jednak, że u człowieka w barierze krew-mózg, w odróżnieniu od sytuacji w mózgu gryzoni, obecność transportera OATP1C1 jest bardzo ograniczona co oznacza, że dominującą rolę odgrywa białko MCT8 [25, 26]. Nie można wykluczyć, że w transporcie hormonów tarczycy do komórek biorą również udział czynniki transportujące organiczne jony LAT1 i LAT2, ponieważ zidentyfikowano je zarówno w astrocytach, jak i w neuronach i w komórkach mikro-gleju [25, 27]. Znaczenie transporterów TH zostało dodatkowo podkreślone przez wyniki badań u myszy pozbawionych genów dla MCT8 i OATP1C1. Myszy te rozwijały upośledzenie funkcji OUN podobne, choć nie identyczne, jak we wrodzonej niedoczynności tarczycy [27]. Zaburzeń funkcji transporterów jak dotąd nie zidentyfikowano w guzach OUN, a w tym i glejakach. Trzeba więc założyć, że transport TH do komórek glejaka pozostaje niezaburzony.

Homeostaza hormonów tarczycy w mózgu i jej zaburzenia w guzach mózgu – rola jodotyroninowych dejodynaz typu 2 i typu 3

Komórki mózgu można zaliczyć do szczególnie wrażliwych na działanie hormonów tarczycy, co manifestuje się między innymi utrzymywaniem własnej, odmiennej od innych narządów homeostazy hormonów tarczycy [28, 29]. Istotną rolę w tworzeniu tej homeostazy odgrywają jodotyronin owe dejodynazy typu 2 i 3. Głównymi komórkami mózgu, w których ma miejsce monodejodynacja tyroksyny do trijodotyroniny są zlokalizowane głównie w podwzgórzu w komórkach gleju – tanocyty i znajdujące się w całym mózgu astrocyty [28-30]. Znacząca część transportowanej do tanocytów i astrocytów tyroksyny jest odjodowywana do trijodotyroniny. W mózgu dorosłych szczurów około 80% T3 wiążącej się z jądrowymi receptorami hormonów tarczycy (THRs) powstaje w przebiegu lokalnej monodejodynacji T4 do T3 [29]. W przypadku niedoboru lub obniżonej aktywności D-2 receptory jądrowe (THRs) wiążą T3 pochodzącą z krwiobiegu lub z hormonem znajdującym się w płynie mózgowo-rdzeniowym po dejodynacji T4 w tanocytach [31, 32]. Aczkolwiek nie jest to ostatecznie przesądzone to część danych wskazuje, że w komórkach gleju nie ma receptorów jądrowych hormonów tarczycy i że znajdują się one przede wszystkim w neuronach [8, 33, 34]. W wyniku działania sygnałów parakrynnych T3 jest przenoszona z astrocytów do komórek neuronalnych i tam dopiero wiąże się z THRs [33], które z kolei poprzez oddziaływanie z TRE (triiodothyronine response element) genów wrażliwych na TH aktywują lub hamują proces transkrypcji genów [34, 35]. Jednak ostatnio przedstawiane są dowody, że TRs są również obecne w komórkach gleju i w glejakach [10, 36]. Stężenie T3 w komórkach nerwowych i co za tym idzie dostępność hormonu dla THRs jest dodatkowo regulowana przez znajdującą się w neuronach D-3 [37, 38]. Enzym ten inaktywuje nadmiar T3 i T4 poprzez dejodynację T4 do reverse T3 (rT3) i T3 do T2 [31, 35]. Aktywność D-2 i D-3 jest zaburzona w guzach mózgu, co stwierdzono zarówno w badaniach własnych (17), jak i w badaniach innych [39, 40]. W badaniach własnych stężenia T4 w guzach były bliskie do stwierdzanych w tkance nienowotworowej, a stężenia T3 były w GBMs obniżone, natomiast aktywność D-2 i D-3 w guzach była znacząco podwyższona [17]. Obniżone stężenie T3 w GBM mogło być również następstwem obniżonego stężenia T4 (substratu dla reakcji odjodowania) bądź zmian w strukturze D-3. W badaniach własnych dotyczących guzów przysadki i zaburzonego splajsingu (alternatywnego składania) genów dla DI01 (gen kodujący dejodynazę typu I) i DI02 (gen kodujący dejodynazę typ II) stwierdzono obecność izoform obu dejodynaz [41]. Stwierdzono również [41], że zmiany te uwarunkowane były zwiększoną aktywnością czynników splajsingowych SF2/ASF. Rola zaburzeń splajsingu w etiopatologii chorób układu endokrynnego została uprzednio obszernie opisana [42].

