open access

Vol 68, No 4 (2017)
Review paper
Submitted: 2016-10-02
Accepted: 2016-11-22
Published online: 2017-08-10
Get Citation

The role of selenium in thyroid gland pathophysiology

Michał Stuss12, Marta Michalska-Kasiczak1, Ewa Sewerynek13
·
Pubmed: 28819948
·
Endokrynol Pol 2017;68(4):440-465.
Affiliations
  1. Department of Endocrine Disorders and Bone Metabolism, Chair of Endocrinology, Medical University of Lodz
  2. The Outpatient Clinic of Endocrinology and Osteoporosis Therapy of the Regional Centre of Menopause and Osteoporosis of the Military Teaching Hospital in Lodz, Poland, Poland
  3. The Outpatient Clinic of Endocrinology and Osteoporosis Therapy of the Regional Centre of Menopause and Osteoporosis of the Military Teaching Hospital in Lodz

open access

Vol 68, No 4 (2017)
Review Article
Submitted: 2016-10-02
Accepted: 2016-11-22
Published online: 2017-08-10

Abstract

It is now assumed that proper functioning of the thyroid gland (TG), beside iodine, requires also a number of elements, including selenium, iron, zinc, copper, and calcium. In many cases, only an adequate supply of one of these microelements (e.g. iodine) may reveal symptoms resulting from deficits of other microelements (e.g. iron or selenium).

Selenium is accounted to the trace elements of key importance for homeostasis of the human system, in particular, for the proper functioning of the immune system and the TG. Results of epidemiological studies have demonstrated that selenium deficit may affect as many as one billion people in many countries all over the world. A proper sequence of particular supplementations is also worth emphasising for the significant correlations among the supplemented microelements. For example, it has been demonstrated that an excessive supplementation of selenium may enhance the effects of iodine deficit in endemic regions, while proper supplementation of selenium in studied animals may alleviate the consequences of iodine excess, preventing destructive-inflammatory lesions in the TG.

This paper is a summary of the current knowledge on the role of selenium in the functionality of the TG.

Abstract

It is now assumed that proper functioning of the thyroid gland (TG), beside iodine, requires also a number of elements, including selenium, iron, zinc, copper, and calcium. In many cases, only an adequate supply of one of these microelements (e.g. iodine) may reveal symptoms resulting from deficits of other microelements (e.g. iron or selenium).

Selenium is accounted to the trace elements of key importance for homeostasis of the human system, in particular, for the proper functioning of the immune system and the TG. Results of epidemiological studies have demonstrated that selenium deficit may affect as many as one billion people in many countries all over the world. A proper sequence of particular supplementations is also worth emphasising for the significant correlations among the supplemented microelements. For example, it has been demonstrated that an excessive supplementation of selenium may enhance the effects of iodine deficit in endemic regions, while proper supplementation of selenium in studied animals may alleviate the consequences of iodine excess, preventing destructive-inflammatory lesions in the TG.

This paper is a summary of the current knowledge on the role of selenium in the functionality of the TG.

Get Citation

Keywords

selenium, thyroid gland, supplementation

About this article
Title

The role of selenium in thyroid gland pathophysiology

Journal

Endokrynologia Polska

Issue

Vol 68, No 4 (2017)

Article type

Review paper

Pages

440-465

Published online

2017-08-10

Page views

11604

Article views/downloads

11368

DOI

10.5603/EP.2017.0051

Pubmed

28819948

Bibliographic record

Endokrynol Pol 2017;68(4):440-465.

