Vol 69, No 5 (2018)
Original paper
Published online: 2018-09-12

open access

Page views 2909
Article views/downloads 1042
Get Citation

Connect on Social Media

Connect on Social Media

The effects of Z56822977 on biosynthesis of serotonin in the brain of rats in the conditions of MSG-induced obesity

Victoria Konopelniuk1, Tetyana Falalyeyeva1, Olena Tsyryuk1, Yuliia Savchenko1, Nazarii Kobyliak2, Iryna Prybytko1, Oleksandr Kovalchuk1, Aleksandr Boyko1, Viatcheslav V. Arkhipov1, Yurii Moroz1, Liudmyla Ostapchenko1
Pubmed: 30571841
Endokrynol Pol 2018;69(5):536-544.

Abstract

Wstęp: Badanie przeprowadzono w celu wyjaśnienia wpływu Z56822977 na biosyntezę serotoniny w mózgu szczurów z otyłością wy­wołaną podawaniem glutaminianu sodu (monosodium glutamate, MSG).

Materiał i metody: W badaniu wykorzystano 18 samców szczura. Zwierzęta podzielono na trzy grupy: 1 — grupa kontrolna, 2 — grupa MSG, 3 — grupa MSG + Z56822977. Szczurzym oseskom w grupie 2 i 3 podawano podskórnie MSG rozpuszczony w soli fizjologicznej w dawce 4 mg/g masy ciała w objętości 8 μl/g w 2., 4., 6., 8. i 10. dniu życia. Grupie 3 podawano doustnie wodny roztwór Z56822977 w dawce 25 mg/kg w objętości 1 ml/kg. Pierwszą dawkę Z56822977 podawano po ukończeniu 4 tygodni życia, a następnie kontynuowa­no podawanie badanej substancji cyklicznie wedlug schematu tydzień podawania substancji badanej/3 tygodnie przerwy. Zwierzętom z grupy MSG podawano odpowiednio 1 ml/kg wody doustnie. Przez pierwsze 4 miesiące życia szczury otrzymywały standardową karmę. Zmierzono zawartość serotoniny, tryptofanu i 5-hydroksytryptofanu (5-HTr) oraz aktywność hydroksylazy tryptofanowej (tryptophan hydroxylase, TRH), dekarboksylazy aminokwasów (amino acid decarboxylase, AADC) i monoaminooksydazy (MAO) w tkance mózgowej.

Wyniki: Wykazano, że podawanie Z56822977 ma pozytywny wpływ na główne wskaźniki otyłości, co odzwierciedlają zmiany podsta­wowych parametrów fizjologicznych i biochemicznych [zmniejszenie masy ciała o 13% vs. MSG (p < 0,05); zmniejszenie wskaźnika masy ciała (body mass index, BMI), wskaźnika Lee oraz masy tkanki tłuszczowej trzewnej odpowiednio o 18%, 7% i 55%, (p < 0,05) w porównaniu z grupą MSG]. Zawartość tryptofanu i serotoniny była istotnie niższa (p < 0,05) u szczurów z otyłością wywołaną przez MSG. W badaniach wykazano, że u otyłych szczurów aktywność MAO zwiększa się o 97% (p < 0,05), a aktywność TRH i AADC odpowiednio o 44% i 53% (p < 0,05). Podawanie Z56822977 powodowało zwiększenie zawartości serotoniny i tryptofanu w mózgach szczurów i przywracało poziom aktywności enzymów (MAO, TRH, AADC) do wartości mierzonych u zwierząt kontrolnych.

Wnioski: Wiadomo, że otyłość wiąże się z zaburzeniem syntezy serotoniny w mózgu szczurów. Jednak podawanie Z56822977 prowadzi do normalizacji stężenia serotoniny i tryptofanu oraz przywrócenia prawidłowej aktywności enzymów uczestniczących w biosynte­zie i degradacji serotoniny. Podawanie Z56822977, cząsteczki wpływającej na układ serotoninergiczny, może powodować korzystne efekty w leczeniu otyłości wywołanej przez MSG u szczurów. Można rozważać zastosowanie cząsteczki Z56822977 jako nowego leku stosowanego w otyłości, jednak konieczne są dalsze badania w celu potwierdzenia jej działania.