Działanie hormonów tarczycy w mózgu – rola receptorów jądrowych

Receptory jądrowe hormonów tarczycy THRA1, THRB1 i izoformy tych receptorów są obecne w komórkach mózgu człowieka począwszy od 8.-10. tygodnia życia płodowego [43, 44]. W tym okresie przeważa obecność THRA1, zwłaszcza w zewnętrznej części kory i w podwzgórzu [43, 44]. Począwszy od około 15. tygodnia żyda płodowego również THRB1 i THRB2 są wykrywane w rozwijającym się mózgu. Począwszy od drugiego trymestru, a następnie po urodzeniu i w okresie dorosłego życia THRA1 stanowi około 70% białka receptorowego w mózgu THRB1 około 20%, a THRB2 10% [45]. Wpływ hormonów tarczycy na rozwój mózgu we wszystkich okresach żyda płodowego w ostatnich latach dokładnie omówiono [1-6]. W niniejszym opracowaniu zawarte będą tylko te aspekty działania hormonów tarczycy i rozwoju mózgu, które mogą się wiązać z rozwojem nowotworów, a przede wszystkim glejaków. Wiadomo [2], że przez całe życie człowieka, zarówno w życiu płodowym, jak i po urodzeniu, hormony tarczycy stymulują proces mielinizacji, proliferacji komórek glejowych, tworzenia aksonów i „rozrost”(rozwijanie się) dendrytów i aksonów. Wiadomo, że gruczoł tarczowy rozwija się około 12-14 hbd, ale czynność hormonalna podwzgórza-przysadki i powstanie układu podwzgórze-przysadka-tarczyca ma miejsce około 20 hbd [1-3]. Przez cały okres życia płodowego, a zwłaszcza przez pierwsze dwa trymestry ciąży prawidłowy rozwój OUN (i całego płodu) zachodzi praktycznie tylko dzięki hormonom tarczycy ciężarnej [2, 3]. W ostatnim trymestrze udział hormonów tarczycy płodu pokrywa około 50% potrzeb [2]. Pozostaje do końca niewiadomym, w którym okresie życia płodowego rozpoczyna się transfer hormonów z tarczycy ciężarnej do rozwijającego się zarodka. Uważa się [1-3], że transfer ten rozpoczyna się wkrótce po zagnieżdżeniu się zapłodnionej komórki jajowej w macicy ciężarnej, a kończy się w czasie porodu. Z drugiej strony wyniki pojedynczych badań sugerują, że transfer zaczyna się między 3-5 hbd dąży [1]. Zwiększenie sekrecji hormonów tarczycy, a zwłaszcza tyroksyny, przez ciężarną wymaga znaczącego zwiększenia (dodatkowo 150-200 ug jodu/dobę w ciąży pojedynczej) dowozu jodu [43]. W początkowym okresie życia płodowego tylko około 25% THRs jest związanych z T3. Wolne receptory jądrowe THRs zwane apo-receptorami odgrywają istotną rolę w dojrzewaniu mózgu zwłaszcza w okresie, w którym T3 jest jeszcze w OUN niedostępna [48].

