Vol 68, No 2 (2017)
Review paper
Published online: 2017-05-09

open access

Page views 10180
Article views/downloads 35316
Get Citation

Connect on Social Media

Connect on Social Media

The content of this article is also available in the following languages:
Polski

Diagnostic and therapeutic guidelines for gastro-entero-pancreatic neuroendocrine neoplasms (recommended by the Polish Network of Neuroendocrine Tumours)

Beata Kos-Kudła1, Jolanta Blicharz-Dorniak, Janusz Strzelczyk, Agata Bałdys-Waligórska, Tomasz Bednarczuk, Marek Bolanowski, Agnieszka Boratyn-Nowicka, Małgorzata Borowska, Andrzej Cichocki, Jarosław B. Ćwikła, Massimo Falconi, Wanda Foltyn, Daria Handkiewicz-Junak, Alicja Hubalewska-Dydejczyk, Barbara Jarząb, Roman Junik, Dariusz Kajdaniuk, Grzegorz Kamiński, Agnieszka Kolasińska-Ćwikła, Aldona Kowalska, Robert Król, Leszek Królicki, Maciej Krzakowski, Jolanta Kunikowska, Katarzyna Kuśnierz, Paweł Lampe, Dariusz Lange, Anna Lewczuk-Myślicka, Andrzej Lewiński, Michał Lipiński, Magdalena Londzin-Olesik, Bogdan Marek, Anna Nasierowska-Guttmejer, Sergiusz Nawrocki, Ewa Nowakowska-Duława, Joanna Pilch-Kowalczyk, Violetta Rosiek, Marek Ruchała, Lucyna Siemińska, Anna Sowa-Staszczak, Teresa Starzyńska, Katarzyna Steinhof-Radwańska, Krzysztof Sworczak, Anhelli Syrenicz23, Andrzej Szawłowski, Marek Szczepkowski, Ewa Wachuła, Wojciech Zajęcki, Anna Zemczak, Wojciech Zgliczyński, Krzysztof Zieniewicz
Pubmed: 28597909
Endokrynol Pol 2017;68(2):79-110.

Abstract

Progress in the diagnostics and therapy of gastro-entero-pancreatic (GEP) neuroendocrine neoplasms (NEN), the published results of new randomised clinical trials, and the new guidelines issued by the European Neuroendocrine Tumour Society (ENETS) have led the Polish Network of Neuroendocrine Tumours to update the 2013 guidelines regarding management of these neoplasms. We present the general recommendations for the management of NENs, developed by experts during the Third Round Table Conference — Diagnostics and therapy of gastro-entero-pancreatic neuroendocrine neoplasms: Polish recommendations in view of current European recommenda­tions, which took place in December 2016 in Żelechów near Warsaw. Drawing from the extensive experience of centres dealing with this type of neoplasms, we hope that we have managed to develop the optimal management system, applying the most recent achievements in the field of medicine, for these patients, and that it can be implemented effectively in Poland. These management guidelines have been arranged in the following order: gastric and duodenal NENs (including gastrinoma); pancreatic NENs; NENs of the small intestine and appendix, and colorectal NENs.

Article available in PDF format

View PDF Download PDF file

References

  1. Kos-Kudła B, Blicharz-Dorniak J, Handkiewicz-Junak D, et al. Consensus Conference, Polish Network of Neuroendocrine Tumours. Diagnostic and therapeutic guidelines for gastro-entero-pancreatic neuroendocrine neoplasms (recommended by the Polish Network of Neuroendocrine Tumours). Endokrynol Pol. 2013; 64(6): 418–443.
  2. Plöckinger U, Rindi G, Arnold R, et al. European Neuroendocrine Tumour Society. Guidelines for the diagnosis and treatment of neuroendocrine gastrointestinal tumours. A consensus statement on behalf of the European Neuroendocrine Tumour Society (ENETS). Neuroendocrinology. 2004; 80(6): 394–424.
  3. Yao JC, Hassan M, Phan A, et al. One hundred years after. J Clin Oncol. 2008; 26(18): 3063–3072.
  4. Ramage JK, De Herder WW, Delle Fave G, et al. Vienna Consensus Conference participants. ENETS Consensus Guidelines Update for Colorectal Neuroendocrine Neoplasms. Neuroendocrinology. 2016; 103(2): 139–143.
  5. Öberg K, Knigge U, Kwekkeboom D, et al. ESMO Guidelines Working Group. Neuroendocrine gastro-entero-pancreatic tumors: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2012; 23 Suppl 7: vii124–vii130.
  6. Ramage JK, Ahmed A, Ardill J, et al. UK and Ireland Neuroendocrine Tumour Society. Guidelines for the management of gastroenteropancreatic neuroendocrine (including carcinoid) tumours (NETs). Gut. 2012; 61(1): 6–32.
  7. Blicharz-Dorniak J, Kos-Kudła B, Foltyn W, et al. Is determination of matrix metalloproteinases and their tissue inhibitors serum concentrations useful in patients with gastroenteropancreatic and bronchopulmonary neuroendocrine neoplasms? Endokrynol Pol. 2012; 63(6): 470–476.
  8. Kanakis G, Kaltsas G. Biochemical markers for gastroenteropancreatic neuroendocrine tumours (GEP-NETs). Best Pract Res Clin Gastroenterol. 2012; 26: 791–802.
  9. Glinicki P, Jeske W, Glinicki P, et al. Chromogranin A (CgA)--the influence of various factors in vivo and in vitro, and existing disorders on it's concentration in blood. Endokrynol Pol. 2010; 61(4): 384–387.
  10. Glinicki P, Kapuścińska R, Jeske W. The differences in chromogranin A (CgA) concentrations measured in serum and in plasma by IRMA and ELISA methods. Endokrynol Pol. 2010; 61(4): 346–350.
  11. Witkowska A, Jańczyk A, Nyckowski P, et al. Elevated serum chromogranin A patient with incidentally detected tumors in the caudate lobe of the liver plan. Endokrynol Pol. 2012; 63(Suppl 3): 7–8.
  12. Telega A, Kos-Kudła B, Foltyn W, et al. Selected neuroendocrine tumour markers, growth factors and their receptors in typical and atypical bronchopulmonary carcinoids. Endokrynol Pol. 2012; 63(6): 477–482.
  13. Yao JC, Pavel M, Phan AT, et al. Chromogranin A and neuron-specific enolase as prognostic markers in patients with advanced pNET treated with everolimus. J Clin Endocrinol Metab. 2011; 96(12): 3741–3749.
  14. Baudin E, Gigliotti A, Ducreux M, et al. Neuron-specific enolase and chromogranin A as markers of neuroendocrine tumours. Br J Cancer. 1998; 78(8): 1102–1107.
  15. Modlin IM, Drozdov I, Alaimo D, et al. Circulating Transcript Analysis (NETest) in GEP-NETs Treated With Somatostatin Analogs Defines Therapy. Endocr Relat Cancer. 2014 :615-28, doi: 10.1530/ERC-14-0190.
  16. Ćwikła JB, Bodei L, Kolasinska-Ćwikła A, et al. Blood measurement of neuroendocrine gene transcripts defines the effectiveness of operative resection and ablation strategies. J Clin Endocrinol Metab. 2015: E1437-45, doi: 10.1210/jc.2015-2792.
  17. Modlin IM, Frilling A, Salem RR, et al. Blood measurement of neuroendocrine gene transcripts defines the effectiveness of operative resection and ablation strategies. Surgery. 2016; 159(1): 336–347.
  18. Miller HC, Frampton AE, Malczewska A, et al. MicroRNAs associated with small bowel neuroendocrine tumours and their metastases. Endocr Relat Cancer. 2016; 23(9): 711–726.
  19. Gaztambide S, Vazquez F, Castaño L. Diagnosis and treatment of multiple endocrine neoplasia type 1 (MEN1). Minerva Endocrinol. 2013; 38(1): 17–28.
  20. Kajdaniuk D, Marek B, Borgiel-Marek H, et al. Transforming growth factor b1 (TGFb1) in physiology and pathology. Endokrynol Pol. 2013; 64: 384–396.
  21. Niederle B, Pape UF, Costa F, et al. Vienna Consensus Conference participants. ENETS Consensus Guidelines Update for Neuroendocrine Neoplasms of the Jejunum and Ileum. Neuroendocrinology. 2016; 103(2): 125–138.
  22. Kos-Kudła B, Zemczak A. [Contemporary methods of diagnosis and treatment of neuroendocrine gastrointestinal tumors]. Endokrynol Pol. 2006; 57(2): 174–186.
  23. Yao JC, Pavel M, Phan AT, et al. Chromogranin A and neuron-specific enolase as prognostic markers in patients with advanced pNET treated with everolimus. J Clin Endocrinol Metab. 2011; 96(12): 3741–3749.
  24. Rindi G, Klöppel G, Alhman H, et al. all other Frascati Consensus Conference participants, European Neuroendocrine Tumor Society (ENETS). TNM staging of foregut (neuro)endocrine tumors: a consensus proposal including a grading system. Virchows Arch. 2006; 449(4): 395–401.