Article available in PDF format

View PDF Download PDF file

References

  1. Broberger C. Brain regulation of food intake and appetite: molecules and networks. J Intern Med. 2005; 258(4): 301–327.
  2. Galbraith JK. The New Industrial State. Houghton Mifflin, Boston, MA 1967.
  3. World Health Organization. Obesity: Preventing and Managing the Global Epidemic. World Health Organization, Geneva 2000.
  4. National Task Force on the Prevention and Treatment of Obesity. Overweight, obesity, and health risk. Arch Intern Med. 2000; 160(7): 898–904.
  5. World Health Organization. Diet, nutrition and the prevention of chronic diseases. World Health Organ Tech Rep Ser. 2003; 916: i–viii, 1–149, backcover.
  6. Lazar MA. How obesity causes diabetes: not a tall tale. Science. 2005; 307(5708): 373–375.
  7. Wоlіn K, Cаrsоn K, Cоldіtz G. Оbеsіty аnd Cаncеr. Thе Оncоlоgіst. 2009; 6: 556–565.
  8. Drenick EJ, Johnson D, Johnson D, et al. Therapeutic fasting in morbid obesity. Arch Intern Med. 1977; 137(10): 1381–1382.
  9. Mitchel JS, Keesey RE. Defense of a lowered weight maintenance level by lateral hypothamically lesioned rats: evidence from a restriction-refeeding regimen. Physiol Behav. 1977; 18(6): 1121–1125.
  10. Farrigan C, Pang K. Obesity market overview. Nat Rev Drug Discov. 2002; 1(4): 257–258.
  11. Aschner B. Über die Funktion der Hypophyse. Pflüger's Archiv für die Gesammte Physiologie des Menschen und der Tiere. 1912; 146(1-3): 1–146.
  12. Hetherington AW, Ranson SW. Hypothalamic lesions and adiposity in the rat. The Anatomical Record. 1940; 78(2): 149–172.
  13. Anand BK, Brobeck JR. Hypothalamic control of food intake in rats and cats. Yale J Biol Med. 1951; 24(2): 123–140.
  14. Anand BK, Brobeck JR. Localization of a "feeding center" in the hypothalamus of the rat. Proc Soc Exp Biol Med. 1951; 77(2): 323–324.
  15. Grill HJ, Norgren R. Chronically decerebrate rats demonstrate satiation but not bait shyness. Science. 1978; 201(4352): 267–269.
  16. Kennedy GC. The role of depot fat in the hypothalamic control of food intake in the rat. Proc R Soc Lond B Biol Sci. 1953; 140(901): 578–596.
  17. Maclagan NF. The role of appetite in the control of body weight. J Physiol. 1937; 90(4): 385–394.
  18. de Jong A, Strubbe JH, Steffens AB. Hypothalamic influence on insulin and glucagon release in the rat. Am J Physiol. 1977; 233(5): E380–E388.
  19. Blundell JE. Serotonin and appetite. Neuropharmacology. 1984; 23(12B): 1537–1551.
  20. Garattini S, Samanin R. D-Fenfluramine and salbutamol: Two drugs causing anorexia through different neurochemical mechanisms. Int J Obesity. 1984; 8(Suppl. 1): 151–157.
  21. Leibowitz SF, Weiss GF, Yee F, et al. Noradrenergic innervation of the paraventricular nucleus: specific role in control of carbohydrate ingestion. Brain Res Bull. 1985; 14(6): 561–567.
  22. Konopelnyuk VV, Karpovets TP, Kot LI, et al. Biosynthesis of serotonin in the brain of rats under conditions of obesity induced by compatible consumption of high calorie diet and 10% fructose solution as a possible target for obesity prevention. Int J Health Sci Res. 2015; 5: 496–506.