W 2000 roku przedstawiono dane dotyczące funkcji receptorów jądrowych hormonów tarczycy w mózgu człowieka [49], a w 2002 roku [50] przedstawiono własne poglądy dotyczące patogenezy glejaków, w których uwzględniono wyniki własnych badań nad ekspresją genów dla receptorów jądrowych T3 i nad ilością białek receptorowych w komórkach glejaków w tym GBM [50]. Wyniki te wskazywały, że zarówno ekspresja genów dla TRs, jaki ilość kodowanych przez te geny białek receptorowych jest w glejakach w różny sposób zaburzona. Wnioski takie były możliwe, ponieważ w czasie leczenia operacyjnego glejaków u tych samych chorych pobierano również niezmienioną nowotworowo tkankę glejową. Przez wiele lat nikt nie powtórzył takich badań i dopiero w 2011 roku potwierdzono obecność zaburzeń ekspresji receptorów jądrowych hormonu tarczycy w liniach komórkowych glejaka [36]. Zmiany w budowie THRA i THRB czy zmutowane receptory mogą zmieniać w różny sposób mechanizm i następstwa oddziaływania z TRE genów kontrolowanych przez hormon tarczycy lub zmieniać następstwa oddziaływań białko-białko (np. THRA-P-53) zwłaszcza w komórkach nowotworowych. Zmutowany THRB1 traci swoje funkcje supresorowe [51].

Hormony tarczycy w mózgu – działanie pozagenomowe i rola błonowego receptora integrynowego αVβ3

W 2003 roku w badaniach na myszach knockout nieposiadających receptorów jądrowych hormonu tarczycy zwrócono uwagę na fakt, że zaburzenia rozwoju mózgu u tych zwierząt różniły się od występujących u myszy pozbawionych tarczycy i w części ustępowały po podaniu tyroksyny [52]. W dalszych pracach stwierdzono, że podobny do T4 efekt można wywołać przez podanie rT3 uważanej do tego czasu za nieaktywny produkt monodejodynacji T4 (katalizowanej na obwodzie przez dejodynazę typu 1, a w mózgu przez dejodynazę typu 3). Do chwili obecnej uważa się, że w mózgu obecne są tylko D-2 i D-3 [3, 5]. Tak więc obecna w mózgu rT3 musiała w części pochodzić z krwiobiegu i powstawać w narządach zawierających D1. W następnych latach wysunięto hipotezę, że tyroksyna może działać w mechanizmie poza-genomowym głównie poprzez aktywacje polimeryzacji aktyny [53]. Wykazano, że w niedoczynności tarczycy tylko 40-60% aktyny jest spolimeryzowana, a to z kolei prowadzi do zaburzeń rozwoju szkieletu komórkowego i mikrofilamentów [53]. Podanie T4 lub rT3 takim zwierzętom doprowadzało po 10-20 minutach do normalizacji polimeryzacji, nie miało natomiast wpływu na całkowitą zawartość aktyny w komórkach [53]. Był to więc pośredni dowód, że w mózgu obecny jest poza-genomowy mechanizm działania T4. Jednak prawdziwym przełomem ważnym nie tylko dla wiedzy o działaniu hormonów tarczycy w mózgu, ale również dla zrozumienia mechanizmu powstawania nowotworów (w tym glejaków) było poznanie roli i molekularnych następstw interakcji T3 i T4 z błonowym receptorem integrynowym avp3 [54]. Receptor ten jest również obecny i aktywny w neuronach [55]. Receptor ten posiada dwa miejsca wiążące hormony tarczycy. Miejsce wiążące SI reaguje tylko z T3 i w następstwie tej reakcji aktywuje szlak sygnałowy PI3K [56]. Ten szlak sygnałowy w komórkach nowotworowych jest również aktywowany przez THRA i THRB i wywiera wpływ na proliferację i wzrost komórek, a także jest inhibitorem apoptozy [57]. Z drugiej strony szlak PI3K wpływa na ekspresję podjednostki alfa czynnika indukującego hipoksję – HIFI, a w komórkach nowotworowych ma wpływ na angiogenezę, adaptację komórki do niedotlenienia, a także może zwiększać inwazyjność komórek i ich przerzutowanie [58]. Miejsce wiążące S2 reaguj e głównie z T4 choć może również z bardzo małym powinowactwem wiązać się z T3. Interakcja S2-T4 aktywuje kinazę białkową aktywowaną mitoogenem – szlak ERK1/2 (kinaza 1/2 regulowana sygnałem zewnątrz komórkowym), a ten szlak z kolei aktywuje gen dla FGF2 i promuje angiogenezę [57]. W badaniach na liniach komórkowych glejaków interakcja hormonów tarczycy z receptorem integrynowym aVp3 prowadziła do wzrostu glejaka [7]. Efekty działania hormonów tarczycy przez interakcje z receptorem integrynowym mogą być zablokowane, a nawet „odwrócone” przez podanie zdeaminowanego metabolitu tyroksyny TRAK. Dotychczasowe badania wskazują, że metabolit ten blokuje reakcje alfaVBeta3 receptora zarówno z T3, jak i z T4 i w następstwie blokuje aktywność czynnika wzrostu śródbłonka naczyniowego (VEGF, vascular endothelial growth factor) i blokuje również aktywność zasadowego czynnika wzrostu fibroblastów (bFGF, basie fibroblast growth factor) i wreszcie obniża transkrypcję genu EGFR [60, 61]. Rolę hormonów tarczycy w GBM (jak już poprzednio wspomniano) potwierdza również fakt, że wywołana farmakologicznie niedoczynność tarczycy doprowadziła do ponad 2-letniej regresji GBM zlokalizowanego w skrzyżowaniu nerwów ocznych i znacząco wydłużyła życia chorego [19]. Znaczące wydłużenie życia uzyskano również u grupy chorych z GBM, u których wywołano „chemiczną” niedoczynność tarczycy, podając PTU, co wydaje się potwierdzać wpływ hormonów tarczycy na przebieg GBM [18]. Obniżenie stężenia hormonów tarczycy do dolnych granic wartości referencyjnych (tzw. euthyroid hypothyroksynemia) uzyskana podawaniem Methimasolu z jednoczesnym stosowaniem małych dawek tyroksyny przedłużało również życie części chorych w ostatnim okresie choroby nowotworowej mózgu, płuc, trzustki, piersi, ślinianek czy mięsaków tkanek miękkich, co potwierdza bardziej uogólniony wpływ hormonów tarczycy na rozwój i przebieg choroby nowotworowej [20].