  25. Bosman FT, Carneiro F, Hruban RH, et al. WHO Classification of Tumours of the Digestive System. IARC: Lyon 2010: 13–14.
  26. Rosiek V, Kunikowska J, Kos-Kudła B. A non-functioning pancreatic neuroendocrine tumour: a case report. Endokrynol Pol. 2012; 63(1): 59–64.
  27. Klimstra DS, Modlin IR, Coppola D, et al. The pathologic classification of neuroendocrine tumors: a review of nomenclature, grading, and staging systems. Pancreas. 2010; 39(6): 707–712.
  28. Klöppel G, Rindi G, Perren A, et al. The ENETS and AJCC/UICC TNM classifications of the neuroendocrine tumors of the gastrointestinal tract and the pancreas: a statement. Virchows Arch. 2010; 456(6): 595–597.
  29. Kvols LK, Brendtro KL. North American Neuroendocrine Tumor Society (NANETS). The North American Neuroendocrine Tumor Society (NANETS) guidelines: mission, goals, and process. Pancreas. 2010; 39(6): 705–706.
  30. Maroun J, Kocha W, Kvols L, et al. Guidelines for the diagnosis and management of carcinoid tumours. Part 1: the gastrointestinal tract. A statement from a Canadian National Carcinoid Expert Group. Curr Oncol. 2006; 13(2): 67–76.
  31. Woltering EA, Bergsland EK, Beyer DT, et al. Neuroendocrine Tumors of the Stomach. American Joint Committee on Cancer 2017. In: Amin M. B. et al (eds) AJCC Cancer Staging Manual. Eight Edition. Springer 2017: 351-359, DOI 10.1007/978-3-319-40618-3_30.
  32. Bergsland E, Woltering E, Rindi G, et al. Neuroendocrine Tumors of the Duodenum and Ampulla of Vater. AJCC Cancer Staging Manual. 2016: 361–373.
  33. Woltering EA, Bergsland EK, Beyer DT, et al. Neuroendocrine Tumors of the Jejunum and Ileum. American Joint Committee on Cancer 2017. In: Amin M. B. et al (eds) AJCC Cancer Staging Manual. Eight Edition. Springer 2017: 375-387, DOI 10.1007/978-3-319-40618-3_30.
  34. Woltering EA, Bergsland EK, Beyer DT, et al. Neuroendocrine Tumors of the Appendix. American Joint Committee on Cancer 2017. In: Amin M. B. et al (eds) AJCC Cancer Staging Manual. Eight Edition. Springer 2017: 389-394, DOI 10.1007/978-3-319-40618-3_30.
  35. Shi Ch, Woltering E, Deyer DT, et al. Neuroendocrine Tumors of the Colon and Rectum. American Joint Committee on Cancer 2017. In: Amin M. B. et al (eds) AJCC Cancer Staging Manual. Eight Edition. Springer 2017: 395-406, DOI 10.1007/978-3-319-40618-3_30.
  36. Brierley JD, Gospodarowicz MK, Wittekind C, et al (eds). UICC TNM Classification of Malignant Tumours. Eight Edition. Wiley Blackwell 2017.
  37. WHO Classification of Tumours of the Digestive System. IARC: Lyon 2017 (in press)
  38. Basturk O, Tang L, Hruban RH, et al. Poorly differentiated neuroendocrine carcinomas of the pancreas: a clinicopathologic analysis of 44 cases. Am J Surg Pathol. 2014; 38(4): 437–447.
  39. Heetfeld M, Chougnet CN, Olsen IH, et al. other Knowledge Network members. Characteristics and treatment of patients with G3 gastroenteropancreatic neuroendocrine neoplasms. Endocr Relat Cancer. 2015; 22(4): 657–664.
  40. Basturk O, Yang Z, Tang LH, et al. The high-grade (WHO G3) pancreatic neuroendocrine tumor category is morphologically and biologically heterogenous and includes both well differentiated and poorly differentiated neoplasms. Am J Surg Pathol. 2015; 39(5): 683–690.
  41. Crippa S, Partelli S, Belfiori G, et al. Management of neuroendocrine carcinomas of the pancreas (WHO G3): A tailored approach between proliferation and morphology. World J Gastroenterol. 2016; 22(45): 9944–9953.
  42. Milione M, Maisonneuve P, Spada F, et al. The Clinicopathologic Heterogeneity of Grade 3 Gastroenteropancreatic Neuroendocrine Neoplasms: Morphological Differentiation and Proliferation Identify Different Prognostic Categories. Neuroendocrinology. 2017; 104(1): 85–93.
  43. Nasierowska-Guttmejer A. Patomorfologia guzów neuroendokrynnych układu pokarmowego. Onk po Dyplomie. ; 2005: 25–30.
  44. Nasierowska-Guttmejer A, Malinowska M. Guzy neuroendokrynne układu pokarmowego (GEP/NET) — dyskusja wokół nazewnictwa i klasyfikacji. Przegl Gastroenterol. 2006; 1: 1–4.
  45. Nasierowska-Guttmejer A. Nowa klasyfikacja NET. Onco Review. 2011; 1: 46–50.
  46. Oberg K, Akerström G, Rindi G, et al. ESMO Guidelines Working Group. Neuroendocrine gastroenteropancreatic tumours: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2010; 21 Suppl 5: v223–v227.
  47. Rindi G, de Herder WW, O'Toole D, et al. Consensus guidelines for the management of patients with digestive neuroendocrine tumors: why such guidelines and how we went about It. Neuroendocrinology. 2006; 84(3): 155–157.
  48. Rindi G, de Herder WW, O'Toole D, et al. Consensus guidelines for the management of patients with digestive neuroendocrine tumors: the second event and some final considerations. Neuroendocrinology. 2008; 87(1): 5–7.
  49. Ito T, Jensen RT. Molecular imaging in neuroendocrine tumors: recent advances, controversies, unresolved issues, and roles in management. Curr Opin Endocrinol Diabetes Obes. 2017; 24(1): 15–24.
  50. Deroose CM, Hindié E, Kebebew E, et al. Molecular Imaging of Gastroenteropancreatic Neuroendocrine Tumors: Current Status and Future Directions. J Nucl Med. 2016; 57(12): 1949–1956.
  51. Opalińska M, Hubalewska-Dydejczyk A, Sowa-Staszczak A, et al. NEN - the role of somatostatin receptor scintigraphy in clinical setting. Nucl Med Rev Cent East Eur. 2016; 19(2): 118–125.
  52. Sundin A, Vullierme MP, Kaltsas G, et al. Mallorca Consensus Conference participants, European Neuroendocrine Tumor Society. ENETS Consensus Guidelines for the Standards of Care in Neuroendocrine Tumors: radiological examinations. Neuroendocrinology. 2009; 90(2): 167–183.
  53. Kwekkeboom DJ, Krenning EP, Scheidhauer K, et al. Mallorca Consensus Conference participants, European Neuroendocrine Tumor Society. ENETS Consensus Guidelines for the Standards of Care in Neuroendocrine Tumors: somatostatin receptor imaging with (111)In-pentetreotide. Neuroendocrinology. 2009; 90(2): 184–189.
  54. Gabriel M, Oberauer A, Dobrozemsky G, et al. 68Ga-DOTA-Tyr3-octreotide PET in neuroendocrine tumors: comparison with somatostatin receptor scintigraphy and CT. J Nucl Med. 2007; 48(4): 508–518.
  55. Fanti S, Ambrosini V, Tomassetti P, et al. Evaluation of unusual neuroendocrine tumours by means of 68Ga-DOTA-NOC PET. Biomed Pharmacother. 2008; 62(10): 667–671.
  56. Chiti A, Fanti S, Savelli G, et al. Comparison of somatostatin receptor imaging, computed tomography and ultrasound in the clinical management of neuroendocrine gastro-entero-pancreatic tumours. Eur J Nucl Med. 1998; 25(10): 1396–1403.
  57. Gouya H, Vignaux O, Augui J, et al. CT, endoscopic sonography, and a combined protocol for preoperative evaluation of pancreatic insulinomas. AJR Am J Roentgenol. 2003; 181(4): 987–992.
  58. Anderson MA, Carpenter S, Thompson NW, et al. Endoscopic ultrasound is highly accurate and directs management in patients with neuroendocrine tumors of the pancreas. Am J Gastroenterol. 2000; 95(9): 2271–2277.
  59. Hoeffel C, Job L, Ladam-Marcus V, et al. Detection of hepatic metastases from carcinoid tumor: prospective evaluation of contrast-enhanced ultrasonography. Dig Dis Sci. 2009; 54(9): 2040–2046.
  60. Manta R, Nardi E, Pagano N, et al. Pre-operative Diagnosis of Pancreatic Neuroendocrine Tumors with Endoscopic Ultrasonography and Computed Tomography in a Large Series. J Gastrointestin Liver Dis. 2016; 25(3): 317–321.