  23. Routh VH, Stern JS, Horwitz BA. Serotonergic activity is depressed in the ventromedial hypothalamic nucleus of 12-day-old obese Zucker rats. Am J Physiol. 1994; 267(3 Pt 2): R712–R719.
  24. Karpovets TP, Konopelnyuk VV, Galenova TI, et al. High-calorie diet as a factor of prediabetes development in rats. Bull Exp Biol Med. 2014; 156(5): 639–641.
  25. Karpovets TP, Konopelnyuk VV, Savchuk OM, et al. Food behavior of rats under development of obesity. Res J Pharm Biol Chem Sci. 2014; 5: 253–259.
  26. Ashley DV, Fleury MO, Golay A, et al. Evidence for diminished brain 5-hydroxytryptamine biosynthesis in obese diabetic and non-diabetic humans. Am J Clin Nutr. 1985; 42(6): 1240–1245.
  27. De Fanti BA, Hamilton JS, Horwitz BA. Meal-induced changes in extracellular 5-HT in medial hypothalamus of lean (Fa/Fa) and obese (fa/fa) Zucker rats. Brain Res. 2001; 902(2): 164–170.
  28. Lambert GW, Vaz M, Cox HS, et al. Human obesity is associated with a chronic elevation in brain 5-hydroxytryptamine turnover. Clin Sci (Lond). 1999; 96(2): 191–197.
  29. Mori RC, Guimarães RB, Nascimento CM, et al. Lateral hypothalamic serotonergic responsiveness to food intake in rat obesity as measured by microdialysis. Can J Physiol Pharmacol. 1999; 77(4): 286–292.
  30. Briscoe CP, Tadayyon M, Andrews JL, et al. The orphan G protein-coupled receptor GPR40 is activated by medium and long chain fatty acids. J Biol Chem. 2003; 278(13): 11303–11311.
  31. Itoh Y, Kawamata Y, Harada M, et al. Free fatty acids regulate insulin secretion from pancreatic beta cells through GPR40. Nature. 2003; 422(6928): 173–176.
  32. Kotarsky K, Nilsson NE, Flodgren E, et al. A human cell surface receptor activated by free fatty acids and thiazolidinedione drugs. Biochem Biophys Res Commun. 2003; 301(2): 406–410.
  33. Prentki M, Vischer S, Glennon MC, et al. Malonyl-CoA and long chain acyl-CoA esters as metabolic coupling factors in nutrientinduced insulin secretion. J Biol Chem. 1992; 267(9): 5802–5810.
  34. Sargsyan E, Bergsten P. Lipotoxicity is glucose-dependent in INS-1E cells but not in human islets and MIN6 cells. Lipids Health Dis. 2011; 10: 115.
  35. Prentki M, Madiraju SR. Glycerolipid metabolism and signaling in health and disease. Endocr Rev. 2008; 29(6): 647–676.
  36. Briscoe CP, Tadayyon M, Andrews JL, et al. The orphan G protein-coupled receptor GPR40 is activated by medium and long chain fatty acids. J Biol Chem. 2003; 278(13): 11303–11311.
  37. Itoh Y, Kawamata Y, Harada M, et al. Free fatty acids regulate insulin secretion from pancreatic β cells through GPR40. Nature. 2003; 422(6928): 173–176.
  38. Fujiwara K, Maekawa F, Yada T. Oleic acid interacts with GPR40 to induce Ca2+ signaling in rat islet beta-cells: mediation by PLC and L-type Ca2+ channel and link to insulin release. Am J Physiol Endocrinol Metab. 2005; 289(4): E670–E677.
  39. Shapiro H, Shachar S, Sekler I, et al. Role of GPR40 in fatty acid action on the beta cell line INS-1E. Biochem Biophys Res Commun. 2005; 335(1): 97–104.
  40. Araki T, Hirayama M, Hiroi S, et al. GPR40-induced insulin secretion by the novel agonist TAK-875: first clinical findings in patients with type 2 diabetes. Diabetes Obes Metab. 2012; 14(3): 271–278.
