Vol 70, No 4 (2019)
Review paper
Published online: 2019-08-14

open access

Page views 2394
Article views/downloads 2094
Get Citation

Connect on Social Media

Connect on Social Media

Trabecular bone score (TBS) as a noninvasive and complementary tool for clinical diagnosis of bone structure in endocrine disorders

Jowita Halupczok-Żyła1, Łukasz Gojny1, Marek Bolanowski1
Pubmed: 31489959
Endokrynol Pol 2019;70(4):350-356.

Abstract

Trabecular bone score (TBS) index has recently been obtained as a result of textural greyscale analysis of DXA images. Because it enables the assessment of bone microarchitectural texture, TBS may be useful in evaluating bone quality. This study explores the current knowledge of the use of TBS in patients with endocrine disorders with co-occurring bone structure changes. Currently, the clinical importance TBS was verified in terms of disorders of the growth hormone/insulin-like growth factor 1 (GH/IGF-I) axis, glucocorticoid excess, thyroid and parathyroid disease, as well as in diabetes mellitus type 1 and 2.
It has been clarified that patients suffering from various endocrinopathies are a group in which TBS should be used routinely because it correlates with clinical factors and may improve patient management in various endocrine disorders. 

Article available in PDF format

View PDF Download PDF file

References

  1. Biver E, Durosier-Izart C, Chevalley T, et al. Evaluation of Radius Microstructure and Areal Bone Mineral Density Improves Fracture Prediction in Postmenopausal Women. J Bone Miner Res. 2018; 33(2): 328–337.
  2. Shevroja E, Lamy O, Kohlmeier L, et al. Use of Trabecular Bone Score (TBS) as a Complementary Approach to Dual-energy X-ray Absorptiometry (DXA) for Fracture Risk Assessment in Clinical Practice. J Clin Densitom. 2017; 20: 334–45.
  3. Ward RJ, Roberts CC, Bencardino JT, et al. Expert Panel on Musculoskeletal Imaging. ACR Appropriateness Criteria Osteoporosis and Bone Mineral Density. J Am Coll Radiol. 2017; 14(5S): S189–S202.
  4. Oei L, Koromani F, Rivadeneira F, et al. Quantitative imaging methods in osteoporosis. Quant Imaging Med Surg. 2016; 6(6): 680–698.
  5. Martineau P, Leslie WD. Trabecular bone score (TBS): Method and applications. Bone. 2017; 104: 66–72.
  6. Silva BC, Leslie WD. Trabecular Bone Score: A New DXA-Derived Measurement for Fracture Risk Assessment. Endocrinol Metab Clin North Am. 2017; 46(1): 153–180.
  7. Seeman E, Delmas PD. Bone quality — the material and structural basis of bone strength and fragility. N Engl J Med. 2006; 354(21): 2250–2261.
  8. Leslie WD, Majumdar SR, Morin SN, et al. Change in Trabecular Bone Score (TBS) With Antiresorptive Therapy Does Not Predict Fracture in Women: The Manitoba BMD Cohort. J Bone Miner Res. 2017; 32(3): 618–623.
  9. Martineau P, Leslie WD, Johansson H, et al. Clinical Utility of Using Lumbar Spine Trabecular Bone Score to Adjust Fracture Probability: The Manitoba BMD Cohort. J Bone Miner Res. 2017; 32(7): 1568–1574.
  10. Battista C, Chiodini I, Muscarella S, et al. Spinal volumetric trabecular bone mass in acromegalic patients: a longitudinal study. Clin Endocrinol (Oxf). 2009; 70(3): 378–382.
  11. Couraud G, Souffir C, Gaigneux E, et al. Adjusting FRAX® on TBS for identification of subjects at high risk of fractures. Bone. 2017; 101: 214–218.
