open access
Milk-alkali syndrome (MAS) as a complication of the treatment of hypoparathyroidism — a case study


- Department of Internal Medicine and Endocrinology, Medical University of Warsaw, Warsaw, Poland, Poland
open access
Abstract
Abstract
Keywords
MAS, hypercalcemia, hypoparathyroidism, alkalinisation, hypercalciuria, milk alkali syndrome, metabolic alkalosis, renal failure, active vitamin D


Title
Milk-alkali syndrome (MAS) as a complication of the treatment of hypoparathyroidism — a case study
Journal
Issue
Article type
Case report
Pages
200-204
Published online
2018-02-08
Page views
3268
Article views/downloads
2418
DOI
10.5603/EP.a2018.0015
Pubmed
Bibliographic record
Endokrynol Pol 2018;69(2):200-204.
Keywords
MAS
hypercalcemia
hypoparathyroidism
alkalinisation
hypercalciuria
milk alkali syndrome
metabolic alkalosis
renal failure
active vitamin D
Authors
Agata Skwarek
Janusz Pachucki
Tomasz Bednarczuk
Zuzanna Żurecka
Michał Popow
Agnieszka Kondracka
Zbigniew Bartoszewicz


- Medarov BI. Milk-alkali syndrome. Mayo Clin Proc. 2009; 84(3): 261–267.
- Kolnick L, Harris BD, Choma DP, et al. Hypercalcemia in pregnancy: a case of milk-alkali syndrome. J Gen Intern Med. 2011; 26(8): 939–942.
- Endres DB. Investigation of hypercalcemia. Clin Biochem. 2012; 45(12): 954–963.
- Kallas M, Green F, Hewison M, et al. Rare causes of calcitriol-mediated hypercalcemia: a case report and literature review. J Clin Endocrinol Metab. 2010; 95(7): 3111–3117.
- Cusano NE, Rubin MR, Sliney J, et al. Mini-review: new therapeutic options in hypoparathyroidism. Endocrine. 2012; 41(3): 410–414.
- Nijenhuis T, Hoenderop JGJ, Bindels RJM. TRPV5 and TRPV6 in Ca(2+) (re)absorption: regulating Ca(2+) entry at the gate. Pflugers Arch. 2005; 451(1): 181–192.
- van de Graaf SFJ, Hoenderop JGJ, Bindels RJM. Regulation of TRPV5 and TRPV6 by associated proteins. Am J Physiol Renal Physiol. 2006; 290(6): F1295–F1302.
- Hulter H HN. Effects and interrelationships of PTH, Ca2+, vitamin D, and Pi in acid-base homeostasis. Am J Physiol. 1985; 248(6 Pt 2): F739–F752.
- Arnett TR. Extracellular pH regulates bone cell function. J Nutr. 2008; 138(2): 415S–418S.
- Fleet JC, Schoch RD. Molecular mechanisms for regulation of intestinal calcium absorption by vitamin D and other factors. Crit Rev Clin Lab Sci. 2010; 47(4): 181–195.
- Christakos S, Ajibade DV, Dhawan P, et al. Vitamin D: metabolism. Endocrinol Metab Clin North Am. 2010; 39(2): 243–253.
- Block GA, Hulbert-Shearon TE, Levin NW, et al. Association of serum phosphorus and calcium x phosphate product with mortality risk in chronic hemodialysis patients: a national study. Am J Kidney Dis. 1998; 31(4): 607–617.
- Lemos R, Ramos E, Legati A, et al. Update and Mutational Analysis ofSLC20A2: A Major Cause of Primary Familial Brain Calcification. Human Mutation. 2015; 36(5): 489–495.
- Virkki LV, Biber J, Murer H, et al. Phosphate transporters: a tale of two solute carrier families. Am J Physiol Renal Physiol. 2007; 293(3): F643–F654.
- Picard N, Capuano P, Stange G, et al. Acute parathyroid hormone differentially regulates renal brush border membrane phosphate cotransporters. Pflugers Arch. 2010; 460(3): 677–687.
- Cui L, Houston DA, Farquharson C, et al. Characterisation of matrix vesicles in skeletal and soft tissue mineralisation. Bone. 2016; 87: 147–158.
- Austin LA, Heath H. Calcitonin: physiology and pathophysiology. N Engl J Med. 1981; 304(5): 269–278.