  61. Puli SR, Kalva N, Bechtold ML, et al. Diagnostic accuracy of endoscopic ultrasound in pancreatic neuroendocrine tumors: a systematic review and meta analysis. World J Gastroenterol. 2013; 19(23): 3678–3684.
  62. Nelson H, Petrelli N, Carlin A, et al. National Cancer Institute Expert Panel. Guidelines 2000 for colon and rectal cancer surgery. J Natl Cancer Inst. 2001; 93(8): 583–596.
  63. Chen HT, Xu GQ, Teng XD, et al. Diagnostic accuracy of endoscopic ultrasonography for rectal neuroendocrine neoplasms. World J Gastroenterol. 2014; 20(30): 10470–10477.
  64. Hiramoto JS, Feldstein VA, LaBerge JM, et al. Intraoperative ultrasound and preoperative localization detects all occult insulinomas; discussion 1025-6. Arch Surg. 2001; 136(9): 1020–1025.
  65. Mörk H, Ignee A, Schuessler G, et al. Analysis of neuroendocrine tumour metastases in the liver using contrast enhanced ultrasonography. Scand J Gastroenterol. 2007; 42(5): 652–662.
  66. Marcal LP, Patnana M, Bhosale P, et al. Intraoperative abdominal ultrasound in oncologic imaging. World J Radiol. 2013; 5(3): 51–60.
  67. Yamao K, Nakamura T, Suzuki T, et al. Endoscopic diagnosis and staging of mucinous cystic neoplasms and intraductal papillary-mucinous tumors. J Hepatobiliary Pancreat Surg. 2003; 10(2): 142–146.
  68. Yasuda K, Sakata M, Ueda M, et al. The use of pancreatoscopy in the diagnosis of intraductal papillary mucinous tumor lesions of the pancreas. Clin Gastroenterol Hepatol. 2005; 3(7 Suppl 1): S53–S57.
  69. Sun Bo, Hu B. The role of intraductal ultrasonography in pancreatobiliary diseases. Endosc Ultrasound. 2016; 5(5): 291–299.
  70. Scherübl H, Cadiot G, Jensen RT, et al. Neuroendocrine tumors of the stomach (gastric carcinoids) are on the rise: small tumors, small problems? Endoscopy. 2010; 42(8): 664–671.
  71. Attili F, Capurso G, Vanella G, et al. Diagnostic and therapeutic role of endoscopy in gastroenteropancreatic neuroendocrine neoplasms. Dig Liver Dis. 2014; 46(1): 9–17.
  72. Ito T, Hijioka S, Masui T, et al. Advances in the diagnosis and treatment of pancreatic neuroendocrine neoplasms in Japan. J Gastroenterol. 2017; 52(1): 9–18.
  73. Wang SC, Parekh JR, Zuraek MB, et al. Identification of unknown primary tumors in patients with neuroendocrine liver metastases. Arch Surg. 2010; 145(3): 276–280.
  74. Cerwenka H. Neuroendocrine liver metastases: contributions of endoscopy and surgery to primary tumor search. World J Gastroenterol. 2012; 18(10): 1009–1014.
  75. van Tuyl SAC, van Noorden JT, Timmer R, et al. Detection of small-bowel neuroendocrine tumors by video capsule endoscopy. Gastrointest Endosc. 2006; 64(1): 66–72.
  76. Frilling A, Smith G, Clift AK, et al. Capsule endoscopy to detect primary tumour site in metastatic neuroendocrine tumours. Dig Liver Dis. 2014; 46(11): 1038–1042.
  77. Neumann H, Fry LC, Neurath MF. Review article on current applications and future concepts of capsule endoscopy. Digestion. 2013; 87(2): 91–99.
  78. Zagorowicz ES, Pietrzak AM, Wronska E, et al. Small bowel tumors detected and missed during capsule endoscopy: single center experience. World J Gastroenterol. 2013; 19(47): 9043–9048.
  79. Milewski J, Rydzewska G. Enteroskopia dwubalonowa - nowa technika diagnostyki i terapii endoskopowej chorób jelita cienkiego. Przegl Gastroenterol. 2006; 1: 54–59.
  80. Fukumoto A, Manabe N, Tanaka S, et al. Usefulness of EUS with double-balloon enteroscopy for diagnosis of small-bowel diseases. Gastrointest Endosc. 2007; 65(3): 412–420.
  81. Kosmala W, Milewski J, Rydzewska G. Cztery lata doświadczeń w enteroskopii dwubalonowej na świecie. Przegl Gastroenterol. 2007; 2: 305–310.
  82. Domagk D, Bretthauer M, Lenz P, et al. Carbon dioxide insufflation improves intubation depth in double-balloon enteroscopy: a randomized, controlled, double-blind trial. Endoscopy. 2007; 39(12): 1064–1067.
  83. Ethun CG, Postlewait LM, Baptiste GG, et al. Small bowel neuroendocrine tumors: A critical analysis of diagnostic work-up and operative approach. J Surg Oncol. 2016; 114(6): 671–676.
  84. Sulbaran M, de Moura E, Bernardo W, et al. Overtube-assisted enteroscopy and capsule endoscopy for the diagnosis of small-bowel polyps and tumors: a systematic review and meta-analysis. Endosc Int Open. 2016; 4(2): E151–E163.
  85. Leszczyński S, Pilch-Kowalczyk J. Diagnostyka obrazowa Układ trawienny. PZWL, Warszawa 2012.
  86. Procacci C, Carbognin G, Accordini S, et al. Nonfunctioning endocrine tumors of the pancreas: possibilities of spiral CT characterization. Eur Radiol. 2001; 11(7): 1175–1183.
  87. Fidler JL, Fletcher JG, Reading CC, et al. Preoperative detection of pancreatic insulinomas on multiphasic helical CT. AJR Am J Roentgenol. 2003; 181(3): 775–780.
  88. Takumi K, Fukukura Y, Higashi M, et al. Pancreatic neuroendocrine tumors: Correlation between the contrast-enhanced computed tomography features and the pathological tumor grade. Eur J Radiol. 2015; 84(8): 1436–1443.
  89. Kumbasar B, Kamel IR, Tekes A, et al. Imaging of neuroendocrine tumors: accuracy of helical CT versus SRS. Abdom Imaging. 2004; 29(6): 696–702.
  90. Cwikła JB, Buscombe JR, Caplin ME, et al. Diagnostic imaging of carcinoid metastases to the abdomen and pelvis. Med Sci Monit. 2004; 10 Suppl 3: 9–16.
  91. Baur ADJ, Pavel M, Prasad V, et al. Diagnostic imaging of pancreatic neuroendocrine neoplasms (pNEN): tumor detection, staging, prognosis, and response to treatment. Acta Radiol. 2016; 57(3): 260–270.
  92. de Mestier L, Dromain C, d'Assignies G, et al. Evaluating digestive neuroendocrine tumor progression and therapeutic responses in the era of targeted therapies: state of the art. Endocr Relat Cancer. 2014; 21(3): R105–R120.
  93. Lebda-Wyborny T, Barczyk A, Pilch-Kowalczyk J. Wirtualna kolonoskopia CT – nowa metoda oceny patologii jelita grubego. Chirurgia polska. 2008. ; 10(2): 89–101.
  94. Johnson CD, Chen MH, Toledano AY, et al. Accuracy of CT colonography for detection of large adenomas and cancers. N Engl J Med. 2008; 359(12): 1207–1217.
  95. Regge D, Laudi C, Galatola G, et al. Diagnostic accuracy of computed tomographic colonography for the detection of advanced neoplasia in individuals at increased risk of colorectal cancer. JAMA. 2009; 301(23): 2453–2461.
  96. Kaltsas G, Rockall A, Papadogias D, et al. Recent advances in radiological and radionuclide imaging and therapy of neuroendocrine tumours. Eur J Endocrinol. 2004; 151(1): 15–27.
  97. Elmaoglu M, Celik A. Rezonans magnetyczny, podstawy fizyczne, obrazowanie, ułożenie pacjentka, protokoły , Medipage, Warszawa 2015.
  98. Dromain C, de Baere T, Lumbroso J, et al. Detection of liver metastases from endocrine tumors: a prospective comparison of somatostatin receptor scintigraphy, computed tomography, and magnetic resonance imaging. J Clin Oncol. 2005; 23(1): 70–78.
  99. Sankowski AJ, Ćwikla JB, Nowicki ML, et al. The clinical value of MRI using single-shot echoplanar DWI to identify liver involvement in patients with advanced gastroenteropancreatic-neuroendocrine tumors (GEP-NETs), compared to FSE T2 and FFE T1 weighted image after i.v. Gd-EOB-DTPA contrast enhancement. Med Sci Monit. 2012; 18(5): MT33–MT40.
  100. Oberg K, Akerström G, Rindi G, et al. ESMO Guidelines Working Group. Neuroendocrine gastroenteropancreatic tumours: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2010; 21 Suppl 5: v223–v227.