  12. Silva BC, Bilezikian JP. Trabecular bone score: perspectives of an imaging technology coming of age. Arq Bras Endocrinol Metabol. 2014; 58(5): 493–503.
  13. McCloskey EV, Odén A, Harvey NC, et al. Adjusting fracture probability by trabecular bone score. Calcif Tissue Int. 2015; 96(6): 500–509.
  14. Leslie WD, Aubry-Rozier B, Lix LM, et al. Spine bone texture assessed by trabecular bone score (TBS) predicts osteoporotic fractures in men: the Manitoba Bone Density Program. Bone. 2014; 67: 10–14.
  15. Messina C, Poloni A, Chianca V, et al. Increasing soft tissue thickness does not affect trabecular bone score reproducibility: a phantom study. Endocrine. 2018; 61(2): 336–342.
  16. Mazziotti G, Biagioli E, Maffezzoni F, et al. Bone turnover, bone mineral density, and fracture risk in acromegaly: a meta-analysis. J Clin Endocrinol Metab. 2015; 100(2): 384–394.
  17. Cortet B, Bousson V. TBS and bone strength. Bonekey Rep. 2016; 5: 792.
  18. Kim YS, Han JJ, Lee J, et al. The correlation between bone mineral density/trabecular bone score and body mass index, height, and weight. Osteoporos Sarcopenia. 2017; 3(2): 98–103.
  19. Roux JP, Wegrzyn J, Boutroy S, et al. The predictive value of trabecular bone score (TBS) on whole lumbar vertebrae mechanics: an ex vivo study. Osteoporos Int. 2013; 24(9): 2455–2460.
  20. Muschitz C, Kocijan R, Haschka J, et al. TBS reflects trabecular microarchitecture in premenopausal women and men with idiopathic osteoporosis and low-traumatic fractures. Bone. 2015; 79: 259–266.
  21. Ayoub ML, Maalouf G, Cortet B, et al. Trabecular Bone Score and Osteoporotic Fractures in Obese Postmenopausal Women. J Clin Densitom. 2016; 19(4): 544–545.
  22. De Mingo Dominguez ML, Guadalix Iglesias S, Martin-Arriscado Arroba C, et al. Low trabecular bone score in postmenopausal women with differentiated thyroid carcinoma after long-term TSH suppressive therapy. Endocrine. 2018; 62(1): 166–173.
  23. Silva BC, Leslie WD, Resch H, et al. Trabecular bone score: a noninvasive analytical method based upon the DXA image. J Bone Miner Res. 2014; 29(3): 518–530.
  24. Winzenrieth R, Michelet F, Hans D. Three-dimensional (3D) microarchitecture correlations with 2D projection image gray-level variations assessed by trabecular bone score using high-resolution computed tomographic acquisitions: effects of resolution and noise. J Clin Densitom. 2013; 16(3): 287–296.
  25. Pothuaud L, Carceller P, Hans D. Correlations between grey-level variations in 2D projection images (TBS) and 3D microarchitecture: applications in the study of human trabecular bone microarchitecture. Bone. 2008; 42(4): 775–787.
  26. Schousboe JT, Vo TN, Langsetmo L, et al. Osteoporotic Fractures in Men (MrOS) Study Research Group. Predictors of change of trabecular bone score (TBS) in older men: results from the Osteoporotic Fractures in Men (MrOS) Study. Osteoporos Int. 2018; 29(1): 49–59.
  27. Bousson V, Bergot C, Sutter B, et al. Scientific Committee of the Groupe de Recherche et d’Information sur les Ostéoporoses. Trabecular bone score (TBS): available knowledge, clinical relevance, and future prospects. Osteoporos Int. 2012; 23(5): 1489–1501.
  28. Martineau P, Silva BC, Leslie WD. Utility of trabecular bone score in the evaluation of osteoporosis. Curr Opin Endocrinol Diabetes Obes. 2017; 24(6): 402–410.