Keywords

selenium
thyroid gland
supplementation

Authors

Michał Stuss
Marta Michalska-Kasiczak
Ewa Sewerynek

References (150)
  1. Rayman MP, Rayman MP. The importance of selenium to human health. Lancet. 2000; 356(9225): 233–241.
  2. Hoffmann PR, Berry MJ. The influence of selenium on immune responses. Mol Nutr Food Res. 2008; 52(11): 1273–1280.
  3. Holben DH, Smith AM. The diverse role of selenium within selenoproteins: a review. J Am Diet Assoc. 1999; 99(7): 836–843.
  4. Kieliszek M, Błażejak S. Selenium: Significance, and outlook for supplementation. Nutrition. 2013; 29(5): 713–718.
  5. Slencu BG, Ciobanu C, Cuciureanu R. Selenium content in foodstuffs and its nutritional requirement forhumans. Clujul Med. ; 2012: 139–145.
  6. Dietary re, vitamin E. selenium, and carotenoids: A report of the Panel on Dietary Antioxidants and Related Compounds, Subcommittees on Upper Reference Levels of Nutrients and Interpretation and Uses of Dietary Reference Intakes, and the Standing Committee on the Scientific Evaluation of Dietary Reference Intakes, Food and Nutrition Board, Institute of Medicine. Washington, D.C. : National Academy Press. ; 2000.
  7. Navarro-Alarcon M, Cabrera-Vique C. Selenium in food and the human body: a review. Sci Total Environ. 2008; 400(1-3): 115–141.
  8. Alfthan G, Eurola M, Ekholm P, et al. Selenium Working Group. Effects of nationwide addition of selenium to fertilizers on foods, and animal and human health in Finland: From deficiency to optimal selenium status of the population. J Trace Elem Med Biol. 2015; 31: 142–147.
  9. Fairweather-Tait SJ, Collings R, Hurst R. Selenium bioavailability: current knowledge and future research requirements. Am J Clin Nutr. 2010; 91(5): 1484S–1491S.
  10. Wasowicz W, Gromadzinska J, Rydzynski K, et al. Selenium status of low-selenium area residents: Polish experience. Toxicol Lett. 2003; 137(1-2): 95–101.
  11. Jablonska E, Gromadzinska J, Klos A, et al. Original research article. Journal of Food Composition and Analysis. 2013; 31: 259–65.
  12. Schrauzer GN, White DA. Selenium in human nutrition: dietary intakes and effects of supplementation. Bioinorg Chem. 1978; 8(4): 303–318.
  13. Combs GF. Selenium in global food systems. Br J Nutr. 2001; 85(5): 517–547.
  14. Patterson BH, Levander OA. Naturally occurring selenium compounds in cancer chemoprevention trials: a workshop summary. Cancer Epidemiol Biomarkers Prev. 1997; 6(1): 63–69.
  15. Zagrodzki P, Laszczyk P. [Selenium and cardiovascular disease: selected issues]. Postepy Hig Med Dosw (Online). 2006; 60: 624–631.
  16. Fordyce F. Selenium Geochemistry and Health. AMBIO: A Journal of the Human Environment. 2007; 36(1): 94–97.
  17. Dumont E, Vanhaecke F, Cornelis R. Selenium speciation from food source to metabolites: a critical review. Anal Bioanal Chem. 2006; 385(7): 1304–1323.
  18. Davis TZ, Tiwary AK, Stegelmeier BL, et al. Comparative oral dose toxicokinetics of sodium selenite and selenomethionine. J Appl Toxicol. 2017; 37(2): 231–238.
  19. Pérez-Corona MT, Sánchez-Martínez M, Valderrama MJ, et al. Selenium biotransformation by Saccharomyces cerevisiae and Saccharomyces bayanus during white wine manufacture: Laboratory-scale experiments. Food Chemistry. 2011; 124(3): 1050–1055.
  20. Burk RF, Norsworthy BK, Hill KE, et al. Effects of chemical form of selenium on plasma biomarkers in a high-dose human supplementation trial. Cancer Epidemiol Biomarkers Prev. 2006; 15(4): 804–810.
  21. Combs GF, Watts JC, Jackson MI, et al. Determinants of selenium status in healthy adults. Nutr J. 2011; 10: 75.
  22. Hollenbach B, Morgenthaler NG, Struck J, et al. New assay for the measurement of selenoprotein P as a sepsis biomarker from serum. J Trace Elem Med Biol. 2008; 22(1): 24–32.
  23. Burk RF, Hill KE. Selenoprotein P: an extracellular protein with unique physical characteristics and a role in selenium homeostasis. Annu Rev Nutr. 2005; 25: 215–235.
