Vol 71, No 6 (2020)
Review paper
Published online: 2020-12-29

open access

Page views 4454
Article views/downloads 7398
Get Citation

Connect on Social Media

Connect on Social Media

Laboratory interference in the thyroid function test

Katarzyna Paczkowska1, Anna Otlewska1, Olga Loska2, Katarzyna Kolačkov1, Marek Bolanowski1, Jacek Daroszewski1
Pubmed: 33378071
Endokrynol Pol 2020;71(6):551-560.

Abstract

Thyroid hormones and thyroid-stimulating hormone (TSH) laboratory tests are commonly used worldwide, and their results have an important influence on decisions about treatment and further diagnostic processes.

Any discrepancies between symptoms and laboratory results or between results of different tests should be closely investigated to avoid misdiagnosis and unnecessary treatment.

Inconsistencies in hormone tests might be a result of physiological changes in hormonal balance, a disease, drug intake, or laboratory interference. Major factors that interfere with thyroid function tests are: heterophilic antibodies, macro TSH, biotin, thyroid hormones autoantibodies, anti-streptavidin, and anti-ruthenium antibodies.

In this paper we discuss the influence of different factors on the procedures of hormonal immunoassays, as well as methods to minimise the risk of false results and misdiagnoses.

Article available in PDF format

View PDF Download PDF file

References

  1. Thienpont LM, Van Uytfanghe K, Poppe K, et al. Determination of free thyroid hormones. Best Pract Res Clin Endocrinol Metab. 2013; 27(5): 689–700.
  2. Fraenkel M, Shafat T, Cahn A, et al. Low thyroid-stimulating hormone and its persistence beyond the first trimester of pregnancy. Int J Gynaecol Obstet. 2018; 142(3): 270–276.
  3. Adler SM, Wartofsky L. The nonthyroidal illness syndrome. Endocrinol Metab Clin North Am. 2007; 36(3): 657–72, vi.
  4. Soh SB, Aw TC. Laboratory Testing in Thyroid Conditions - Pitfalls and Clinical Utility. Ann Lab Med. 2019; 39(1): 3–14.
  5. Lewandowski KC, Dąbrowska K, Lewiński A. Case report: When measured free T4 and free T3 may be misleading. Interference with free thyroid hormones measurements on Roche® and Siemens® platforms. Thyroid Res. 2012; 5(1): 11.
  6. Sztefko K. Metody immunochemiczne. In: Solnica B, Sztefko K. ed. Medyczne laboratorium diagnostyczne. Metodyka i aparatura. PZWL, Warszawa 2015: 135–162.
  7. Gurnell M, Halsall DJ, Chatterjee VK. What should be done when thyroid function tests do not make sense? Clin Endocrinol (Oxf). 2011; 74(6): 673–678.
  8. Haddad RA, Giacherio D, Barkan AL. Interpretation of common endocrine laboratory tests: technical pitfalls, their mechanisms and practical considerations. Clin Diabetes Endocrinol. 2019; 5: 12.
  9. Fillée C, Cumps J, Ketelslegers JM. Comparison of three free T4 (FT4) and free T3 (FT3) immunoassays in healthy subjects and patients with thyroid diseases and severe non-thyroidal illnesses. Clin Lab. 2012; 58(7-8): 725–736.
  10. Srichomkwun P, Scherberg NH, Jakšić J, et al. Diagnostic Dilemma in Discordant Thyroid Function Tests Due to Thyroid Hormone Autoantibodies. AACE Clin Case Rep. 2017; 3(1): e22–e25.
  11. Vandendriessche B, Lapauw B, Kaufman JM, et al. A practical approach towards the evaluation of aberrant thyroid function tests. Acta Clin Belg. 2020; 75(2): 155–162.
  12. Hawker C. Radioimmunoassay and Related Methods. Analyt Chem. 2012; 45(11).
  13. Kohl TO, Ascoli CA. Immunoassays. Cold Spring Harb Protoc. 2017; 2017(7): pdb.top093690.
  14. Hicks JM. Fluorescence immunoassay. Hum Pathol. 1984; 15(2): 112–116.
  15. Cinquanta L, Fontana DE, Bizzaro N. Chemiluminescent immunoassay technology: what does it change in autoantibody detection? Auto Immun Highlights. 2017; 8(1): 9.
  16. Guo Z, Sha Y, Hu Y, et al. In-electrode vs. on-electrode: ultrasensitive Faraday cage-type electrochemiluminescence immunoassay. Chem Commun (Camb). 2016; 52(25): 4621–4624.
