open access

Vol 5, No 5 (2016)
Review
Published online: 2017-02-03
Get Citation

Intestinal microbiota and its relationship with diabetes and obesity

Patrycja Pokrzywnicka, Janusz Gumprecht
DOI: 10.5603/DK.2016.0029
·
Clinical Diabetology 2016;5(5):164-172.

open access

Vol 5, No 5 (2016)
Review
Published online: 2017-02-03

Abstract

The number of people who are obese and who suffer from type 2 diabetes is one of the most prominent health problems of our time. Among commonly known reasons we may distinguish excess of food in relation to how much food energy our organism really needs (change in life style and diet), genetic predisposition, endocrine disorders, and use of medicines. However, according to latest reports, intestinal flora plays a significant part in aetiology of these medical conditions. The fact that intestinal microflora may affect body weight, sensitivity to insulin, metabolism of sugars and lipids leads to a conclusion that any change within intestinal microflora may be the reason for pathogenesis of obesity and diabetes. Moreover, any attempt to modify it may cause decrease or limitation of the intensity of the medical conditions mentioned above. Intestinal microbiota is now one of the most developing subjects for research. Many of the world’s medical projects including MetaHIT (UE and China), MicrOBES (France), Human Microbiome Project — HMP (USA) focus on research on the role of intestinal bacteria for people’s health. Scientists are particularity interested in the possibility of modification of the intestinal microorganisms in order to treat or prevent many conditions including obesity and other diseases of affluence.

Abstract

The number of people who are obese and who suffer from type 2 diabetes is one of the most prominent health problems of our time. Among commonly known reasons we may distinguish excess of food in relation to how much food energy our organism really needs (change in life style and diet), genetic predisposition, endocrine disorders, and use of medicines. However, according to latest reports, intestinal flora plays a significant part in aetiology of these medical conditions. The fact that intestinal microflora may affect body weight, sensitivity to insulin, metabolism of sugars and lipids leads to a conclusion that any change within intestinal microflora may be the reason for pathogenesis of obesity and diabetes. Moreover, any attempt to modify it may cause decrease or limitation of the intensity of the medical conditions mentioned above. Intestinal microbiota is now one of the most developing subjects for research. Many of the world’s medical projects including MetaHIT (UE and China), MicrOBES (France), Human Microbiome Project — HMP (USA) focus on research on the role of intestinal bacteria for people’s health. Scientists are particularity interested in the possibility of modification of the intestinal microorganisms in order to treat or prevent many conditions including obesity and other diseases of affluence.

Get Citation

Keywords

obesity, intestinal microbiota, diabetes mellitus, short chain fatty acids, prebiotics, probiotics

About this article
Title

Intestinal microbiota and its relationship with diabetes and obesity

Journal

Clinical Diabetology

Issue

Vol 5, No 5 (2016)

Pages

164-172

Published online

2017-02-03

DOI

10.5603/DK.2016.0029

Bibliographic record

Clinical Diabetology 2016;5(5):164-172.

Keywords

obesity
intestinal microbiota
diabetes mellitus
short chain fatty acids
prebiotics
probiotics