W latach 2010-2015 przedstawiono wiele opartych na wynikach badań doświadczalnych i klinicznych zaburzeń genetycznych, epigenetycznych i ich następstw molekularnych prowadzących do rozwoju GBM i jego zróżnicowanego, skracającego życie ludzkie przebiegu wynikającego z inwazyjności tego glejaka, komórkowego naciekania i charakterystycznego unaczynienia i oporności na dotychczasowe leczenie [62-67]. Zwrócono również uwagę na rolę niedotlenienia [65], znaczenie komórek mikro-gleju [68, 69] i komórek macierzystych nazwanych GBMSCs (glioblastoma stem cells) lub CSCs (cáncer stem cells of GBM) [70, 71]. Założono, że dla optymalizacji postępowania diagnostycznego, terapeutycznego i prognozowania zasadne będzie odniesienie się z jednej strony do zasadniczego podziału GBM na pierwotny i wtórny [72], ale także do zdefiniowanych czterech podtypów GBM, a więc proneuralnego, neuralnego, klasycznego i mezenchymalnego [73]. Uznano bowiem, że poznanie czynników klinicznych i zrozumienie mechanizmów molekularnych prowadzących do rozwoju i dramatycznego dla chorego i jego lekarza przebiegu poszczególnych podtypów GBM pozwoli na stworzenie personalizowanej terapii opartej na lekach biologicznie blokujących sygnały pro-proliferacyjne i rozrostowe, sprzyjające rozwojowi unaczynienia w GBM i blokujące zjawisko naturalnej śmierci komórki nowotworowej. Przeprowadzona w 2014 roku metaanaliza dotychczasowych prób leczenia biologicznego [64] jednoznacznie wskazała, że aczkolwiek wszystkie testowane leki z tej grupy wykazały oczekiwane efekty w warunkach in vitro, czy na liniach komórkowych glejaków, to wszystkie zawiodły w próbach klinicznych. Może to oznaczać, że w dotychczasowych badaniach nad powstawaniem i przebiegiem GBM pominięto jakiś czynnik, którego udział wydawał się mało prawdopodobny. Przedstawiona poniżej hipoteza zakłada, że tym czynnikiem wpływającym na prawie wszystkie ogólnie uznane genetyczne mechanizmy powstawania i przebiegu GBM, której nie brano pod uwagę jest zaburzona ścieżka sygnałowa hormonów tarczycy.