  24. Hoeflich J, Hollenbach B, Behrends T, et al. The choice of biomarkers determines the selenium status in young German vegans and vegetarians. Br J Nutr. 2010; 104(11): 1601–1604.
  25. Hurst R, Armah CN, Dainty JR, et al. Establishing optimal selenium status: results of a randomized, double-blind, placebo-controlled trial. Am J Clin Nutr. 2010; 91(4): 923–931.
  26. Mistry HD, Broughton Pipkin F, Redman CWG, et al. Selenium in reproductive health. Am J Obstet Gynecol. 2012; 206(1): 21–30.
  27. Li S, Xiao T, Zheng B. Medical geology of arsenic, selenium and thallium in China. Sci Total Environ. 2012; 421-422: 31–40.
  28. Pedrero Z, Madrid Y. Novel approaches for selenium speciation in foodstuffs and biological specimens: a review. Anal Chim Acta. 2009; 634(2): 135–152.
  29. Suetens C, Moreno-Reyes R, Chasseur C, et al. Epidemiological support for a multifactorial aetiology of Kashin-Beck disease in Tibet. Int Orthop. 2001; 25(3): 180–187.
  30. Chen J. An original discovery: selenium deficiency and Keshan disease (an endemic heart disease). Asia Pac J Clin Nutr. 2012; 21(3): 320–326.
  31. Yao Y, Pei F, Kang P. Selenium, iodine, and the relation with Kashin-Beck disease. Nutrition. 2011; 27(11-12): 1095–1100.
  32. Hendrickx W, Decock J, Mulholland F, et al. Selenium Biomarkers in Prostate Cancer Cell Lines and Influence of Selenium on Invasive Potential of PC3 Cells. Front Oncol. 2013; 3: 239.
  33. Ruseva B, Himcheva I, Nankova D. Importance of selenoproteins for the function of the thyroid gland. Medicine. 2013; 3: 60–64.
  34. Roman M, Jitaru P, Barbante C. Selenium biochemistry and its role for human health. Metallomics. 2014; 6(1): 25–54.
  35. Letavayová L, Vlasáková D, Spallholz J, et al. Toxicity and mutagenicity of selenium compounds in Saccharomyces cerevisiae. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 2008; 638(1-2): 1–10.
  36. Fordyce F. Selenium Deficiency and Toxicity in the Environment. Essentials of Medical Geology. 2012: 375–416.
  37. Nazemi L, Nazmara S, Eshraghyan MR, et al. Selenium status in soil, water and essential crops of Iran. Iranian J Environ Health Sci Eng. 2012; 9(1): 11.
  38. Drutel A, Archambeaud F, Caron P. Selenium and the thyroid gland: more good news for clinicians. Clin Endocrinol (Oxf). 2013; 78(2): 155–164.
  39. Rayman MP. The use of high-selenium yeast to raise selenium status: how does it measure up? Br J Nutr. 2004; 92(4): 557–573.
  40. Zwolak I, Zaporowska H. Selenium interactions and toxicity: a review. Selenium interactions and toxicity. Cell Biol Toxicol. 2012; 28(1): 31–46.
  41. Dharmasena A. Selenium supplementation in thyroid associated ophthalmopathy: an update. Int J Ophthalmol. 2014; 7(2): 365–375.
  42. Muller FL, Lustgarten MS, Jang Y, et al. Trends in oxidative aging theories. Free Radic Biol Med. 2007; 43(4): 477–503.
  43. Berry MJ, Banu L, Chen YY, et al. Recognition of UGA as a selenocysteine codon in type I deiodinase requires sequences in the 3' untranslated region. Nature. 1991; 353(6341): 273–276.
  44. Köhrle J, Jakob F, Contempré B, et al. Selenium, the thyroid, and the endocrine system. Endocr Rev. 2005; 26(7): 944–984.
  45. Arthur JR, Nicol F, Beckett GJ. Hepatic iodothyronine 5′-deiodinase. The role of selenium. Biochemical Journal. 1990; 272(2): 537–540.
  46. Behne D, Kyriakopoulos A, Meinhold H, et al. Identification of type I iodothyronine 5'-deiodinase as a selenoenzyme. Biochem Biophys Res Commun. 1990; 173(3): 1143–1149.
  47. Rosen BP, Liu Z. Transport pathways for arsenic and selenium: a minireview. Environ Int. 2009; 35(3): 512–515.
  48. Tamura T, Stadtman TC. A new selenoprotein from human lung adenocarcinoma cells: purification, properties, and thioredoxin reductase activity. Proc Natl Acad Sci U S A. 1996; 93(3): 1006–1011.
  49. Pappa EC, Pappas AC, Surai PF. Selenium content in selected foods from the Greek market and estimation of the daily intake. Sci Total Environ. 2006; 372(1): 100–108.