Authors

Patrycja Pokrzywnicka
Janusz Gumprecht

References (64)
  1. Kahn BB, Alquier T, Carling D, et al. AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab. 2005; 1(1): 15–25.
  2. DiBaise JK, Zhang H, Crowell MD, et al. Gut microbiota and its possible relationship with obesity. Mayo Clin Proc. 2008; 83(4): 460–469.
  3. Turnbaugh PJ, Ley RE, Mahowald MA, et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006; 444(7122): 1027–1031.
  4. Denechaud PD, Dentin R, Girard J, et al. Role of ChREBP in hepatic steatosis and insulin resistance. FEBS Lett. 2008; 582(1): 68–73.
  5. Favier CF, Vaughan EE, De Vos WM, et al. Molecular monitoring of succession of bacterial communities in human neonates. Appl Environ Microbiol. 2002; 68(1): 219–226.
  6. Pai R, Kang G. Microbes in the gut: a digestable account of host-symbiont interactions. Indian J Med Res. 2008; 128(5): 587–594.
  7. Palmer C, Bik EM, DiGiulio DB, et al. Development of the human infant intestinal microbiota. PLoS Biol. 2007; 5(7): e177.
  8. De Filippo C, Cavalieri D, Di Paola M, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A. 2010; 107(33): 14691–14696.
  9. Liszt K, Zwielehner J, Handschur M, et al. Characterization of bacteria, clostridia and Bacteroides in faeces of vegetarians using qPCR and PCR-DGGE fingerprinting. Ann Nutr Metab. 2009; 54(4): 253–257.
  10. Ley RE, Turnbaugh PJ, Klein S, et al. Microbial ecology: human gut microbes associated with obesity. Nature. 2006; 444(7122): 1022–1023.
  11. Arumugam M, Raes J, Pelletier E, et al. MetaHIT Consortium. Enterotypes of the human gut microbiome. Nature. 2011; 473(7346): 174–180.
  12. Kootte RS, Vrieze A, Holleman F, et al. The therapeutic potential of manipulating gut microbiota in obesity and type 2 diabetes mellitus. Diabetes Obes Metab. 2012; 14(2): 112–120.
  13. Benson AK, Kelly SA, Legge R, et al. Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors. Proc Natl Acad Sci U S A. 2010; 107(44): 18933–18938.
  14. Burcelin R, Serino M, Chabo C, et al. Gut microbiota and diabetes: from pathogenesis to therapeutic perspective. Acta Diabetol. 2011; 48(4): 257–273.
  15. Agans R, Rigsbee L, Kenche H, et al. Distal gut microbiota of adolescent children is different from that of adults. FEMS Microbiol Ecol. 2011; 77(2): 404–412.
  16. Stachowicz N, Kiersztan A. The role of gut microbiota in the pathogenesis of obesity and diabetes. Postępy Higieny i Medycyny Doświadczalnej. 2013; 67: 288–303.
  17. Shanahan F, Murphy E. The hybrid science of diet, microbes, and metabolic health. Am J Clin Nutr. 2011; 94(1): 1–2.
  18. Neu J, Douglas-Escobar M, Lopez M. Microbes and the developing gastrointestinal tract. Nutr Clin Pract. 2007; 22(2): 174–182.
  19. Enck P, Zimmermann K, Rusch K, et al. The effects of maturation on the colonic microflora in infancy and childhood. Gastroenterol Res Pract. 2009; 2009: 752401.
  20. Tilg H, Moschen AR, Kaser A. Obesity and the microbiota. Gastroenterology. 2009; 136(5): 1476–1483.
  21. Chou CJ, Membrez M, Blancher F, et al. Gut microbiota modulation with norfloxacin and ampicillin enhances glucose tolerance in mice. FASEB J. 2008; 22(7): 2416–2426.
  22. Żak-Gołąb A, Olszanecka-Glinianowicz M, Kocełak P, et al. Rola flory jelitowej w patogenezie otyłości. Postępy Hig Med Dośw. 2014; 68: 84–90.
  23. Wilders-Truschnig M, Mangge H, Lieners C, et al. IgG antibodies against food antigens are correlated with inflammation and intima media thickness in obese juveniles. Exp Clin Endocrinol Diabetes. 2008; 116(4): 241–245.