  41. Burant C, Viswanathan P, Marcinak J, et al. TAK-875 versus placebo or glimepiride in type 2 diabetes mellitus: a phase 2, randomised, double-blind, placebo-controlled trial. The Lancet. 2012; 379(9824): 1403–1411.
  42. Leifke E, Naik H, Wu J, et al. A multiple-ascending-dose study to evaluate safety, pharmacokinetics, and pharmacodynamics of a novel GPR40 agonist, TAK-875, in subjects with type 2 diabetes. Clin Pharmacol Ther. 2012; 92(1): 29–39.
  43. Naik H, Vakilynejad M, Wu J, et al. Safety, tolerability, pharmacokinetics, and pharmacodynamic properties of the GPR40 agonist TAK-875: results from a double-blind, placebo-controlled single oral dose rising study in healthy volunteers. J Clin Pharmacol. 2012; 52(7): 1007–1016.
  44. Hann M. Molecular obesity, potency and other addictions in drug discovery. MedChemComm. 2011; 2(5): 349.
  45. Waring MJ. Lipophilicity in drug discovery. Expert Opin Drug Discov. 2010; 5(3): 235–248.
  46. Gleeson MP. Generation of a set of simple, interpretable ADMET rules of thumb. J Med Chem. 2008; 51(4): 817–834.
  47. Walters WP, Green J, Weiss JR, et al. What do medicinal chemists actually make? A 50-year retrospective. J Med Chem. 2011; 54(19): 6405–6416.
  48. Neuschwander-Tetri BA. Non-alcoholic fatty liver disease. BMC Med. 2017; 15(1): 45.
  49. Dowman JK, Armstrong MJ, Tomlinson JW, et al. Pathogenesis of non-alcoholic fatty liver disease. QJM. 2010; 103(2): 71–83.
  50. Hassan K, Bhalla V, El Regal ME, et al. Nonalcoholic fatty liver disease: a comprehensive review of a growing epidemic. World J Gastroenterol. 2014; 20(34): 12082–12101.
  51. Lu J, Byrne N, Wang J, et al. Structural basis for the cooperative allosteric activation of the free fatty acid receptor GPR40. Nat Struct Mol Biol. 2017; 24(7): 570–577.
  52. Kobyliak N, Falalyeyeva T, Bodnar P, et al. Probiotics Supplemented with Omega-3 Fatty Acids are More Effective for Hepatic Steatosis Reduction in an Animal Model of Obesity. Probiotics Antimicrob Proteins. 2017; 9(2): 123–130.
  53. Kobyliak N, Falalyeyeva T, Virchenko O, et al. Comparative experimental investigation on the efficacy of mono- and multiprobiotic strains in non-alcoholic fatty liver disease prevention. BMC Gastroenterol. 2016; 16: 34.
  54. Kobyliak N, Abenavoli L, Falalyeyeva T, et al. Efficacy of Probiotics and Smectite in Rats with Non-Alcoholic Fatty Liver Disease. Ann Hepatol. 2018; 17(1): 153–161.
  55. Kobyliak N, Abenavoli L, Falalyeyeva T, et al. Prevention of NAFLD development in rats with obesity via the improvement of pro/antioxidant state by cerium dioxide nanoparticles. Clujul Med. 2016; 89(2): 229–235.
  56. Bernardis LL, Patterson BD. Correlation between 'Lee index' and carcass fat content in weanling and adult female rats with hypothalamic lesions. J Endocrinol. 1968; 40(4): 527–528.
  57. Maximenko Е, Savchenko V. The level of tryptophan and serotonin in terms of seizure activity in the brain. Journal of V. N. Karazin Kharkiv National University Medicine. 2000; 494(1): 40–43.
  58. Kalninya IE, Bloom RКA. A fluorimetric determination of 5-hydroxytryptophan in the blood. Medecine. 1991; 1: 29–39.
  59. Kuhn DM, O'Callaghan JP, Juskevich J, et al. Activation of brain tryptophan hydroxylase by ATP-MG2+: dependence on calmodulin. Proc Natl Acad Sci U S A. 1980; 77(8): 4688–4691.