  17. Mock DM, deLorimer AA, Liebman WM, et al. Biotin deficiency: an unusual complication of parenteral alimentation. N Engl J Med. 1981; 304(14): 820–823.
  18. Diamandis EP, Christopoulos TK. The biotin-(strept)avidin system: principles and applications in biotechnology. Clin Chem. 1991; 37(5): 625–636.
  19. Sathyanarayana Rao TS, Christopher R, Andrade C. Biotin supplements and laboratory test results in neuropsychiatric practice and research. Indian J Psychiatry. 2017; 59(4): 405–406.
  20. Sarkar R. TSH Comparison Between Chemiluminescence (Architect) and Electrochemiluminescence (Cobas) Immunoassays: An Indian Population Perspective. Indian J Clin Biochem. 2014; 29(2): 189–195.
  21. Czerwińska E, Marcinowska-Suchowierska E. Interpretacja badań tyreologicznych w praktyce lekarza rodzinnego. Post Nauk Med. 2007; 4: 139–143.
  22. Favresse J, Burlacu MC, Maiter D, et al. Interferences With Thyroid Function Immunoassays: Clinical Implications and Detection Algorithm. Endocr Rev. 2018; 39(5): 830–850.
  23. Koulouri O, Moran C, Halsall D, et al. Pitfalls in the measurement and interpretation of thyroid function tests. Best Pract Res Clin Endocrinol Metab. 2013; 27(6): 745–762.
  24. Tate J, Ward G. Interferences in immunoassay. Clin Biochem Rev. 2004; 25(2): 105–120.
  25. Bjerner J, Nustad K, Norum LF, et al. Immunometric assay interference: incidence and prevention. Clin Chem. 2002; 48(4): 613–621.
  26. Lam L, Bagg W, Smith G, et al. Apparent Hyperthyroidism Caused by Biotin-Like Interference from IgM Anti-Streptavidin Antibodies. Thyroid. 2018; 28(8): 1063–1067.
  27. Ismail AA, Barth JH. Wrong biochemistry results. BMJ. 2001; 323(7315): 705–706.
  28. Ismail AAA. On the diagnosis of subclinical hypothyroidism. Br J Gen Pract. 2007; 57(545): 1000–1001.
  29. Astarita G, Gutiérrez S, Kogovsek N, et al. False positive in the measurement of thyroglobulin induced by rheumatoid factor. Clin Chim Acta. 2015; 447: 43–46.
  30. Giovanella L, Keller F, Ceriani L, et al. Heterophile antibodies may falsely increase or decrease thyroglobulin measurement in patients with differentiated thyroid carcinoma. Clin Chem Lab Med. 2009; 47(8): 952–954.
  31. Bolstad N, Warren DJ, Nustad K. Heterophilic antibody interference in immunometric assays. Best Pract Res Clin Endocrinol Metab. 2013; 27(5): 647–661.
  32. Kaplan I, Levinson S. When Is a Heterophile Antibody Not a Heterophile Antibody? When It Is an Antibody against a Specific Immunogen. Clin Chem. 1999; 45(5): 616–618.
  33. Kricka L. Human Anti-Animal Antibody Interferences in Immunological Assays [published correction appears in Clin Chem 2000 Oct; 46(10): 1722]. Clin Chem. 1999; 45(7): 942–956.
  34. Chin KP, Pin YC. Heterophile antibody interference with thyroid assay. Intern Med. 2008; 47(23): 2033–2037.
  35. Nishimura K, Sugiyama D, Kogata Y, et al. Meta-analysis: diagnostic accuracy of anti-cyclic citrullinated peptide antibody and rheumatoid factor for rheumatoid arthritis. Ann Intern Med. 2007; 146(11): 797–808.
  36. Norden AG, Jackson RA, Norden LE, et al. Misleading results from immunoassays of serum free thyroxine in the presence of rheumatoid factor. Clin Chem. 1997; 43(6 Pt 1): 957–962.
  37. Lupoli GA, Barba L, Liotti A, et al. Falsely elevated thyroglobulin and calcitonin due to rheumatoid factor in non-relapsing thyroid carcinoma: A case report. Medicine (Baltimore). 2019; 98(5): e14178.
  38. Georges A, Charrié A, Raynaud S, et al. Thyroxin overdose due to rheumatoid factor interferences in thyroid-stimulating hormone assays. Clin Chem Lab Med. 2011; 49(5): 873–875.
  39. Ismail AAA. Interference from endogenous antibodies in automated immunoassays: what laboratorians need to know. J Clin Pathol. 2009; 62(8): 673–678.
  40. Ismail AAA, Walker PL, Barth JH, et al. Wrong biochemistry results: two case reports and observational study in 5310 patients on potentially misleading thyroid-stimulating hormone and gonadotropin immunoassay results. Clin Chem. 2002; 48(11): 2023–2029.