  101. Van Hoe L, Gryspeerdt S, Marchal G, et al. Helical CT for the preoperative localization of islet cell tumors of the pancreas: value of arterial and parenchymal phase images. AJR Am J Roentgenol. 1995; 165(6): 1437–1439.
  102. Kim JH, Eun HW, Kim YJ, et al. Staging accuracy of MR for pancreatic neuroendocrine tumor and imaging findings according to the tumor grade. Abdom Imaging. 2013; 38(5): 1106–1114.
  103. Moryoussef F, de Mestier L, Belkebir M, et al. Impact of Liver and Whole-Body Diffusion-Weighted MRI for Neuroendocrine Tumors on Patient Management: A Pilot Study. Neuroendocrinology. 2017; 104(3): 264–272.
  104. Carlbom L, Caballero-Corbalán J, Granberg D, et al. Whole-body MRI including diffusion-weighted MRI compared with 5-HTP PET/CT in the detection of neuroendocrine tumors. Ups J Med Sci. 2017; 122(1): 43–50.
  105. Kamaoui I, De-Luca V, Ficarelli S, et al. Value of CT enteroclysis in suspected small-bowel carcinoid tumors. AJR Am J Roentgenol. 2010; 194(3): 629–633.
  106. Ganeshan D, Bhosale P, Yang T, et al. Imaging features of carcinoid tumors of the gastrointestinal tract. AJR Am J Roentgenol. 2013; 201(4): 773–786.
  107. Gabriel M, Decristoforo C, Kendler D, et al. 68Ga-DOTA-Tyr3-octreotide PET in neuroendocrine tumors: comparison with somatostatin receptor scintigraphy and CT. J Nucl Med. 2007; 48(4): 508–518.
  108. Buchmann I, Henze M, Engelbrecht S, et al. Comparison of 68Ga-DOTATOC PET and 111In-DTPAOC (Octreoscan) SPECT in patients with neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2007; 34(10): 1617–1626.
  109. Srirajaskanthan R, Kayani I, Quigley AM, et al. The role of 68Ga-DOTATATE PET in patients with neuroendocrine tumors and negative or equivocal findings on 111In-DTPA-octreotide scintigraphy. J Nucl Med. 2010; 51(6): 875–882.
  110. Van Binnebeek S, Vanbilloen B, Baete K, et al. Comparison of diagnostic accuracy of (111)In-pentetreotide SPECT and (68)Ga-DOTATOC PET/CT: A lesion-by-lesion analysis in patients with metastatic neuroendocrine tumours. Eur Radiol. 2016; 26(3): 900–909.
  111. Lee I, Paeng JC, Lee SJ, et al. Comparison of Diagnostic Sensitivity and Quantitative Indices Between (68)Ga-DOTATOC PET/CT and (111)In-Pentetreotide SPECT/CT in Neuroendocrine Tumors: a Preliminary Report. Nucl Med Mol Imaging. 2015; 49(4): 284–290.
  112. Etchebehere EC, de Oliveira Santos A, Gumz B, et al. 68Ga-DOTATATE PET/CT, 99mTc-HYNIC-octreotide SPECT/CT, and whole-body MR imaging in detection of neuroendocrine tumors: a prospective trial. J Nucl Med. 2014; 55(10): 1598–1604.
  113. Poeppel TD, Binse I, Petersenn S, et al. 68Ga-DOTATOC versus 68Ga-DOTATATE PET/CT in functional imaging of neuroendocrine tumors. J Nucl Med. 2011; 52(12): 1864–1870.
  114. Wild D, Bomanji JB, Benkert P, et al. Comparison of 68Ga-DOTANOC and 68Ga-DOTATATE PET/CT within patients with gastroenteropancreatic neuroendocrine tumors. J Nucl Med. 2013; 54(3): 364–372.
  115. Deppen S, Blume J, Bobbey A, et al. 68Ga-DOTATATE compared to 111In-DTPA-octreotide and conventional imaging for pulmonary and gastroenteropancreatic neuroendocrine tumors: a systematic review and meta-analysis J Nucl Med. 2016. doi:10.2967/jnumed.115.16580
  116. Reubi JC, Schär JC, Waser B, et al. Affinity profiles for human somatostatin receptor subtypes SST1-SST5 of somatostatin radiotracers selected for scintigraphic and radiotherapeutic use. Eur J Nucl Med. 2000; 27(3): 273–282.
  117. Caplin ME, Pavel M, Ćwikła JB, et al. CLARINET Investigators. Lanreotide in metastatic enteropancreatic neuroendocrine tumors. N Engl J Med. 2014; 371(3): 224–233.
  118. Reubi JC, Schär JC, Waser B, et al. Affinity profiles for human somatostatin receptor subtypes SST1-SST5 of somatostatin radiotracers selected for scintigraphic and radiotherapeutic use. Eur J Nucl Med. 2000; 27(3): 273–282.
  119. Decristoforo C, Mather SJ, Cholewinski W, et al. 99mTc-EDDA/HYNIC-TOC: a new 99mTc-labelled radiopharmaceutical for imaging somatostatin receptor-positive tumours; first clinical results and intra-patient comparison with 111In-labelled octreotide derivatives. Eur J Nucl Med. 2000; 27(9): 1318–1325.
  120. Hubalewska-Dydejczyk A, Fröss-Baron K, Mikołajczak R, et al. 99mTc-EDDA/HYNIC-octreotate scintigraphy, an efficient method for the detection and staging of carcinoid tumours: results of 3 years' experience. Eur J Nucl Med Mol Imaging. 2006; 33(10): 1123–1133.
  121. Cwikla JB, Mikolajczak R, Pawlak D, et al. Initial direct comparison of 99mTc-TOC and 99mTc-TATE in identifying sites of disease in patients with proven GEP NETs. J Nucl Med. 2008; 49(7): 1060–1065.
  122. Gabriel M, Decristoforo C, Donnemiller E, et al. An intrapatient comparison of 99mTc-EDDA/HYNIC-TOC with 111In-DTPA-octreotide for diagnosis of somatostatin receptor-expressing tumors. J Nucl Med. 2003; 44(5): 708–716.
  123. Krausz Y, Freedman N, Rubinstein R, et al. 68Ga-DOTA-NOC PET/CT imaging of neuroendocrine tumors: comparison with ¹¹¹In-DTPA-octreotide (OctreoScan®). Mol Imaging Biol. 2011; 13(3): 583–593.
  124. Ambrosini V, Campana D, Bodei L, et al. 68Ga-DOTANOC PET/CT clinical impact in patients with neuroendocrine tumors. J Nucl Med. 2010; 51(5): 669–673.
  125. Virgolini I, Ambrosini V, Bomanji JB, et al. Procedure guidelines for PET/CT tumour imaging with 68Ga-DOTA-conjugated peptides: 68Ga-DOTA-TOC, 68Ga-DOTA-NOC, 68Ga-DOTA-TATE. Eur J Nucl Med Mol Imaging. 2010; 37(10): 2004–2010.
  126. Sadowski SM, Neychev V, Millo C, et al. Prospective Study of 68Ga-DOTATATE Positron Emission Tomography/Computed Tomography for Detecting Gastro-Entero-Pancreatic Neuroendocrine Tumors and Unknown Primary Sites. J Clin Oncol. 2016; 34(6): 588–596.
  127. Frilling A, Sotiropoulos GC, Radtke A, et al. The impact of 68Ga-DOTATOC positron emission tomography/computed tomography on the multimodal management of patients with neuroendocrine tumors. Ann Surg. 2010; 252(5): 850–856.
  128. Ruf J, Heuck F, Schiefer J, et al. Impact of Multiphase 68Ga-DOTATOC-PET/CT on therapy management in patients with neuroendocrine tumors. Neuroendocrinology. 2010; 91(1): 101–109.
  129. Kaemmerer D, Peter L, Lupp A, et al. Molecular imaging with ⁶⁸Ga-SSTR PET/CT and correlation to immunohistochemistry of somatostatin receptors in neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2011; 38(9): 1659–1668.
  130. Kwekkeboom DJ, Teunissen JJ, Bakker WH, et al. Radiolabeled somatostatin analog [177Lu-DOTA0,Tyr3]octreotate in patients with endocrine gastroenteropancreatic tumors. J Clin Oncol. 2005; 23(12): 2754–2762.
  131. Kunikowska J, Królicki L, Pawlak D, et al. Semiquantitative analysis and characterization of physiological biodistribution of (68)Ga-DOTA-TATE PET/CT. Clin Nucl Med. 2012; 37(11): 1052–1057.
  132. Kratochwil C, Stefanova M, Mavriopoulou E, et al. SUV of [68Ga]DOTATOC-PET/CT Predicts Response Probability of PRRT in Neuroendocrine Tumors. Mol Imaging Biol. 2015; 17(3): 313–318.
  133. Pfeifer A, Knigge U, Binderup T, et al. 64Cu-DOTATATE PET for Neuroendocrine Tumors: A Prospective Head-to-Head Comparison with 111In-DTPA-Octreotide in 112 Patients. J Nucl Med. 2015; 56(6): 847–854.