  50. Rayman M. Selenium and human health. The Lancet. 2012; 379(9822): 1256–1268.
  51. Cagliani R, Fruguglietti ME, Berardinelli A, et al. New molecular findings in congenital myopathies due to selenoprotein N gene mutations. J Neurol Sci. 2011; 300(1-2): 107–113.
  52. Brozmanová J, Mániková D, Vlčková V, et al. Selenium: a double-edged sword for defense and offence in cancer. Arch Toxicol. 2010; 84(12): 919–938.
  53. Papp LV, Lu J, Holmgren A, et al. From selenium to selenoproteins: synthesis, identity, and their role in human health. Antioxid Redox Signal. 2007; 9(7): 775–806.
  54. Kamwesiga J, Mutabazi V, Kayumba J, et al. Effect of selenium supplementation on CD4+ T-cell recovery, viral suppression and morbidity of HIV-infected patients in Rwanda. AIDS. 2015; 29(9): 1045–1052.
  55. Lipinski B. Can Selenite be an Ultimate Inhibitor of Ebola and Other Viral Infections? British Journal of Medicine and Medical Research. 2015; 6(3): 319–324.
  56. Kawai K, Meydani SN, Urassa W, et al. Micronutrient supplementation and T cell-mediated immune responses in patients with tuberculosis in Tanzania. Epidemiol Infect. 2014; 142(7): 1505–1509.
  57. Solovyev ND. Importance of selenium and selenoprotein for brain function: From antioxidant protection to neuronal signalling. J Inorg Biochem. 2015; 153: 1–12.
  58. IMS Institute for Healthcare Informatics. Medicine use and shifting costs of healthcare: a review of the use of medicines in the United States in 2013. www.imshealth.com.
  59. Biron VL, Bang H, Farwell DG, et al. National Trends and Factors Associated with Hospital Costs Following Thyroid Surgery. Thyroid. 2015; 25(7): 823–829.
  60. Nexo MA, Watt T, Pedersen J, et al. Increased risk of long-term sickness absence, lower rate of return to work, and higher risk of unemployment and disability pensioning for thyroid patients: a Danish register-based cohort study. J Clin Endocrinol Metab. 2014; 99(9): 3184–3192.
  61. Cooper R, Pinkney J, Ayling RM. Appropriateness of prescribing thyroxine in primary care. Ann Clin Biochem. 2015; 52(Pt 4): 497–501.
  62. Hess SY. The impact of common micronutrient deficiencies on iodine and thyroid metabolism: the evidence from human studies. Best Pract Res Clin Endocrinol Metab. 2010; 24(1): 117–132.
  63. Yu X, Shan Z, Li C, et al. Iron deficiency, an independent risk factor for isolated hypothyroxinemia in pregnant and nonpregnant women of childbearing age in China. J Clin Endocrinol Metab. 2015; 100(4): 1594–1601.
  64. Knudsen N, Brix TH. Genetic and non-iodine-related factors in the aetiology of nodular goitre. Best Pract Res Clin Endocrinol Metab. 2014; 28(4): 495–506.
  65. Jain RB. Thyroid function and serum copper, selenium, and zinc in general U.S. population. Biol Trace Elem Res. 2014; 159(1-3): 87–98.
  66. Zimmermann MB. The influence of iron status on iodine utilization and thyroid function. Annu Rev Nutr. 2006; 26: 367–389.
  67. Jain RB, Choi YS. Interacting effects of selected trace and toxic metals on thyroid function. Int J Environ Health Res. 2016; 26(1): 75–91.
  68. Contempre B, Dumont JE, Denef JF, et al. Effects of selenium deficiency on thyroid necrosis, fibrosis and proliferation: a possible role in myxoedematous cretinism. Eur J Endocrinol. 1995; 133(1): 99–109.
  69. Schomburg L, Köhrle J. On the importance of selenium and iodine metabolism for thyroid hormone biosynthesis and human health. Mol Nutr Food Res. 2008; 52(11): 1235–1246.
  70. Liu Y, Huang H, Zeng J, et al. Thyroid volume, goiter prevalence, and selenium levels in an iodine-sufficient area: a cross-sectional study. BMC Public Health. 2013; 13: 1153.
  71. Contempre B, Le Moine O, Dumont JE, et al. Selenium deficiency and thyroid fibrosis. A key role for macrophages and transforming growth factor beta (TGF-beta). Mol Cell Endocrinol. 1996; 124(1-2): 7–15.