  41. Sturgeon CM, Viljoen A. Analytical error and interference in immunoassay: minimizing risk. Ann Clin Biochem. 2011; 48(Pt 5): 418–432.
  42. Ismail AAA. A radical approach is needed to eliminate interference from endogenous antibodies in immunoassays. Clin Chem. 2005; 51(1): 25–26.
  43. Hattori N, Ishihara T, Yamagami K, et al. Macro TSH in patients with subclinical hypothyroidism. Clin Endocrinol (Oxf). 2015; 83(6): 923–930.
  44. Hattori N, Ishihara T, Matsuoka N, et al. Anti-Thyrotropin Autoantibodies in Patients with Macro-Thyrotropin and Long-Term Changes in Macro-Thyrotropin and Serum Thyrotropin Levels. Thyroid. 2017; 27(2): 138–146.
  45. Spitz IM, Le Roith D, Hirsch H, et al. Increased high-molecular-weight thyrotropin with impaired biologic activity in a euthyroid man. N Engl J Med. 1981; 304(5): 278–282.
  46. Smith TP, Suliman AM, Fahie-Wilson MN, et al. Gross variability in the detection of prolactin in sera containing big big prolactin (macroprolactin) by commercial immunoassays. J Clin Endocrinol Metab. 2002; 87(12): 5410–5415.
  47. Mills F, Jeffery J, Mackenzie P, et al. An immunoglobulin G complexed form of thyroid-stimulating hormone (macro thyroid-stimulating hormone) is a cause of elevated serum thyroid-stimulating hormone concentration. Ann Clin Biochem. 2013; 50(Pt 5): 416–420.
  48. Biondi B, Cooper DS, Biondi B, et al. Subclinical Hypothyroidism: A Review. JAMA. 2019; 322(2): 153–160.
  49. Pearce SHS, Brabant G, Duntas LH, et al. 2013 ETA Guideline: Management of Subclinical Hypothyroidism. Eur Thyroid J. 2013; 2(4): 215–228.
  50. Hattori N, Ishihara T, Shimatsu A. Variability in the detection of macro TSH in different immunoassay systems. Eur J Endocrinol. 2016; 174(1): 9–15.
  51. Verhoye E, Van den Bruel A, Delanghe JR, et al. Spuriously high thyrotropin values due to anti-thyrotropin antibodies in adult patients. Clin Chem Lab Med. 2009; 47(5): 604–606.
  52. Vieira JG, Tachibana TT, Obara LH, et al. Extensive experience and validation of polyethylene glycol precipitation as a screening method for macroprolactinemia. Clin Chem. 1998; 44(8 Pt 1): 1758–1759.
  53. Mills F, Jeffery J, Mackenzie P, et al. An immunoglobulin G complexed form of thyroid-stimulating hormone (macro thyroid-stimulating hormone) is a cause of elevated serum thyroid-stimulating hormone concentration. Ann Clin Biochem. 2013; 50(Pt 5): 416–420.
  54. Loh TP, Kao SL, Halsall DJ, et al. Macro-thyrotropin: a case report and review of literature. J Clin Endocrinol Metab. 2012; 97(6): 1823–1828.
  55. Gifford JL, Sadrzadeh H, Naugler C. Biotin interference Underrecognized patient safety risk in laboratory testing. Can Fam Physician. 2018; 64(5): 370.
  56. Elston MS, Sehgal S, Du Toit S, et al. Factitious Graves' Disease Due to Biotin Immunoassay Interference-A Case and Review of the Literature. J Clin Endocrinol Metab. 2016; 101(9): 3251–3255.
  57. Piketty ML, Polak M, Flechtner I, et al. False biochemical diagnosis of hyperthyroidism in streptavidin-biotin-based immunoassays: the problem of biotin intake and related interferences. Clin Chem Lab Med. 2017; 55(6): 780–788.
  58. Ostrowska M, Bartoszewicz Z, Bednarczuk T, et al. The effect of biotin interference on the results of blood hormone assays. Endokrynol Pol. 2019; 70(1): 102–121.
  59. Kwok JS, Chan IS, Chan MM. Biotin interference on TSH and free thyroid hormone measurement. Pathology. 2012; 44(3): 278–280.
  60. Wijeratne NG, Doery JCG, Lu ZX. Positive and negative interference in immunoassays following biotin ingestion: a pharmacokinetic study. Pathology. 2012; 44(7): 674–675.
  61. Minkovsky A, Lee MN, Dowlatshahi M, et al. High-dose biotin treatment for secondary progressive multiple sclerosis may interfere with thyroid assays. AACE Clin Case Rep. 2016; 2(4): e370–e373.
  62. Koehler V, Mann U, Nassour A, et al. Fake news? Biotin interference in thyroid immunoassays. Clin Chim Acta. 2018; 484: 320–322.