  134. Johnbeck CB, Knigge U, Loft A, et al. Head-to-Head Comparison of (64)Cu-DOTATATE and (68)Ga-DOTATOC PET/CT: A Prospective Study of 59 Patients with Neuroendocrine Tumors. J Nucl Med. 2017; 58(3): 451–457.
  135. Hubalewska-Dydejczyk A, Kulig J, Szybinski P, et al. Radio-guided surgery with the use of [99mTc-EDDA/HYNIC]octreotate in intra-operative detection of neuroendocrine tumours of the gastrointestinal tract. Eur J Nucl Med Mol Imaging. 2007; 34(10): 1545–1555.
  136. Kunikowska J, Słodkowski M, Koperski Ł, et al. Radioguided surgery in patient with pancreatic neuroendocrine tumour followed by PET/CT scan as a new approach of complete resection evaluation--case report. Nucl Med Rev Cent East Eur. 2014; 17(2): 110–114.
  137. Binderup T, Knigge U, Loft A, et al. Functional imaging of neuroendocrine tumors: a head-to-head comparison of somatostatin receptor scintigraphy, 123I-MIBG scintigraphy, and 18F-FDG PET. J Nucl Med. 2010; 51(5): 704–712.
  138. Severi S, Nanni O, Bodei L, et al. Role of 18FDG PET/CT in patients treated with 177Lu-DOTATATE for advanced differentiated neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2013; 40(6): 881–888.
  139. July M, Santhanam P, Giovanella L, et al. Role of positron emission tomography imaging in Multiple Endocrine Neoplasia syndromes. Clin Physiol Funct Imaging. 2016 [Epub ahead of print].
  140. Sansovini M, Severi S, Ianniello A, et al. Long-term follow-up and role of FDG PET in advanced pancreatic neuroendocrine patients treated with (177)Lu-D OTATATE. Eur J Nucl Med Mol Imaging. 2017; 44(3): 490–499.
  141. Oh S, Prasad V, Lee DS, et al. Effect of Peptide Receptor Radionuclide Therapy on Somatostatin Receptor Status and Glucose Metabolism in Neuroendocrine Tumors: Intraindividual Comparison of Ga-68 DOTANOC PET/CT and F-18 FDG PET/CT. Int J Mol Imaging. 2011; 2011: 524130.
  142. Kunikowska J, Krolicki, L, Pawlak, D. Is PET/CT with 18FDG necessary for qualification patients to Peptide Receptor Radionuclide Therapy (PRRT) -preliminary report ? Eur J Nucl Med Mol Imaging. 2011; 38: S425-S425.
  143. Binderup T, Knigge U, Loft A, et al. 18F-fluorodeoxyglucose positron emission tomography predicts survival of patients with neuroendocrine tumors. Clin Cancer Res. 2010; 16(3): 978–985.
  144. Jager PL, Chirakal R, Marriott CJ, et al. 6-L-18F-fluorodihydroxyphenylalanine PET in neuroendocrine tumors: basic aspects and emerging clinical applications. J Nucl Med. 2008; 49(4): 573–586.
  145. Ambrosini V, Morigi JJ, Nanni C, et al. Current status of PET imaging of neuroendocrine tumours ([18F]FDOPA, [68Ga]tracers, [11C]/[18F]-HTP). Q J Nucl Med Mol Imaging. 2015; 59(1): 58–69.
  146. Balogova S, Talbot JN, Nataf V, et al. 18F-fluorodihydroxyphenylalanine vs other radiopharmaceuticals for imaging neuroendocrine tumours according to their type. Eur J Nucl Med Mol Imaging. 2013; 40(6): 943–966.
  147. Becherer A, Szabó M, Karanikas G, et al. Imaging of advanced neuroendocrine tumors with (18)F-FDOPA PET. J Nucl Med. 2004; 45(7): 1161–1167.
  148. Haug A, Auernhammer CJ, Wängler B, et al. Intraindividual comparison of 68Ga-DOTA-TATE and 18F-DOPA PET in patients with well-differentiated metastatic neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2009; 36(5): 765–770.
  149. Timmers HJ, Chen CC, Carrasquillo JA, et al. Comparison of 18F-fluoro-L-DOPA, 18F-fluoro-deoxyglucose, and 18F-fluorodopamine PET and 123I-MIBG scintigraphy in the localization of pheochromocytoma and paraganglioma. J Clin Endocrinol Metab. 2009; 94(12): 4757–4767.
  150. Binderup T, Knigge U, Loft A, et al. Functional imaging of neuroendocrine tumors: a head-to-head comparison of somatostatin receptor scintigraphy, 123I-MIBG scintigraphy, and 18F-FDG PET. J Nucl Med. 2010; 51(5): 704–712.
  151. Wild D, Christ E, Caplin ME, et al. Glucagon-like peptide-1 versus somatostatin receptor targeting reveals 2 distinct forms of malignant insulinomas. J Nucl Med. 2011; 52(7): 1073–1078.
  152. Sowa-Staszczak A, Pach D, Mikołajczak R, et al. Glucagon-like peptide-1 receptor imaging with [Lys40(Ahx-HYNIC- 99mTc/EDDA)NH2]-exendin-4 for the detection of insulinoma. Eur J Nucl Med Mol Imaging. 2013; 40(4): 524–531.
  153. Sowa-Staszczak A, Trofimiuk-Müldner M, Stefańska A, et al. 99mTc Labeled Glucagon-Like Peptide-1-Analogue (99mTc-GLP1) Scintigraphy in the Management of Patients with Occult Insulinoma. PLoS One. 2016; 11(8): e0160714.
  154. Kunikowska J, Ziemnicka K, Pawlak D, et al. Medullary thyroid carcinoma - PET/CT imaging with 68Ga-labelled gastrin and somatostatin analogues. Endokrynol Pol. 2016; 67(1): 68–71.
  155. Luo Y, Yu M, Pan Q, et al. 68Ga-NOTA-exendin-4 PET/CT in detection of occult insulinoma and evaluation of physiological uptake. Eur J Nucl Med Mol Imaging. 2015; 42(3): 531–532.
  156. Gurusamy K, Davidson B. Diagnostic accuracy of different imaging modalities following computed tomography (CT) scanning for assessing the resectability with curative intent in pancreatic and periampullary cancer. Cochrane Database of Systematic Reviews. 2015.
  157. Garcia-Carbonero R, Sorbye H, Baudin E, et al. Vienna Consensus Conference participants. ENETS Consensus Guidelines for High-Grade Gastroenteropancreatic Neuroendocrine Tumors and Neuroendocrine Carcinomas. Neuroendocrinology. 2016; 103(2): 186–194.
  158. Pavel M, O'Toole D, Costa F, et al. Vienna Consensus Conference participants. ENETS Consensus Guidelines Update for the Management of Distant Metastatic Disease of Intestinal, Pancreatic, Bronchial Neuroendocrine Neoplasms (NEN) and NEN of Unknown Primary Site. Neuroendocrinology. 2016; 103(2): 172–185.
  159. Bacchetti S, Pasqual EM, Bertozzi S, et al. Curative versus palliative surgical resection of liver metastases in patients with neuroendocrine tumors: a meta-analysis of observational studies. Gland Surg. 2014; 3(4): 243–251.
  160. Maxwell JE, Sherman SK, O'Dorisio TM, et al. Liver-directed surgery of neuroendocrine metastases: What is the optimal strategy? Surgery. 2016; 159(1): 320–333.
  161. Lee SY, Cheow PC, Teo JY, et al. Surgical treatment of neuroendocrine liver metastases. Int J Hepatol. 2012; 2012: 146590.
  162. Guo J, Zhang Q, Bi X, et al. Systematic review of resecting primary tumor in MNETs patients with unresectable liver metastases. Oncotarget. 2016 [Epub ahead of print].
  163. Le Treut YP, Grégoire E, Klempnauer J, et al. For ELITA. Liver transplantation for neuroendocrine tumors in Europe — results and trends in patient selection: a 213-case European liver transplant registry study. Ann Surg. 2013; 257(5): 807–815.
  164. Lerut JP, Orlando G, Adam R, et al. European Liver Transplant Registry. The place of liver transplantation in the treatment of hepatic epitheloid hemangioendothelioma: report of the European liver transplant registry. Ann Surg. 2007; 246(6): 949–57; discussion 957.
  165. Gu P, Wu J, Newman E, et al. Treatment of liver metastases in patients with neuroendocrine tumors of gastroesophageal and pancreatic origin. Int J Hepatol. 2012; 2012: 131659.
  166. Sher LS, Levi DM, Wecsler JS, et al. Liver transplantation for metastatic neuroendocrine tumors: Outcomes and prognostic variables. J Surg Oncol. 2015; 112(2): 125–132.
  167. Fendrich V, Bartsch DK. Surgical treatment of gastrointestinal neuroendocrine tumors. Langenbecks Arch Surg. 2011; 396(3): 299–311.