  29. Amnuaywattakorn S, Sritara C, Utamakul C, et al. Simulated increased soft tissue thickness artefactually decreases trabecular bone score: a phantom study. BMC Musculoskelet Disord. 2016; 17: 17.
  30. Schousboe JT, Vo TN, Langsetmo L, et al. Osteoporotic Fractures in Men (MrOS) Study Research Group. Association of Trabecular Bone Score (TBS) With Incident Clinical and Radiographic Vertebral Fractures Adjusted for Lumbar Spine BMD in Older Men: A Prospective Cohort Study. J Bone Miner Res. 2017; 32(7): 1554–1558.
  31. Simonelli C, Leib E, Mossman N, et al. Creation of an age-adjusted, dual-energy X-ray absorptiometry-derived trabecular bone score curve for the lumbar spine in non-Hispanic US White women. J Clin Densitom. 2014; 17(2): 314–319.
  32. Kim JH, Choi HJ, Ku EJ, et al. Regional body fat depots differently affect bone microarchitecture in postmenopausal Korean women. Osteoporos Int. 2016; 27(3): 1161–1168.
  33. Gromov AA, Il’In AP, Foerter-Barth U, et al. Effect of the passivating coating type, particle size, and storage time on oxidation and nitridation of aluminum powders. Combust Explos Shock Waves. 2006; 42: 177–84.
  34. Valassi E, Crespo I, Malouf J, et al. Epicardial fat is a negative predictor of spine volumetric bone mineral density and trabecular bone score in acromegaly. Endocrine. 2016; 53(3): 860–864.
  35. Godang K, Olarescu NC, Bollerslev J, et al. Treatment of acromegaly increases BMD but reduces trabecular bone score: a longitudinal study. Eur J Endocrinol. 2016; 175(2): 155–164.
  36. Kužma M, Kužmová Z, Zelinková Z, et al. Impact of the growth hormone replacement on bone status in growth hormone deficient adults. Growth Horm IGF Res. 2014; 24(1): 22–28.
  37. Allo Miguel G, Serraclara Plá A, Partida Muñoz ML, et al. Seven years of follow up of trabecular bone score, bone mineral density, body composition and quality of life in adults with growth hormone deficiency treated with rhGH replacement in a single center. Ther Adv Endocrinol Metab. 2016; 7(3): 93–100.
  38. Eller-Vainicher C, Filopanti M, Palmieri S, et al. Bone quality, as measured by trabecular bone score, in patients with primary hyperparathyroidism. Eur J Endocrinol. 2013; 169(2): 155–162.
  39. Belaya ZE, Hans D, Rozhinskaya LY, et al. The risk factors for fractures and trabecular bone-score value in patients with endogenous Cushing's syndrome. Arch Osteoporos. 2015; 10: 44.
  40. Paggiosi MA, Peel NFA, Eastell R. The impact of glucocorticoid therapy on trabecular bone score in older women. Osteoporos Int. 2015; 26(6): 1773–1780.
  41. Rizou S, Chronopoulos E, Ballas M, et al. Clinical manifestations of osteoarthritis in osteoporotic and osteopenic postmenopausal women. J Musculoskelet Neuronal Interact. 2018; 18(2): 208–214.
  42. Gonzalez Rodriguez E, Lamy O, Stoll D, et al. High Evening Cortisol Level Is Associated With Low TBS and Increased Prevalent Vertebral Fractures: OsteoLaus Study. J Clin Endocrinol Metab. 2017; 102(7): 2628–2636.
  43. Leib ES, Winzenrieth R. Bone status in glucocorticoid-treated men and women. Osteoporos Int. 2016; 27(1): 39–48.
  44. Koumakis E, Avouac J, Winzenrieth R, et al. Trabecular bone score in female patients with systemic sclerosis: comparison with rheumatoid arthritis and influence of glucocorticoid exposure. J Rheumatol. 2015; 42(2): 228–235.