W dotychczasowych badaniach nad przebiegiem szlaków sygnałowych w GBM uznano, że zasadnicze zaburzenia dotyczą szlaku EGFR/PTEN/Akt/mTOR, szlaku TP53/MDM2/pl4ARF, szlaku P16/RB1 i szlaku zależnego od mutacji genu dla dehydrogenasy izocytrynianowej (IDH, isocitrate dehydrogenase) [62, 64, 72, 74].

EGFR (endothelial growth factor receptor) jest receptorem o aktywności kinazy tyrozynowej. Zaburzenia tego szlaku występują u około 60% chorych z pierwotnym glejakiem wielopostadowym i co najmniej 10% chorych z wtórnym GBM. Są one przede wszystkim następstwem amplifikacji EGFR, czyli zwielokrotnienia liczby jego kopii. A rzadziej mutacje EGFR, które dotyczą kilku aksonów kodujących część domeny zewnątrzkomórkowej są wykrywane stosunkowo rzadko, ale prowadzą do znacznego zaburzenia sygnału. Mutant EGFR (EGFR-vIII) nie wiąże ligandu, ale jest w stanie ciągłej, pozbawionej kontroli nadaktywacji. Wzmożona aktywacja EGFR powoduje gromadzenie w błonie komórkowej kinazy 3-fosfatydyloinozytolu-PI3K (phosphatidyl-inositol 3-kinases) należącej do rodziny lipidowych kinaz fosfolyrujących grupy hydroksylowe fosfatydyloinozytolu. Zaktywowane przez EGFR PI3K fosforylują dwufosfatydyloinozytol (PIP2, phosphatidynositol-4,5-biphosphate) do trifosfatydyloinosytolu (PIP3, phosphatídynoínosítol-3-phosphate). Niezależnie od aktywacji PI3K zależnej od EGFR w glejakach wielopostaciowych stwierdzono obecność mutantów PI3K, które są silnymi stymulatorami generacji PIP-3 i być może wykazują pewną oporność na supresorowe działanie PTEN. Trifosfatydyloinosytol z kolei aktywuje białka efektorowe, a więc białkową kinazę B zwaną też kinazą serynowo-treoninową (AKT/PKB) i mTOR (mammalian target ofrapamycin). Zarówno wysoka aktywność AKT/PBK, jak i mTOR stymuluje proliferację komórek glejaka, a jednocześnie hamuje zjawisko apoptozy. Dodatkowo ważną rolę w pro-nowotworowym działaniu „zaktywowanego szlaku sygnałowego EGFR” odgrywa wyciszenie lub mutacja genu PTEN (phosphate and tensin homolog deleted on chromosome 10) charakterystyczne dla pierwotnego GBM [70]. PTEN jest fosfatazą fosfatydyloinozytolu i działa antagonistycznie w stosunku do PI3K i w efekcie poprzez inhibicje PIP3 hamuje aktywność Akt/PKB i mTOR. PTEN należy do czynników supresorowych i w komórkach glioblastoma multiforme obniża efekt pro-proliferacyjny, aktywując proces apoptozy [73].