  168. Turaga KK, Kvols LK. Recent progress in the understanding, diagnosis, and treatment of gastroenteropancreatic neuroendocrine tumors. CA Cancer J Clin. 2011; 61(2): 113–132.
  169. Evans JA, Chandrasekhara V, Chathadi KV, et al. ASGE Standards of Practice Committee. The role of endoscopy in the management of premalignant and malignant conditions of the stomach. Gastrointest Endosc. 2015; 82(1): 1–8.
  170. Basuroy R, Srirajaskanthan R, Prachalias A, et al. Review article: the investigation and management of gastric neuroendocrine tumours. Aliment Pharmacol Ther. 2014; 39(10): 1071–1084.
  171. Antillon MR, Chen Y. Leczenie endoskopowe nowotworów żołądka. In: Ginsber G, Kochman ML, Norton J, Gostout ChJ (eds.). Kliniczna endoskopia przewodu pokarmowego. Medipage, Warszawa 2009: 533–560.
  172. Gotoda T, Kondo H, Ono H, et al. A new endoscopic mucosal resection procedure using an insulation-tipped electrosurgical knife for rectal flat lesions: report of two cases. Gastrointest Endosc. 1999; 50(4): 560–563.
  173. Scherübl H, Cadiot G, Jensen RT, et al. Neuroendocrine tumors of the stomach (gastric carcinoids) are on the rise: small tumors, small problems? Endoscopy. 2010; 42(8): 664–671.
  174. Li QL, Zhang YQ, Chen WF, et al. Endoscopic submucosal dissection for foregut neuroendocrine tumors: an initial study. World J Gastroenterol. 2012; 18(40): 5799–5806.
  175. Son HJ, Sohn DK, Hong CW, et al. Factors associated with complete local excision of small rectal carcinoid tumor. Int J Colorectal Dis. 2013; 28(1): 57–61.
  176. Ishii N, Horiki N, Itoh T, et al. Endoscopic submucosal dissection and preoperative assessment with endoscopic ultrasonography for the treatment of rectal carcinoid tumors. Surg Endosc. 2010; 24(6): 1413–1419.
  177. Pimentel-Nunes P, Dinis-Ribeiro M, Ponchon T, et al. Endoscopic submucosal dissection: European Society of Gastrointestinal Endoscopy (ESGE) Guideline. Endoscopy. 2015; 47(9): 829–854.
  178. Lee EJ, Lee JB, Lee SH, et al. Endoscopic submucosal dissection for colorectal tumors--1,000 colorectal ESD cases: one specialized institute's experiences. Surg Endosc. 2013; 27(1): 31–39.
  179. Arnold R, Chen YJ, Costa F, et al. Mallorca Consensus Conference participants, European Neuroendocrine Tumor Society. ENETS Consensus Guidelines for the Standards of Care in Neuroendocrine Tumors: follow-up and documentation. Neuroendocrinology. 2009; 90(2): 227–233.
  180. Armellini E, Crinò S, Ballarè M, et al. Endoscopic ultrasound-guided radiofrequency ablation of a pancreatic neuroendocrine tumor. Endoscopy. 2015; 47(S 01): E600–E601.
  181. Bhutani MS, Arora A. New developments in endoscopic ultrasound-guided therapies. Endosc Ultrasound. 2015; 4(4): 304–311.
  182. Öberg K, Lamberts SWJ. Somatostatin analogues in acromegaly and gastroenteropancreatic neuroendocrine tumours: past, present and future. Endocr Relat Cancer. 2016; 23(12): R551–R566.
  183. Melen-Mucha G, Lawnicka H, Kierszniewska-Stepien D, et al. The place of somatostatin analogs in the diagnosis and treatment of the neuoroendocrine glands tumors. Recent Pat Anticancer Drug Discov. 2006; 1(2): 237–254.
  184. Pisarek H, Pawlikowski M, Kunert-Radek J, et al. SSTR1 and SSTR5 subtypes are the dominant forms of somatostatin receptor in neuroendocrine tumors. Folia Histochem Cytobiol. 2010; 48(1): 142–147.
  185. Orlewska E, Bednarczuk T, Kaminski G, et al. LanroNET study group*. LanroNET, a non-interventional, prospective study to assess the resource utilization and cost of lanreotide autogel 120 mg in Polish patients with neuroendocrine tumors - results of interim analysis. Contemp Oncol (Pozn). 2014; 18(6): 442–447.
  186. Jawiarczyk A, Bolanowski M, Syrycka J, et al. Effective therapy of insulinoma by using long-acting somatostatin analogue. A case report and literature review. Exp Clin Endocrinol Diabetes. 2012; 120(2): 68–72.
  187. Rosiek V, Kunikowska J, Kos-Kudła B. A non-functioning pancreatic neuroendocrine tumour: a case report. Endokrynol Pol. 2012; 63(1): 59–64.
  188. Rinke A, Müller HH, Schade-Brittinger C, et al. PROMID Study Group. Placebo-controlled, double-blind, prospective, randomized study on the effect of octreotide LAR in the control of tumor growth in patients with metastatic neuroendocrine midgut tumors: a report from the PROMID Study Group. J Clin Oncol. 2009; 27(28): 4656–4663.
  189. Kos-Kudła B. Treatment of neuroendocrine tumors: new recommendations based on the CLARINET study. Contemp Oncol (Pozn). 2015; 19(5): 345–349.
  190. Caplin ME, Pavel M, Ćwikła JB, et al. CLARINET Investigators. Lanreotide in metastatic enteropancreatic neuroendocrine tumors. N Engl J Med. 2014; 371(3): 224–233.
  191. Caplin ME, Pavel M, Ćwikła JB, et al. CLARINET Investigators. Anti-tumour effects of lanreotide for pancreatic and intestinal neuroendocrine tumours: the CLARINET open-label extension study. Endocr Relat Cancer. 2016; 23(3): 191–199.
  192. Cidon EU. New therapeutic approaches to metastatic gastroenteropancreatic neuroendocrine tumors: A glimpse into the future. World J Gastrointest Oncol. 2017; 9(1): 4–20.
  193. Öberg K. red.). Advances in Neuroendocrine Tumor Management. Future Medicine October 2011. Ebook pages 52-63, doi: 10. 2217/ebo. ; 11: 89.
  194. Pisegna J.R. (ed.). Management of Pancreatic Neuroendocrine Tumors. Springer, New York 2014: 65–75.
  195. Okusaka T, Ueno H, Morizane C, et al. Cytotoxic chemotherapy for pancreatic neuroendocrine tumors. J Hepatobiliary Pancreat Sci. 2015; 22(8): 628–633.
  196. Strosberg JR, Fine RL, Choi J, et al. First-line chemotherapy with capecitabine and temozolomide in patients with metastatic pancreatic endocrine carcinomas. Cancer. 2011; 117(2): 268–275.
  197. Moertel CG, Hanley JA, Johnson LA. Streptozocin alone compared with streptozocin plus fluorouracil in the treatment of advanced islet-cell carcinoma. N Engl J Med. 1980; 303(21): 1189–1194.
  198. Dilz LM, Denecke T, Steffen IG, et al. Streptozocin/5-fluorouracil chemotherapy is associated with durable response in patients with advanced pancreatic neuroendocrine tumours. Eur J Cancer. 2015; 51(10): 1253–1262.
  199. Meyer T, Qian W, Caplin ME, et al. Capecitabine and streptozocin ± cisplatin in advanced gastroenteropancreatic neuroendocrine tumours. Eur J Cancer. 2014; 50(5): 902–911.
  200. Turner NC, Strauss SJ, Sarker D, et al. Chemotherapy with 5-fluorouracil, cisplatin and streptozocin for neuroendocrine tumours. Br J Cancer. 2010; 102(7): 1106–1112.
  201. Moertel CG, Lefkopoulo M, Lipsitz S, et al. Streptozocin-doxorubicin, streptozocin-fluorouracil or chlorozotocin in the treatment of advanced islet-cell carcinoma. N Engl J Med. 1992; 326(8): 519–523.
  202. Pavel M, O'Toole D, Costa F, et al. Vienna Consensus Conference participants. ENETS Consensus Guidelines Update for the Management of Distant Metastatic Disease of Intestinal, Pancreatic, Bronchial Neuroendocrine Neoplasms (NEN) and NEN of Unknown Primary Site. Neuroendocrinology. 2016; 103(2): 172–185.
  203. Chan JA, Stuart K, Earle CC, et al. Prospective study of bevacizumab plus temozolomide in patients with advanced neuroendocrine tumors. J Clin Oncol. 2012; 30(24): 2963–2968.
  204. Kulke MH, Stuart K, Enzinger PC, et al. Phase II study of temozolomide and thalidomide in patients with metastatic neuroendocrine tumors. J Clin Oncol. 2006; 24(3): 401–406.