  72. Xu J, Liu XL, Yang XF, et al. Supplemental selenium alleviates the toxic effects of excessive iodine on thyroid. Biol Trace Elem Res. 2011; 141(1-3): 110–118.
  73. Azevedo MF, Barra GB, Naves LA, et al. Selenoprotein-related disease in a young girl caused by nonsense mutations in the SBP2 gene. J Clin Endocrinol Metab. 2010; 95(8): 4066–4071.
  74. Dumitrescu AM, Liao XH, Abdullah MSY, et al. Mutations in SECISBP2 result in abnormal thyroid hormone metabolism. Nat Genet. 2005; 37(11): 1247–1252.
  75. Hamajima T, Mushimoto Y, Kobayashi H, et al. Novel compound heterozygous mutations in the SBP2 gene: characteristic clinical manifestations and the implications of GH and triiodothyronine in longitudinal bone growth and maturation. Eur J Endocrinol. 2012; 166(4): 757–764.
  76. Schoenmakers E, Agostini M, Mitchell C, et al. Mutations in the selenocysteine insertion sequence-binding protein 2 gene lead to a multisystem selenoprotein deficiency disorder in humans. J Clin Invest. 2010; 120(12): 4220–4235.
  77. Hatfield DL, Tsuji PA, Carlson BA, et al. Selenium and selenocysteine: roles in cancer, health, and development. Trends Biochem Sci. 2014; 39(3): 112–120.
  78. Labunskyy VM, Hatfield DL, Gladyshev VN. Selenoproteins: Molecular Pathways and Physiological Roles. Physiol Rev. 2014; 94(3): 739–777.
  79. Köhrle J. Pathophysiological relevance of selenium. J Endocrinol Invest. 2013; 36(10 Suppl): 1–7.
  80. Contempré B, Duale NL, Dumont JE, et al. Effect of selenium supplementation on thyroid hormone metabolism in an iodine and selenium deficient population. Clin Endocrinol (Oxf). 1992; 36(6): 579–583.
  81. Contempré B, de Escobar GM, Denef JF, et al. Thiocyanate induces cell necrosis and fibrosis in selenium- and iodine-deficient rat thyroids: a potential experimental model for myxedematous endemic cretinism in central Africa. Endocrinology. 2004; 145(2): 994–1002.
  82. Turanov AA, Shchedrina VA, Everley RA, et al. Selenoprotein S is involved in maintenance and transport of multiprotein complexes. Biochem J. 2014; 462(3): 555–565.
  83. Schomburg L. Selenium, selenoproteins and the thyroid gland: interactions in health and disease. Nat Rev Endocrinol. 2011; 8(3): 160–171.
  84. Shchedrina VA, Zhang Y, Labunskyy VM, et al. Structure-function relations, physiological roles, and evolution of mammalian ER-resident selenoproteins. Antioxid Redox Signal. 2010; 12(7): 839–849.
  85. Rijntjes E, Scholz PM, Mugesh G, et al. Se- and s-based thiouracil and methimazole analogues exert different inhibitory mechanisms on type 1 and type 2 deiodinases. Eur Thyroid J. 2013; 2(4): 252–258.
  86. Bhowmick D, Srivastava S, D'Silva P, et al. Highly Efficient Glutathione Peroxidase and Peroxiredoxin Mimetics Protect Mammalian Cells against Oxidative Damage. Angew Chem Int Ed Engl. 2015; 54(29): 8449–8453.
  87. Manna D, Roy G, Mugesh G. Antithyroid drugs and their analogues: synthesis, structure, and mechanism of action. Acc Chem Res. 2013; 46(11): 2706–2715.
  88. Raja K, Mugesh G. Remarkable effect of chalcogen substitution on an enzyme mimetic for deiodination of thyroid hormones. Angew Chem Int Ed Engl. 2015; 54(26): 7674–7678.
  89. Weissel M. Propylthiouracil: clinical overview of its efficacy and its side effects more than 50 years after the introduction of its use in thyrostatic treatment. Exp Clin Endocrinol Diabetes. 2010; 118(2): 101–104.
  90. Gershengorn MC, Neumann S. Update in TSH receptor agonists and antagonists. J Clin Endocrinol Metab. 2012; 97(12): 4287–4292.
  91. Derumeaux H, Valeix P, Castetbon K, et al. Association of selenium with thyroid volume and echostructure in 35- to 60-year-old French adults. Eur J Endocrinol. 2003; 148(3): 309–315.
  92. Rasmussen LB, Schomburg L, Köhrle J, et al. Selenium status, thyroid volume, and multiple nodule formation in an area with mild iodine deficiency. Eur J Endocrinol. 2011; 164(4): 585–590.