Hormony tarczycy wpływają na ekspresję genu dla EGFR, ponieważ należy do genów, których transkrypcja zależna jest od trijodotyroniny, zawiera pozytywne TRE. Działanie „dzikiego”, a jeszcze bardziej zmutowanego THRA1 w GBM może więc silnie stymulować transkrypcję tego genu. Z kolei gen TEIRB w badanych komórkach nowotworowych podlegał z reguły mutacjom, które ograniczały lub całkowicie znosiły jego właściwości supresorowe, a to prowadzi do wzmożonej ekspresji genów zależnych od T3 [14, 15, 51],.Udokumentowano również działanie hormonu tarczycy na aktywność PI3K. W mechanizmie niegenomowym trijodotyronina i tyroksyna poprzez wiązanie z receptorem integrynowym aktywuje PI3K, wywołuje efekt pro-proliferacyjny i hamuje apoptozę [54, 59]. Nie ma więc wątpliwości, że niezależnie od naturalnych ligandów EGFR, a więc EGF (epidermal growth factor) i TGF-α (tumor growth factor alfa) hormony tarczycy mogą być silnie działającymi stymulatorami aktywności szlaku sygnałowego EGFR.

Szlak TP53/MDM2/p14ARF odgrywa ważną rolę w powstawaniu i w przebiegu wtórnego GBM. Jego zaburzenia są obecne u ponad 60% chorych z tą formą glejaka i mniej niż 30% chorych z GBM pierwotnym [72]. Białko TP53 odgrywa ważną rolę w regulacji wielu procesów: naprawy uszkodzonego DNA, apoptozy, czy rozwoju nowych naczyń. Jednak najważniejszym procesem, na który wpływa TP53, jest regulacja cyklu komórkowego. W przypadku wtórnego GBM około 55% TP53 ulega mutacji, które dotyczą mutacji kodonów 248 i 273. Działanie TP53 jest sprzężone z białkiem MDM2, które wiążąc się z TP53 hamuje zwrotnie aktywność TP53 i jego zdolność do stymulacji procesu transkrypcji. Z kolei transkrypcja genu MDM2 jest aktywowana przez TP53. Dodatkowo zwłaszcza w komórkach nowotworowych ekspresja białka pl4ARF ma hamujący wpływ na aktywność TP53.

Wpływ hormonu tarczycy na aktywność TP53 może być zarówno bezpośredni, jak i pośredni. Hamowanie aktywności TP53 jest następstwem bezpośredniej interakcji białek receptorowych dla hormonu tarczycy (THRs) z białkiem TP53 [75]. Mechanizm pośredni inhibicji TP53 zależy od obecności dwóch pozytywnych TRE w promotorze genu dla MDM2. [76]. Zależna od trijodotyroniny nadekspresja genu MDM i w następstwie aktywacja tego białka prowadzi do inhibicji TP53 i w efekcie stymuluje przejście komórki GBM z fazy podziałowej G1 do fazy S. Zwiększona przez działanie TH ilość białka MDM2 może niezależnie od TP53 aktywować promotory genów E2F1 i cykliny A (poprzez oddziaływanie MDM2-białko Rb) eliminować efekt Rb na zatrzymywanie cyklu komórkowego w fazie G1 [76, 77].

Szlak sygnałowy P16INK4a/RBl jest ważny dla procesu proliferacji, ponieważ białko RB1 podobnie jak białko TP53 reguluje cykl komórkowy, kontrolując przejście z fazy G1 do fazy S. Zaburzenia tego szlaku występują zarówno w pierwotnym, jak i we wtórnym GBM [77, 78] i polegają na delecji P16INK4ai metylacji promotora genu RB1 (gen for retinoblastoma). Metylacja genu RB1 jest przede wszystkim charakterystyczna dla wtórnego glejaka, bowiem w glejaku pierwotnym występuje ona tylko w około 14% przypadków [74], Kompleks CDK4/cyklina Dl (cyclin-dependent kinase 4) fosforyzuje białko RB1, co prowadzi do uwolnienia czynnika transkrypcyjnego E2F, który z kolei aktywuje geny uczestniczące w cyklu komórkowym i jego przejściu z fazy G1 do fazy S. Białko P16INK4a, wiążąc się z cykliną CDK4, aktywuje kompleks CDK4/cyklina Dl, co hamuje przejście cyklu z G1 do S [77].