  24. Stappenbeck TS, Hooper LV, Gordon JI. Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells. Proc Natl Acad Sci U S A. 2002; 99(24): 15451–15455.
  25. Flint HJ, Bayer EA, Rincon MT, et al. Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nat Rev Microbiol. 2008; 6(2): 121–131.
  26. Harris K, Kassis A, Major G, et al. Is the gut microbiota a new factor contributing to obesity and its metabolic disorders? J Obes. 2012; 2012: 879151.
  27. Wong JMW, de Souza R, Kendall CWC, et al. Colonic health: fermentation and short chain fatty acids. J Clin Gastroenterol. 2006; 40(3): 235–243.
  28. Schwiertz A, Taras D, Schäfer K, et al. Microbiota and SCFA in lean and overweight healthy subjects. Obesity (Silver Spring). 2010; 18(1): 190–195.
  29. Denechaud PD, Dentin R, Girard J, et al. Role of ChREBP in hepatic steatosis and insulin resistance. FEBS Lett. 2008; 582(1): 68–73.
  30. Nicholson JK, Holmes E, Kinross J, et al. Host-gut microbiota metabolic interactions. Science. 2012; 336(6086): 1262–1267.
  31. Gao Z, Yin J, Zhang J, et al. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes. 2009; 58(7): 1509–1517.
  32. Duncan SH, Belenguer A, Holtrop G, et al. Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces. Appl Environ Microbiol. 2007; 73(4): 1073–1078.
  33. Bäckhed F, Crawford PA, O'Donnell D, et al. Postnatal lymphatic partitioning from the blood vasculature in the small intestine requires fasting-induced adipose factor. Proc Natl Acad Sci U S A. 2007; 104(2): 606–611.
  34. Kahn BB, Alquier T, Carling D, et al. AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab. 2005; 1(1): 15–25.
  35. Lefebvre P, Cariou B, Lien F, et al. Role of bile acids and bile acid receptors in metabolic regulation. Physiol Rev. 2009; 89(1): 147–191.
  36. Swann JR, Want EJ, Geier FM, et al. Systemic gut microbial modulation of bile acid metabolism in host tissue compartments. Proc Natl Acad Sci U S A. 2011; 108 Suppl 1: 4523–4530.
  37. Thomas C, Gioiello A, Noriega L, et al. TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab. 2009; 10(3): 167–177.
  38. Dziewiatowska J, Janczy A, Steinka I, et al. Związek pomiędzy mikroflorą jelitową a otyłością. Forum Zab Metab. 2014; 5: 20–25.
  39. Levin BE, Keesey RE. Defense of differing body weight set points in diet-induced obese and resistant rats. Am J Physiol. 1998; 274(2 Pt 2): R412–R419.
  40. Tappy L. Metabolic consequences of overfeeding in humans. Curr Opin Clin Nutr Metab Care. 2004; 7(6): 623–628.
  41. Żak-Gołąb A, Olszanecka-Glinianowicz M, Kocełak P, et al. Rola flory jelitowej w patogenezie otyłości. Postępy Hig Med Dośw. 2014; 68: 84–90.
  42. Jumpertz R, Le DS, Turnbaugh PJ, et al. Energy-balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans. Am J Clin Nutr. 2011; 94(1): 58–65.
  43. Turnbaugh PJ, Ley RE, Mahowald MA, et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006; 444(7122): 1027–1031.
  44. Farooqi IS, Bullmore E, Keogh J, et al. Leptin regulates striatal regions and human eating behavior. Science. 2007; 317(5843): 1355.
  45. Dumas ME, Barton RH, Toye A, et al. Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. Proc Natl Acad Sci U S A. 2006; 103(33): 12511–12516.
  46. Amar J, Burcelin R, Ruidavets JB, et al. Energy intake is associated with endotoxemia in apparently healthy men. Am J Clin Nutr. 2008; 87(5): 1219–1223.
  47. Erridge C, Attina T, Spickett CM, et al. A high-fat meal induces low-grade endotoxemia: evidence of a novel mechanism of postprandial inflammation. Am J Clin Nutr. 2007; 86(5): 1286–1292.
  48. Vijay-Kumar M, Aitken JD, Carvalho FA, et al. Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science. 2010; 328(5975): 228–231.