  93. Bülow Pedersen I, Knudsen N, Carlé A, et al. Serum selenium is low in newly diagnosed Graves' disease: a population-based study. Clin Endocrinol (Oxf). 2013; 79(4): 584–590.
  94. Li H, Li J. Thyroid disorders in women. Minerva Med. 2015; 106(2): 109–114.
  95. Schomburg L, Schweizer U. Hierarchical regulation of selenoprotein expression and sex-specific effects of selenium. Biochim Biophys Acta. 2009; 1790(11): 1453–1462.
  96. Riese C, Michaelis M, Mentrup B, et al. Selenium-dependent pre- and posttranscriptional mechanisms are responsible for sexual dimorphic expression of selenoproteins in murine tissues. Endocrinology. 2006; 147(12): 5883–5892.
  97. Stoedter M, Renko K, Hög A, et al. Selenium controls the sex-specific immune response and selenoprotein expression during the acute-phase response in mice. Biochem J. 2010; 429(1): 43–51.
  98. Combs GF, Midthune DN, Patterson KY, et al. Effects of selenomethionine supplementation on selenium status and thyroid hormone concentrations in healthy adults. Am J Clin Nutr. 2009; 89(6): 1808–1814.
  99. Pellegriti G, Frasca F, Regalbuto C, et al. Worldwide increasing incidence of thyroid cancer: update on epidemiology and risk factors. J Cancer Epidemiol. 2013; 2013: 965212.
  100. Colonna M, Uhry Z, Guizard AV, et al. FRANCIM network. Recent trends in incidence, geographical distribution, and survival of papillary thyroid cancer in France. Cancer Epidemiol. 2015; 39(4): 511–518.
  101. Davies L, Welch HG. Current thyroid cancer trends in the United States. JAMA Otolaryngol Head Neck Surg. 2014; 140(4): 317–322.
  102. Davis CD, Tsuji PA, Milner JA. Selenoproteins and cancer prevention. Annu Rev Nutr. 2012; 32: 73–95.
  103. Glattre E, Thomassen Y, Thoresen SO, et al. Prediagnostic serum selenium in a case-control study of thyroid cancer. Int J Epidemiol. 1989; 18(1): 45–49.
  104. Kucharzewski M, Braziewicz J, Majewska U, et al. Concentration of selenium in the whole blood and the thyroid tissue of patients with various thyroid diseases. Biol Trace Elem Res. 2002; 88(1): 25–30.
  105. Moncayo R, Kroiss A, Oberwinkler M, et al. The role of selenium, vitamin C, and zinc in benign thyroid diseases and of selenium in malignant thyroid diseases: Low selenium levels are found in subacute and silent thyroiditis and in papillary and follicular carcinoma. BMC Endocr Disord. 2008; 8: 2.
  106. Przybylik-Mazurek E, Zagrodzki P, Kuźniarz-Rymarz S, et al. Thyroid disorders-assessments of trace elements, clinical, and laboratory parameters. Biol Trace Elem Res. 2011; 141(1-3): 65–75.
  107. Jonklaas J, Danielsen M, Wang H. A pilot study of serum selenium, vitamin D, and thyrotropin concentrations in patients with thyroid cancer. Thyroid. 2013; 23(9): 1079–1086.
  108. O'Grady TJ, Kitahara CM, DiRienzo AG, et al. The association between selenium and other micronutrients and thyroid cancer incidence in the NIH-AARP Diet and Health Study. PLoS One. 2014; 9(10): e110886.
  109. Shen F, Cai WS, Li JL, et al. The Association Between Serum Levels of Selenium, Copper, and Magnesium with Thyroid Cancer: a Meta-analysis. Biol Trace Elem Res. 2015; 167(2): 225–235.
  110. Baltaci AK, Dundar TK, Aksoy F, et al. Changes in the Serum Levels of Trace Elements Before and After the Operation in Thyroid Cancer Patients. Biol Trace Elem Res. 2017; 175(1): 57–64.
  111. Chung HK, Nam JiS, Ahn CW, et al. Some Elements in Thyroid Tissue are Associated with More Advanced Stage of Thyroid Cancer in Korean Women. Biol Trace Elem Res. 2016; 171(1): 54–62.
  112. Becker NP, Martitz J, Renko K, et al. Hypoxia reduces and redirects selenoprotein biosynthesis. Metallomics. 2014; 6(5): 1079–1086.
  113. Hesse-Bähr K, Dreher I, Köhrle J. The influence of the cytokines Il-1beta and INFgamma on the expression of selenoproteins in the human hepatocarcinoma cell line HepG2. Biofactors. 2000; 11(1-2): 83–85.