Hormony tarczycy mają bezpośredni wpływ na ten szlak sygnałowy, bowiem gen dla E2F kodujący białko E2F posiada negatywne TRE reagujące zarówno z THRA1, jak i THRB1 [79]. Tak więc kompleks THRs związany z T3 prowadzi do zahamowania transkrypcji genu dla E2F, a co za tym idzie zahamowania przejścia fazy G1 do fazy S [80].

Dehydrogenaza izocytrynianu IDH i produkty zmutowanego jej genu są od kilku lat uważane za istotny czynnik prowadzący do powstawania glioblastoma GBM [79]. Mutacje w genie tego białka są przede wszystkim charakterystyczne dla GBM wtórnego i dotyczą 70-80% chorych, ale są również obecne w około 5% przypadków GBM pierwotnego [81-83]. Białko IDH występuje w 3 podstawowych izoformach IDH1, IDH2 i IDH3, ale ta ostatnia izoforma nie była identyfikowana w GBM [82], Izoforma IDH1 występuje w cytosolu, izoforma IDH2 w mitochondriach [81]. W warunkach, w których występuje niezmutowany „dziki” IDH1 stymuluje on oksydatywną dekarboksylację izocytrynianu do α-ketoglutaranu KG (alfa-ketoglutarate), a także redukuje NADP+ do NADPH (nicotinamide adenine dinucleotide). Z kolei mutant IDH1 może mieć ograniczoną zdolność do stymulowania oksydatywnej dekarboksylacja co będzie prowadziło do ograniczenia powstawania α-KG [81]. Ta zmiana z kolei prowadzi do obniżenia aktywności hydroksylaz prolinowych (proline dehydrogenase), co z kolei mimo braku niedotlenienia gleju zwiększa aktywność czynnika transkrypcyjnego indukowanego w hipoksji HIF-1 (hypoxia inducible factor) [85].

Zwiększona aktywność HIF1 powoduje aktywacje onkogenów, obniżenie ekspresji genów supresorowych i ich aktywności, zwiększenie aktywności metaloproteinaz macierzy zewnątrzkomórkowej i uwalnianie komórkowych czynników wzrostu. Ponadto zwiększona aktywność HIF1 może nasilać proces angiogenezy [85]. Uważa się, że te zaburzenia szlaku sygnałowego IDH1 mogą być istotne dla wczesnego etapu powstawania wtórnego glioblastoma, a także tworzenia pierwotnego guza [81, 86]. Inną konsekwencją obecności mutanta IDH może być ograniczenie procesu różnicowania komórki, a jednocześnie zwiększenie jej proliferacji [83]. Wreszcie HIF znacząco nasila procesy proliferacji i angiogenezy w komórkach glioblastoma [83, 85]. Wreszcie mutanty IDH1 i IDH2 mogą zmieniać metabolizm energetyczny komórki. W warunkach działania prawidłowego IDH1 i IDH2 katalizują odwracalną dekarboksylację izocytrynianu do α-ketoglutaranu. Wzajemny stosunek obu tych substancji określa stan energetyczny komórki. Mutanty IDH mogą również stymulować konwersje α-KG do 2-hydroksy glutaronu (2HG, 2-hydroxy glutarate). Nadmiar 2HG aktywuje HIF1, a także zaburza proces metylacji DNA i histonów w komórkach glioblastoma [84].

Hormony tarczycy, pośrednio poprzez stymulację PI3K, zarówno drogą genomową, jak i przez błonowy receptor integrynowy są stymulatorem aktywności czynnika transkrypcyjnego indukowanego w hipoksji HIF-1, co umożliwia syntezę białek wymaganych do dalszej progresji nowotworowej.