  63. Li J, Wagar EA, Meng QH. Comprehensive assessment of biotin interference in immunoassays. Clin Chim Acta. 2018; 487: 293–298.
  64. Trambas C, Lu Z, Yen T, et al. Characterization of the scope and magnitude of biotin interference in susceptible Roche Elecsys competitive and sandwich immunoassays. Ann Clin Biochem. 2018; 55(2): 205–215.
  65. Favresse J, Lardinois B, Nassogne MC, et al. Anti-streptavidin antibodies mimicking heterophilic antibodies in thyroid function tests. Clin Chem Lab Med. 2018; 56(7): e160–e163.
  66. Peltier L, Massart C, Moineau MP, et al. Anti-streptavidin interferences in Roche thyroid immunoassays: a case report. Clin Chem Lab Med. 2016; 54(1): e11–e14.
  67. Rulander NJ, Cardamone D, Senior M, et al. Interference from anti-streptavidin antibody. Arch Pathol Lab Med. 2013; 137(8): 1141–1146.
  68. Harsch IA, Konturek PC, Böer K, et al. Implausible elevation of peripheral thyroid hormones during therapy with a protein supplement. Clin Chem Lab Med. 2017; 55(9): e197–e198.
  69. Bayart JL, Favresse J, Melnik E, et al. Erroneous thyroid and steroid hormones profile due to anti-streptavidin antibodies. Clin Chem Lab Med. 2019; 57(10): e255–e258.
  70. Berth M, Willaert S, De Ridder C. Anti-streptavidin IgG antibody interference in anti-cyclic citrullinated peptide (CCP) IgG antibody assays is a rare but important cause of false-positive anti-CCP results. Clin Chem Lab Med. 2018; 56(8): 1263–1268.
  71. Sapin R, Agin A, Gasser F. Efficacy of a new blocker against anti-ruthenium antibody interference in the Elecsys free triiodothyronine assay. Clin Chem Lab Med. 2007; 45(3): 416–418.
  72. Ando T, Yasui JI, Inokuchi N, et al. Non-specific activities against ruthenium crosslinker as a new cause of assay interference in an electrochemilluminescent immunoassay. Intern Med. 2007; 46(15): 1225–1229.
  73. Buijs MM, Gorgels JP, Endert E. Interference by antiruthenium antibodies in the Roche thyroid-stimulating hormone assay. Ann Clin Biochem. 2011; 48(Pt 3): 276–281.
  74. Heijboer AC, Ijzerman RG, Bouman AA, et al. Two cases of antiruthenium antibody interference in Modular free thyroxine assay. Ann Clin Biochem. 2009; 46(Pt 3): 263–264.
  75. Ohba K, Noh JY, Unno T, et al. Falsely elevated thyroid hormone levels caused by anti-ruthenium interference in the Elecsys assay resembling the syndrome of inappropriate secretion of thyrotropin. Endocr J. 2012; 59(8): 663–667.
  76. Favresse J, Paridaens H, Pirson N, et al. Massive interference in free T4 and free T3 assays misleading clinical judgment. Clin Chem Lab Med. 2017; 55(4): e84–e86.
  77. Suarez Rivero R, Ponce Lorenzo F, Díaz Torres J, et al. Falsely elevated thyroid-stimulating hormone value due to anti-ruthenium antibodies in a patient with primary hypothyroidism: a case report. Clin Chem Lab Med. 2017; 55(12): e273–e275.
  78. Sakata S, Matsuda M, Ogawa T, et al. Prevalence of thyroid hormone autoantibodies in healthy subjects. Clin Endocrinol (Oxf). 1994; 41(3): 365–370.
  79. Benvenga S, Bartolone L, Squadrito S, et al. Thyroid hormone autoantibodies elicited by diagnostic fine needle biopsy. J Clin Endocrinol Metab. 1997; 82(12): 4217–4223.
  80. Benvenga S, Pintaudi B, Vita R, et al. Serum thyroid hormone autoantibodies in type 1 diabetes mellitus. J Clin Endocrinol Metab. 2015; 100(5): 1870–1878.
  81. Kemp EH. Antithyroid hormone autoantibodies in vitiligo. Br J Dermatol. 2014; 171(4): 690.
  82. Zouwail SA, O'Toole AM, Clark PMS, et al. Influence of thyroid hormone autoantibodies on 7 thyroid hormone assays. Clin Chem. 2008; 54(5): 927–928.
  83. Allan DJ, Murphy F, Needham CA, et al. Sensitive test for thyroid hormone autoantibodies in serum. Lancet. 1982; 2(8302): 824.
  84. Massart C, Elbadii S, Gibassier J, et al. Anti-thyroxine and anti-triiodothyronine antibody interferences in one-step free triiodothyronine and free thyroxine immunoassays. Clin Chim Acta. 2009; 401(1-2): 175–176.