  114. Renko K, Hofmann PJ, Stoedter M, et al. Down-regulation of the hepatic selenoprotein biosynthesis machinery impairs selenium metabolism during the acute phase response in mice. FASEB J. 2009; 23(6): 1758–1765.
  115. Dreher I, Jakobs TC, Köhrle J. Cloning and characterization of the human selenoprotein P promoter. Response of selenoprotein P expression to cytokines in liver cells. J Biol Chem. 1997; 272(46): 29364–29371.
  116. Xue H, Wang W, Li Y, et al. Selenium upregulates CD4(+)CD25(+) regulatory T cells in iodine-induced autoimmune thyroiditis model of NOD.H-2(h4) mice. Endocr J. 2010; 57(7): 595–601.
  117. Huang Z, Rose AH, Hoffmann PR. The role of selenium in inflammation and immunity: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal. 2012; 16(7): 705–743.
  118. Tan L, Sang ZNa, Shen J, et al. Selenium supplementation alleviates autoimmune thyroiditis by regulating expression of TH1/TH2 cytokines. Biomed Environ Sci. 2013; 26(11): 920–925.
  119. Hawkes WC, Richter D, Alkan Z. Dietary selenium supplementation and whole blood gene expression in healthy North American men. Biol Trace Elem Res. 2013; 155(2): 201–208.
  120. Toulis KA, Anastasilakis AD, Tzellos TG, et al. Selenium supplementation in the treatment of Hashimoto's thyroiditis: a systematic review and a meta-analysis. Thyroid. 2010; 20(10): 1163–1173.
  121. Mao J, Pop VJ, Bath SC, et al. Effect of low-dose selenium on thyroid autoimmunity and thyroid function in UK pregnant women with mild-to-moderate iodine deficiency. Eur J Nutr. 2016; 55(1): 55–61.
  122. Negro R, Greco G, Mangieri T, et al. The influence of selenium supplementation on postpartum thyroid status in pregnant women with thyroid peroxidase autoantibodies. J Clin Endocrinol Metab. 2007; 92(4): 1263–1268.
  123. van Zuuren EJ, Albusta AY, Fedorowicz Z, et al. Selenium supplementation for Hashimoto's thyroiditis. Cochrane Database Syst Rev. 2013(6): CD010223.
  124. Köhrle J, Gärtner R. Selenium and thyroid. Best Pract Res Clin Endocrinol Metab. 2009; 23(6): 815–827.
  125. Rayman MP, Thompson AJ, Bekaert B, et al. Randomized controlled trial of the effect of selenium supplementation on thyroid function in the elderly in the United Kingdom. Am J Clin Nutr. 2008; 87(2): 370–378.
  126. Fan Y, Xu S, Zhang H, et al. Selenium supplementation for autoimmune thyroiditis: a systematic review and meta-analysis. Int J Endocrinol. 2014; 2014: 904573.
  127. Gärtner R, Gasnier BCH, Dietrich JW, et al. Selenium supplementation in patients with autoimmune thyroiditis decreases thyroid peroxidase antibodies concentrations. J Clin Endocrinol Metab. 2002; 87(4): 1687–1691.
  128. Gärtner R, Gasnier B. Selenium in the treatment of autoimmune thyroiditis. BioFactors. 2003; 19(3-4): 165–170.
  129. Duntas LH, Mantzou E, Koutras DA. Effects of a six month treatment with selenomethionine in patients with autoimmune thyroiditis. Eur J Endocrinol. 2003; 148(4): 389–393.
  130. Turker O, Kumanlioglu K, Karapolat I, et al. Selenium treatment in autoimmune thyroiditis: 9-month follow-up with variable doses. J Endocrinol. 2006; 190(1): 151–156.
  131. Mazokopakis EE, Papadakis JA, Papadomanolaki MG, et al. Effects of 12 months treatment with L-selenomethionine on serum anti-TPO Levels in Patients with Hashimoto's thyroiditis. Thyroid. 2007; 17(7): 609–612.
  132. Karanikas G, Schuetz M, Kontur S, et al. No immunological benefit of selenium in consecutive patients with autoimmune thyroiditis. Thyroid. 2008; 18(1): 7–12.
  133. Bonfig W, Gärtner R, Schmidt H. Selenium supplementation does not decrease thyroid peroxidase antibody concentration in children and adolescents with autoimmune thyroiditis. ScientificWorldJournal. 2010; 10: 990–996.
  134. Nacamulli D, Mian C, Petricca D, et al. Influence of physiological dietary selenium supplementation on the natural course of autoimmune thyroiditis. Clin Endocrinol (Oxf). 2010; 73(4): 535–539.