Po omówieniu działania hormonów tarczycy na mózg i jego czynność przedstawiono zaburzenia genetyczne i funkcjonowanie związanych z genami szlaków sygnałowych uznawanych za ważne dla rozwoju i przebiegu glejaka wielopostaciowego [62, 64, 65-67, 77]. Udokumentowano, że hormony tarczycy i poszczególne etapy ich metabolizmu i genomowego i poza-genomowego działania są zaburzone w GBM. Zaburzenia te wywierają wpływ na ogólnie przyjęte szlaki aktywowania wzrostu i proliferacji komórek nowotworowych, hamowania procesów różnicowania i apoptozy [7, 14, 15, 17, 50, 51, 54, 56]. W pracy przedstawiono również wyniki badań [57, 58] wskazujące, że hormony tarczycy bezpośrednio i pośrednio stymulują proces angiogenezy i badania dokumentujące wpływ hormonów tarczycy na wzrost mikrogleju i jego ważne funkcje, a więc migracje, ruchliwość i zdolność mikrogleju do fagocytozy [8, 10]. Te wszystkie dane i wyniki innych (66, 71-76, 79, 81, 87, 88) dokumentują bezpośredni i pośredni udział tyroksyny i trijodotyroniny w patogenezie glejaka wielopostaciowego. Dodatkowo wiadomo, że jedną z przyczyn niepowodzeń w leczeniu GBM jest oporność na stosowane leki i ograniczona wrażliwość na efekty radioterapii. Uważa się, że odpowiedzialnym za to czynnikiem jest błonowe białko P-gp (MDR1) (P-glycoprotein lub multidrug resistance protein) obecne w prawidłowych komórkach, a zwłaszcza w niektórych komórkach nowotorowych. Hormony tarczycy poprzez receptor integrynowy stymulują transkrypcję tego białka i wpływają na jego aktywność [87]. Uznając, że hipoteza o udziale TH w patogenezie GBM powinna być przyjęta, należy jednocześnie stwierdzić, że wskazuje ona na potrzebę dalszych trudnych badań dotyczących charakteru i specyficzności zaburzeń w ekspresji THRs w glejaku wielopostaciowym. Wiele podanych w pracy faktów opartych było bowiem na wynikach badań w skrawkach GBM lub wynikach badań na liniach komórkowych wyprowadzonych z GBM. Ważnymi byłyby również prospektywne wyniki badań nad wpływem TH na zaburzone w GBM procesy epigenetyczne [11, 63, 69], czy badanie wpływu hormonów na komórki macierzyste GBM [68, 70]. Jednakże w obecnym stanie wiedzy przyjęcie udziału hormonów tarczycy w patogenezie glejaka wielopostaciowego może już mieć wymiar praktyczny. Obniżenie stężenia TH w surowicy przedłużało remisje i czas przeżycia u chorych z glejakiem wielopostaciowym, który w GBM jest dramatycznie krótki [18, 19], a stosowanie metabolitu T4-TRAK (kwas tetrajodotyrooctowy) w badaniach in vitro i na liniach komórkowych hamowało proliferację komórek glejaka oraz aktywność VEGF – ważnego regulatora stymulującego neoangiogenezę w procesach nowotworowych [88]. W tym samym czasie podanie TRAK zwiększało proces apoptozy [60]. Przy dzisiejszym stanie wiedzy istnieje możliwość wpływu na narządową homeostazę TH i badania dotyczące wprowadzania dzikich prawidłowych THRs do nowotworu są w trakcie.


Hormony tarczycy mają wpływ na patogenezę i przebieg glejaka wielopostaciowego, chociaż szereg dalszych badań jest koniecznych, praktyczne wykorzystanie tego mechanizmu jest możliwe obecnie.


Important: This website uses cookies. More >>

The cookies allow us to identify your computer and find out details about your last visit. They remembering whether you've visited the site before, so that you remain logged in - or to help us work out how many new website visitors we get each month. Most internet browsers accept cookies automatically, but you can change the settings of your browser to erase cookies or prevent automatic acceptance if you prefer.

Via MedicaWydawcą jest  VM Media Group sp. z o.o., Grupa Via Medica, ul. Świętokrzyska 73, 80–180 Gdańsk

tel.:+48 58 320 94 94, faks:+48 58 320 94 60, e-mail:  viamedica@viamedica.pl