  49. Amar J, Chabo C, Waget A, et al. Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes: molecular mechanisms and probiotic treatment. EMBO Mol Med. 2011; 3(9): 559–572.
  50. Saberi M, Woods NB, de Luca C, et al. Hematopoietic cell-specific deletion of toll-like receptor 4 ameliorates hepatic and adipose tissue insulin resistance in high-fat-fed mice. Cell Metab. 2009; 10(5): 419–429.
  51. Cani PD, Bibiloni R, Knauf C, et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes. 2008; 57(6): 1470–1481.
  52. Frank DN, St Amand AL, Feldman RA, et al. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci U S A. 2007; 104(34): 13780–13785.
  53. Larsen N, Vogensen FK, van den Berg FWJ, et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One. 2010; 5(2): e9085.
  54. Claesson MJ, Cusack S, O'Sullivan O, et al. Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc Natl Acad Sci U S A. 2011; 108 Suppl 1: 4586–4591.
  55. Brugman S, Klatter FA, Visser JTJ, et al. Antibiotic treatment partially protects against type 1 diabetes in the Bio-Breeding diabetes-prone rat. Is the gut flora involved in the development of type 1 diabetes? Diabetologia. 2006; 49(9): 2105–2108.
  56. Delzenne NM, Cani PD, Daubioul C, et al. Impact of inulin and oligofructose on gastrointestinal peptides. Br J Nutr. 2005; 93 Suppl 1: S157–S161.
  57. Vilsbøll T, Krarup T, Madsbad S, et al. Both GLP-1 and GIP are insulinotropic at basal and postprandial glucose levels and contribute nearly equally to the incretin effect of a meal in healthy subjects. Regul Pept. 2003; 114(2-3): 115–121.
  58. Cani PD, Neyrinck AM, Fava F, et al. Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia. 2007; 50(11): 2374–2383.
  59. Archer BJ, Johnson SK, Devereux HM, et al. Effect of fat replacement by inulin or lupin-kernel fibre on sausage patty acceptability, post-meal perceptions of satiety and food intake in men. Br J Nutr. 2004; 91(4): 591–599.
  60. Muccioli GG, Naslain D, Bäckhed F, et al. The endocannabinoid system links gut microbiota to adipogenesis. Mol Syst Biol. 2010; 6: 392.
  61. Marlicz W, Ostrowska L, Łoniewski I. Flora bakteryjna jelit i jej potencjalny związek z otyłością. Endokrynologia, Otyłość i Zaburzenia Przemiany Materii. 2013; 9: 20–28.
  62. Andreasen AS, Larsen N, Pedersen-Skovsgaard T, et al. Effects of Lactobacillus acidophilus NCFM on insulin sensitivity and the systemic inflammatory response in human subjects. Br J Nutr. 2010; 104(12): 1831–1838.
  63. Kadooka Y, Sato M, Imaizumi K, et al. Regulation of abdominal adiposity by probiotics (Lactobacillus gasseri SBT2055) in adults with obese tendencies in a randomized controlled trial. Eur J Clin Nutr. 2010; 64(6): 636–643.
  64. Ostrowska L, Marlicz W, Łoniewski I. Transplantacja mikroflory jelitowej w leczeniu otyłości i zaburzeń metabolicznych. Forum Zab Metab. 2013; 4: 161–169.

Important: This website uses cookies. More >>

The cookies allow us to identify your computer and find out details about your last visit. They remembering whether you've visited the site before, so that you remain logged in - or to help us work out how many new website visitors we get each month. Most internet browsers accept cookies automatically, but you can change the settings of your browser to erase cookies or prevent automatic acceptance if you prefer.

Czasopismo Diabetologia Kliniczna dostęne jest również w Ikamed - księgarnia medyczna

Wydawcą serwisu jest  "Via Medica sp. z o.o." sp.k., ul. Świętokrzyska 73, 80–180 Gdańsk

tel.:+48 58 320 94 94, faks:+48 58 320 94 60, e-mail:  viamedica@viamedica.pl