  205. Kulke MH, Hornick JL, Frauenhoffer C, et al. O6-methylguanine DNA methyltransferase deficiency and response to temozolomide-based therapy in patients with neuroendocrine tumors. Clin Cancer Res. 2009; 15(1): 338–345.
  206. Cives M, Ghayouri M, Morse B, et al. Analysis of potential response predictors to capecitabine/temozolomide in metastatic pancreatic neuroendocrine tumors. Endocr Relat Cancer. 2016; 23(9): 759–767.
  207. Cros J, Hentic O, Rebours V, et al. MGMT expression predicts response to temozolomide in pancreatic neuroendocrine tumors. Endocr Relat Cancer. 2016; 23(8): 625–633.
  208. Kolasińska-Ćwikła A. Chemioterapia w guzach neuroendokrynnych układu pokarmowego (GEP-NEN). OncoReview 2012; 2(4): 255–261.
  209. Cassier PA, Walter T, Eymard B, et al. Gemcitabine and oxaliplatin combination chemotherapy for metastatic well-differentiated neuroendocrine carcinomas: a single-center experience. Cancer. 2009; 115(15): 3392–3399.
  210. Öberg K. Management of neuroendocrine tumours. Ann. Oncol. 2004; suppl. 4: 293-8.
  211. O'Toole D, Hentic O, Corcos O, et al. Chemotherapy for gastro-enteropancreatic endocrine tumours. Neuroendocrinology. 2004; 80 Suppl 1: 79–84.
  212. Fine RL, Gulati AP, Krantz BA, et al. Capecitabine and temozolomide (CAPTEM) for metastatic, well-differentiated neuroendocrine cancers: The Pancreas Center at Columbia University experience. Cancer Chemother Pharmacol. 2013; 71(3): 663–670.
  213. Spada F, Antonuzzo L, Marconcini R, et al. Oxaliplatin-Based Chemotherapy in Advanced Neuroendocrine Tumors: Clinical Outcomes and Preliminary Correlation with Biological Factors. Neuroendocrinology. 2016; 103(6): 806–814.
  214. Wada Y, Hirayama Y, Seki R, et al. [Long- term remission survival with a case of rectal carcinoid tumor with metastasis in the soft tissue effectively treated with the combination therapy of irinotecan/5-fluorouracil/levofolinate followed by resection]. Nihon Naika Gakkai Zasshi. 2007; 96(11): 2513–2515.
  215. Moertel C, Kvols L, O'Connell M, et al. Treatment of neuroendocrine carcinomas with combined etoposide and cisplatin. Evidence of major therapeutic activity in the anaplastic variants of these neoplasms. Cancer. 1991; 68(2): 227–232, doi: 10.1002/1097-0142(19910715)68:2<227::aid-cncr2820680202>3.0.co;2-i.
  216. Mitry E, Baudin E, Ducreux M, et al. Treatment of poorly differentiated neuroendocrine tumours with etoposide and cisplatin. Br J Cancer. 1999; 81(8): 1351–1355.
  217. Sorbye H, Welin S, Langer SW, et al. Predictive and prognostic factors for treatment and survival in 305 patients with advanced gastrointestinal neuroendocrine carcinoma (WHO G3): the NORDIC NEC study. Ann Oncol. 2013; 24(1): 152–160.
  218. Welin S, Sorbye H, Sebjornsen S, et al. Clinical effect of temozolomide-based chemotherapy in poorly differentiated endocrine carcinoma after progression on first-line chemotherapy. Cancer. 2011; 117(20): 4617–4622.
  219. Bajetta E, Catena L, Procopio G, et al. Are capecitabine and oxaliplatin (XELOX) suitable treatments for progressing low-grade and high-grade neuroendocrine tumours? Cancer Chemother Pharmacol. 2007; 59(5): 637–642.
  220. Hainsworth JD, Spigel DR, Litchy S, et al. Phase II trial of paclitaxel, carboplatin, and etoposide in advanced poorly differentiated neuroendocrine carcinoma: a Minnie Pearl Cancer Research Network Study. J Clin Oncol. 2006; 24(22): 3548–3554.
  221. Okita NT, Kato K, Takahari D, et al. Neuroendocrine tumors of the stomach: chemotherapy with cisplatin plus irinotecan is effective for gastric poorly-differentiated neuroendocrine carcinoma. Gastric Cancer. 2011; 14(2): 161–165.
  222. Nakano K, Takahashi S, Yuasa T, et al. Feasibility and efficacy of combined cisplatin and irinotecan chemotherapy for poorly differentiated neuroendocrine carcinomas. Jpn J Clin Oncol. 2012; 42(8): 697–703.
  223. Okuma HS, Iwasa S, Shoji H, et al. Irinotecan plus cisplatin in patients with extensive-disease poorly differentiated neuroendocrine carcinoma of the esophagus. Anticancer Res. 2014; 34(9): 5037–5041.
  224. Ramella Munhoz R, de Mendonça Rego JF, de Celis Ferrari AR, et al. Combination of irinotecan and a platinum agent for poorly differentiated neuroendocrine carcinomas. Rare Tumors. 2013; 5(3): e39.
  225. Sorbye H, Strosberg J, Baudin E, et al. Gastroenteropancreatic high-grade neuroendocrine carcinoma. Cancer. 2014; 120(18): 2814–2823.
  226. Yao JC, Shah MH, Ito T, et al. RAD001 in Advanced Neuroendocrine Tumors, Third Trial (RADIANT-3) Study Group. Everolimus for advanced pancreatic neuroendocrine tumors. N Engl J Med. 2011; 364(6): 514–523.
  227. Raymond E, Dahan L, Raoul JL, et al. Sunitinib malate for the treatment of pancreatic neuroendocrine tumors. N Engl J Med. 2011; 364(6): 501–513.
  228. Rosiek V, Kos-Kudła B. Terapie celowane w nowotworach neuroendokrynnych, Targeted therapies in neuroendocrine neoplasms. OncoReview . 2012; 2(3): 163–170.
  229. ChPL – Afinitor (ewerolimus) - https://ec.europa.eu/health/documents/community-register.
  230. ChPL – Sutent (sunitynib) - https://ec.europa.eu/health/documents/community-register.
  231. Yao JC, Fazio N, Singh S, et al. RAD001 in Advanced Neuroendocrine Tumours, Fourth Trial (RADIANT-4) Study Group. Lancet. 2016 Mar 5. ; 387(10022): 968–77.
  232. Grande E. Sequential treatment in disseminated well- and intermediate-differentiated pancreatic neuroendocrine tumors: Common sense or low rationale? World J Clin Oncol. 2016; 7(2): 149–154.
  233. Panzuto F, Rinzivillo M, Fazio N, et al. Real-world study of everolimus in advanced progressive neuroendocrine tumors. Oncologist. 2014; 19(9): 966–974.
  234. Kamp K, Gumz B, Feelders RA, et al. Safety and efficacy of everolimus in gastrointestinal and pancreatic neuroendocrine tumors after (177)Lu-octreotate. Endocr Relat Cancer. 2013; 20(6): 825–831.
  235. Trotti A, Colevas AD, Setser A, et al. CTCAE v3.0: development of a comprehensive grading system for the adverse effects of cancer treatment. Semin Radiat Oncol. 2003; 13(3): 176–181.
  236. Bernard V, Lombard-Bohas C, Taquet MC, et al. French Group of Endocrine Tumors. Efficacy of everolimus in patients with metastatic insulinoma and refractory hypoglycemia. Eur J Endocrinol. 2013; 168(5): 665–674.
  237. Kulke MH, Bergsland EK, Yao JC. Glycemic control in patients with insulinoma treated with everolimus. N Engl J Med. 2009; 360(2): 195–197.
  238. Pavel ME, Hainsworth JD, Baudin E, et al. RADIANT-2 Study Group. Everolimus plus octreotide long-acting repeatable for the treatment of advanced neuroendocrine tumours associated with carcinoid syndrome (RADIANT-2): a randomised, placebo-controlled, phase 3 study. Lancet. 2011; 378(9808): 2005–2012.
  239. Chen J, Wang C, Han J, et al. Therapeutic effect of sunitinib malate and its influence on blood glucose concentrations in a patient with metastatic insulinoma. Expert Rev Anticancer Ther. 2013; 13(6): 737–743.
  240. Bajetta E, Catena L, Fazio N, et al. Everolimus in combination with octreotide long-acting repeatable in a first-line setting for patients with neuroendocrine tumors: an ITMO group study. Cancer. 2014; 120(16): 2457–2463.
  241. Hobday TJ, Yin J, Pettinger A, et al. Multicenter prospective phase II trial of bevacizumab (bev) for progressive pancreatic neuroendocrine tumor (PNET) J Clin Oncol. 2015;33 suppl:abstr 409.
  242. Castellano D, Capdevila J, Sastre J, et al. Sorafenib and bevacizumab combination targeted therapy in advanced neuroendocrine tumour: a phase II study of Spanish Neuroendocrine Tumour Group (GETNE0801). Eur J Cancer. 2013; 49(18): 3780–3787.