  135. Krysiak R, Okopien B. The effect of levothyroxine and selenomethionine on lymphocyte and monocyte cytokine release in women with Hashimoto's thyroiditis. J Clin Endocrinol Metab. 2011; 96(7): 2206–2215.
  136. Onal H, Keskindemirci G, Adal E, et al. Effects of selenium supplementation in the early stage of autoimmune thyroiditis in childhood: an open-label pilot study. J Pediatr Endocrinol Metab. 2012; 25(7-8): 639–644.
  137. Anastasilakis AD, Toulis KA, Nisianakis P, et al. Selenomethionine treatment in patients with autoimmune thyroiditis: a prospective, quasi-randomised trial. Int J Clin Pract. 2012; 66(4): 378–383.
  138. Deng SY, Chen XY, Wu LY, et al. Influence of seleniumon Hashimoto thyroiditis with normal thyroid function. Chinese General Practice. 2013; 70: 2483–2485.
  139. Zhang W, Wang JF, Li JL, et al. The effect of seleniumon thyroid peroxidase antibody and thyroglobulin antibody in Hashimoto thyroiditis. Medical Innovation of China. 2013; 10: 13–14.
  140. Eskes SA, Endert E, Fliers E, et al. Selenite supplementation in euthyroid subjects with thyroid peroxidase antibodies. Clin Endocrinol (Oxf). 2014; 80(3): 444–451.
  141. Calissendorff J, Mikulski E, Larsen EH, et al. A Prospective Investigation of Graves' Disease and Selenium: Thyroid Hormones, Auto-Antibodies and Self-Rated Symptoms. Eur Thyroid J. 2015; 4(2): 93–98.
  142. Pilli T, Cantara S, Schomburg L, et al. IFNγ-Inducible Chemokines Decrease upon Selenomethionine Supplementation in Women with Euthyroid Autoimmune Thyroiditis: Comparison between Two Doses of Selenomethionine (80 or 160 μg) versus Placebo. Eur Thyroid J. 2015; 4(4): 226–233.
  143. de Farias CR, Cardoso BR, de Oliveira GMB, et al. A randomized-controlled, double-blind study of the impact of selenium supplementation on thyroid autoimmunity and inflammation with focus on the GPx1 genotypes. J Endocrinol Invest. 2015; 38(10): 1065–1074.
  144. Wang L, Wang B, Chen SR, et al. Effect of Selenium Supplementation on Recurrent Hyperthyroidism Caused by Graves' Disease: A Prospective Pilot Study. Horm Metab Res. 2016; 48(9): 559–564.
  145. Marcocci C, Kahaly GJ, Krassas GE, et al. European Group on Graves' Orbitopathy. Selenium and the course of mild Graves' orbitopathy. N Engl J Med. 2011; 364(20): 1920–1931.
  146. Bartalena L, Baldeschi L, Boboridis K, et al. European Group on Graves' Orbitopathy (EUGOGO). The 2016 European Thyroid Association/European Group on Graves' Orbitopathy Guidelines for the Management of Graves' Orbitopathy. Eur Thyroid J. 2016; 5(1): 9–26.
  147. Ruchała M, Hernik A, Zybek A. Orbital radiotherapy in the management of Graves' orbitopathy--current state of knowledge. Endokrynol Pol. 2014; 65(5): 388–396.
  148. Watt T, Cramon P, Bjorner JB, et al. Selenium supplementation for patients with Graves' hyperthyroidism (the GRASS trial): study protocol for a randomized controlled trial. Trials. 2013; 14: 119.
  149. Winther KH, Watt T, Bjørner JB, et al. The chronic autoimmune thyroiditis quality of life selenium trial (CATALYST): study protocol for a randomized controlled trial. Trials. 2014; 15: 115.
  150. Zygmunt A, Adamczewski Z, Zygmunt A, et al. An assessment of the effectiveness of iodine prophylaxis in pregnant women--analysis in one of reference gynaecological-obstetric centres in Poland. Endokrynol Pol. 2015; 66(5): 404–411.

Regulations

Important: This website uses cookies. More >>

The cookies allow us to identify your computer and find out details about your last visit. They remembering whether you've visited the site before, so that you remain logged in - or to help us work out how many new website visitors we get each month. Most internet browsers accept cookies automatically, but you can change the settings of your browser to erase cookies or prevent automatic acceptance if you prefer.

Via MedicaWydawcą jest  VM Media Group sp. z o.o., Grupa Via Medica, ul. Świętokrzyska 73, 80–180 Gdańsk

tel.:+48 58 320 94 94, faks:+48 58 320 94 60, e-mail:  viamedica@viamedica.pl