  60. Sangwan RS, Mishra S, Kumar S. Direct fluorometry of phase-extracted tryptamine-based fast quantitative assay of L-tryptophan decarboxylase from Catharanthus roseus leaf. Anal Biochem. 1998; 255(1): 39–46.
  61. Ali BH, Bartlet AL. Inhibition of monoamine oxidase by furazolidone in the chicken and the influence of the alimentary flora thereon. Br J Pharmacol. 1980; 71(1): 219–224.
  62. Nemeroff CB, Grant LD, Bissette G, et al. Growth, endocrinological and behavioral deficits after monosodium L-glutamate in the neonatal rat: possible involvement of arcuate dopamine neuron damage. Psychoneuroendocrinology. 1977; 2(2): 179–196.
  63. Nemeroff CB, Konkol RJ, Bissette G, et al. Analysis of the disruption in hypothalamic-pituitary regulation in rats treated neonatally with monosodium L-glutamate (MSG): evidence for the involvement of tuberoinfundibular cholinergic and dopaminergic systems in neuroendocrine regulation. Endocrinology. 1977; 101(2): 613–622.
  64. Oida K, Nakai T, Hayashi T, et al. Plasma lipoproteins of monosodium glutamate-induced obese rats. Int J Obes. 1984; 8(5): 385–391.
  65. Nakagawa T, Ukai K, Ohyama T, et al. Effects of Chronic Administration of Sibutramine on Body Weight, Food Intake and Motor Activity in Neonatally Monosodium Glutamate-Treated Obese Female Rats: Relationship of Antiobesity Effect with Monoamines. Experimental Animals. 2000; 49(4): 239–249.
  66. Cancello R, Clément K. Is obesity an inflammatory illness? Role of low-grade inflammation and macrophage infiltration in human white adipose tissue. BJOG. 2006; 113(10): 1141–1147.
  67. Castanon N, Lasselin J, Capuron L. Neuropsychiatric comorbidity in obesity: role of inflammatory processes. Front Endocrinol (Lausanne). 2014; 5: 74.
  68. Belemets N, Kobyliak N, Virchenko O, et al. Effects of polyphenol compounds melanin on NAFLD/NASH prevention. Biomed Pharmacother. 2017; 88: 267–276.
  69. Sanal MG. The blind men 'see' the elephant-the many faces of fatty liver disease. World J Gastroenterol. 2008; 14(6): 831–844.
  70. Capuron L, Gumnick JF, Musselman DL, et al. Neurobehavioral effects of interferon-alpha in cancer patients: phenomenology and paroxetine responsiveness of symptom dimensions. Neuropsychopharmacology. 2002; 26(5): 643–652.
  71. Capuron L, Miller AH. Immune system to brain signaling: neuropsychopharmacological implications. Pharmacol Ther. 2011; 130(2): 226–238.
  72. Capuron L, Schroecksnadel S, Féart C, et al. Chronic low-grade inflammation in elderly persons is associated with altered tryptophan and tyrosine metabolism: role in neuropsychiatric symptoms. Biol Psychiatry. 2011; 70(2): 175–182.
  73. Musselman DL, Lawson DH, Gumnick JF, et al. Paroxetine for the prevention of depression induced by high-dose interferon alfa. N Engl J Med. 2001; 344(13): 961–966.
  74. Maes M, Jacobs MP, Suy E, et al. Effects of dexamethasone on the availability of L-tryptophan and on the insulin and FFA concentrations in unipolar depressed patients. Biol Psychiatry. 1990; 27(8): 854–862.
  75. Birdsall TC. 5-Hydroxytryptophan: a clinically-effective serotonin precursor. Altern Med Rev. 1998; 3(4): 271–280.