  243. Strosberg J, Goldman J, Costa F, et al. The Role of Chemotherapy in Well-Differentiated Gastroenteropancreatic Neuroendocrine Tumors. Front Horm Res. 2015; 44: 239–247.
  244. Grande E, Capdevila J, Castellano D, et al. Pazopanib in pretreated advanced neuroendocrine tumors: a phase II, open-label trial of the Spanish Task Force Group for Neuroendocrine Tumors (GETNE). Ann Oncol. 2015; 26(9): 1987–1993.
  245. Paganelli G, Bodei L, Handkiewicz Junak D, et al. 90Y-DOTA-D-Phe1-Try3-octreotide in therapy of neuroendocrine malignancies. Biopolymers. 2002; 66(6): 393–398.
  246. Cwikla JB, Sankowski A, Seklecka N, et al. Efficacy of radionuclide treatment DOTATATE Y-90 in patients with progressive metastatic gastroenteropancreatic neuroendocrine carcinomas (GEP-NETs): a phase II study. Ann Oncol. 2010; 21(4): 787–794.
  247. Sowa-Staszczak A, Pach D, Kunikowska J, et al. Efficacy and safety of 90Y-DOTATATE therapy in neuroendocrine tumours. Endokrynol Pol. 2011; 62(5): 392–400.
  248. Bodei L, Cremonesi M, Grana CM, et al. Peptide receptor radionuclide therapy with ¹⁷⁷Lu-DOTATATE: the IEO phase I-II study. Eur J Nucl Med Mol Imaging. 2011; 38(12): 2125–2135.
  249. Imhof A, Brunner P, Marincek N, et al. Response, survival, and long-term toxicity after therapy with the radiolabeled somatostatin analogue [90Y-DOTA]-TOC in metastasized neuroendocrine cancers. J Clin Oncol. 2011; 29(17): 2416–2423.
  250. Pach D, Sowa-Staszczak A, Kunikowska J, et al. Repeated cycles of peptide receptor radionuclide therapy (PRRT)--results and side-effects of the radioisotope 90Y-DOTA TATE, 177Lu-DOTA TATE or 90Y/177Lu-DOTA TATE therapy in patients with disseminated NET. Radiother Oncol. 2012; 102(1): 45–50.
  251. Kunikowska J, Królicki L, Sowa-Staszczak A, et al. Polish experience in Peptide receptor radionuclide therapy. Recent Results Cancer Res. 2013; 194: 467–478.
  252. Vinjamuri S, Gilbert TM, Banks M, et al. Peptide receptor radionuclide therapy with (90)Y-DOTATATE/(90)Y-DOTATOC in patients with progressive metastatic neuroendocrine tumours: assessment of response, survival and toxicity. Br J Cancer. 2013; 108(7): 1440–1448.
  253. Bertani E, Fazio N, Radice D, et al. Resection of the Primary Tumor Followed by Peptide Receptor Radionuclide Therapy as Upfront Strategy for the Treatment of G1-G2 Pancreatic Neuroendocrine Tumors with Unresectable Liver Metastases. Ann Surg Oncol. 2016; 23(Suppl 5): 981–989.
  254. Strosberg J, El-Haddad G, Wolin E, et al. NETTER-1 Trial Investigators. Phase 3 Trial of (177)Lu-Dotatate for Midgut Neuroendocrine Tumors. N Engl J Med. 2017; 376(2): 125–135.
  255. Sowa-Staszczak A, Pach D, Stefańska A, et al. Case report of a patient with initially inoperable well-differentiated midgut neuroendocrine tumor (WDNT)--PRRT and long-acting somatostatin analogs as the neoadjuvant therapy. Nucl Med Rev Cent East Eur. 2012; 15(2): 137–139.
  256. Kratochwil C, Stefanova M, Mavriopoulou E, et al. SUV of [68Ga]DOTATOC-PET/CT Predicts Response Probability of PRRT in Neuroendocrine Tumors. Mol Imaging Biol. 2015; 17(3): 313–318.
  257. Bergsma H, Konijnenberg MW, Kam BLR, et al. Subacute haematotoxicity after PRRT with (177)Lu-DOTA-octreotate: prognostic factors, incidence and course. Eur J Nucl Med Mol Imaging. 2016; 43(3): 453–463.
  258. Severi S, Nanni O, Bodei L, et al. Role of 18FDG PET/CT in patients treated with 177Lu-DOTATATE for advanced differentiated neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2013; 40(6): 881–888.
  259. Binderup T, Knigge U, Loft A, et al. 18F-fluorodeoxyglucose positron emission tomography predicts survival of patients with neuroendocrine tumors. Clin Cancer Res. 2010; 16(3): 978–985.
  260. Sampathirao N, Basu S. MIB-1 Index-Stratified Assessment of Dual-Tracer PET/CT with (68)Ga-DOTATATE and (18)F-FDG and Multimodality Anatomic Imaging in Metastatic Neuroendocrine Tumors of Unknown Primary in a PRRT Workup Setting. J Nucl Med Technol. 2017; 45(1): 34–41.
  261. Bodei L, Mueller-Brand J, Baum RP, et al. The joint IAEA, EANM, and SNMMI practical guidance on peptide receptor radionuclide therapy (PRRNT) in neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2013; 40(5): 800–816.
  262. Handkiewicz-Junak D, Sygula A, Hasse-Lazar K, et al. Consolidation treatment with somatoatatin analogues after radiopeptide therapy. Eur J Nucl Med Mol Imaging. 2014;41: S212-S212.
  263. Sowa-Staszczak A, Stefanska A, Chrapczynski P, et al. Does combination of "cold" and "hot" somatostatin analogs prolong survival of patients with neuroendocrine neoplasms?. Endocr J. 2016 Nov 17. [Epub ahead of print]
  264. https://evs.nci.nih.gov/ftp1/CTCAE/CTCAE_4.03_2010-06-14_QuickReference_5x7.pdf.
  265. Severi S, Sansovini M, Ianniello A, et al. Feasibility and utility of re-treatment with (177)Lu-DOTATATE in GEP-NENs relapsed after treatment with (90)Y-DOTATOC. Eur J Nucl Med Mol Imaging. 2015; 42(13): 1955–1963.
  266. Buscombe JR, Cwikla JB, Caplin ME, et al. Long-term efficacy of low activity meta-[131I]iodobenzylguanidine therapy in patients with disseminated neuroendocrine tumours depends on initial response. Nucl Med Commun. 2005; 26(11): 969–976.
  267. Bomanji JB, Papathanasiou ND. ¹¹¹In-DTPA⁰-octreotide (Octreoscan), ¹³¹I-MIBG and other agents for radionuclide therapy of NETs. Eur J Nucl Med Mol Imaging. 2012; 39 Suppl 1: S113–S125.
  268. Vinjamuri S, Gilbert TM, Banks M, et al. Peptide receptor radionuclide therapy with (90)Y-DOTATATE/(90)Y-DOTATOC in patients with progressive metastatic neuroendocrine tumours: assessment of response, survival and toxicity. Br J Cancer. 2013; 108(7): 1440–1448.
  269. Yalchin M, Oliveira A, Theocharidou E, et al. The Impact of Radiological Response to Peptide Receptor Radionuclide Therapy on Overall Survival in Patients With Metastatic Midgut Neuroendocrine Tumors. Clin Nucl Med. 2017; 42(3): e135–e141.
  270. Garcia-Carbonero R, Garcia-Figueiras R, Carmona-Bayonas A, et al. Spanish Cooperative Group of Neuroendocrine Tumors (GETNE). Imaging approaches to assess the therapeutic response of gastroenteropancreatic neuroendocrine tumors (GEP-NETs): current perspectives and future trends of an exciting field in development. Cancer Metastasis Rev. 2015; 34(4): 823–842.
  271. Sansovini M, Severi S, Ianniello A, et al. Long-term follow-up and role of FDG PET in advanced pancreatic neuroendocrine patients treated with (177)Lu-D OTATATE. Eur J Nucl Med Mol Imaging. 2017; 44(3): 490–499.
  272. Contessa JN, Griffith KA, Wolff E, et al. Radiotherapy for pancreatic neuroendocrine tumors. Int J Radiat Oncol Biol Phys. 2009; 75(4): 1196–1200.
  273. Arvold ND, Willett CG, Fernandez-del Castillo C, et al. Pancreatic neuroendocrine tumors with involved surgical margins: prognostic factors and the role of adjuvant radiotherapy. Int J Radiat Oncol Biol Phys. 2012; 83(3): e337–e343.
  274. Zagar TM, White RR, Willett CG, et al. Resected pancreatic neuroendocrine tumors: patterns of failure and disease-related outcomes with or without radiotherapy. Int J Radiat Oncol Biol Phys. 2012; 83(4): 1126–1131.
  275. *OCEBM Levels of Evidence Working Group. “The Oxford 2011 Levels of Evidence”. Oxford Centre for Evidence-Based Medicine. http://www.cebm.net/ index.aspx?o=5653.