  45. Bréban S, Briot K, Kolta S, et al. Identification of rheumatoid arthritis patients with vertebral fractures using bone mineral density and trabecular bone score. J Clin Densitom. 2012; 15(3): 260–266.
  46. Eller-Vainicher C, Morelli V, Ulivieri FM, et al. Bone quality, as measured by trabecular bone score in patients with adrenal incidentalomas with and without subclinical hypercortisolism. J Bone Miner Res. 2012; 27(10): 2223–2230.
  47. Romagnoli E, Cipriani C, Nofroni I, et al. "Trabecular Bone Score" (TBS): an indirect measure of bone micro-architecture in postmenopausal patients with primary hyperparathyroidism. Bone. 2013; 53(1): 154–159.
  48. Díaz-Soto G, de Luis Román D, Jauregui OI, et al. Trabecular Bone Score in Patients With Normocalcemic Hyperparathyroidism. Endocr Pract. 2016; 22(6): 703–707.
  49. Silva BC, Boutroy S, Zhang C, et al. Trabecular bone score (TBS) — a novel method to evaluate bone microarchitectural texture in patients with primary hyperparathyroidism. J Clin Endocrinol Metab. 2013; 98(5): 1963–1970.
  50. Walker MD, Saeed I, Lee JA, et al. Effect of concomitant vitamin D deficiency or insufficiency on lumbar spine volumetric bone mineral density and trabecular bone score in primary hyperparathyroidism. Osteoporos Int. 2016; 27(10): 3063–3071.
  51. Rolighed L, Rejnmark L, Sikjaer T, et al. Vitamin D treatment in primary hyperparathyroidism: a randomized placebo controlled trial. J Clin Endocrinol Metab. 2014; 99(3): 1072–1080.
  52. Hwangbo Y, Kim JH, Kim SW, et al. High-normal free thyroxine levels are associated with low trabecular bone scores in euthyroid postmenopausal women. Osteoporos Int. 2016; 27(2): 457–462.
  53. De Mingo Dominguez ML, Guadalix Iglesias S, Martin-Arriscado Arroba C, et al. Low trabecular bone score in postmenopausal women with differentiated thyroid carcinoma after long-term TSH suppressive therapy. Endocrine. 2018; 62(1): 166–173.
  54. Moon JH, Kim KM, Oh TJ, et al. The Effect of TSH Suppression on Vertebral Trabecular Bone Scores in Patients With Differentiated Thyroid Carcinoma. J Clin Endocrinol Metab. 2017; 102(1): 78–85.
  55. Kužma M, Vaňuga P, Binkley N, et al. High Serum Fractalkine is Associated with Lower Trabecular Bone Score in Premenopausal Women with Graves' Disease. Horm Metab Res. 2018; 50(8): 609–614.
  56. Poiana C, Capatina C. Fracture Risk Assessment in Patients With Diabetes Mellitus. J Clin Densitom. 2017; 20(3): 432–443.
  57. Neumann T, Lodes S, Kästner B, et al. Trabecular bone score in type 1 diabetes — a cross-sectional study. Osteoporos Int. 2016; 27(1): 127–133.
  58. Dhaliwal R, Cibula D, Ghosh C, et al. Bone quality assessment in type 2 diabetes mellitus. Osteoporos Int. 2014; 25(7): 1969–1973.
  59. Kim JH, Choi HJ, Ku EuJ, et al. Trabecular bone score as an indicator for skeletal deterioration in diabetes. J Clin Endocrinol Metab. 2015; 100(2): 475–482.
  60. Leslie WD, Aubry-Rozier B, Lamy O, et al. Manitoba Bone Density Program. TBS (trabecular bone score) and diabetes-related fracture risk. J Clin Endocrinol Metab. 2013; 98(2): 602–609.
  61. Caffarelli C, Giambelluca A, Ghini V, et al. In Type-2 Diabetes Subjects Trabecular Bone Score is Better Associated with Carotid Intima-Media Thickness than BMD. Calcif Tissue Int. 2017; 101(4): 404–411.