Vol 28, No 1 (2021)
Experts' Viewpoint
Published online: 2021-01-11

open access

Page views 11591
Article views/downloads 4432
Get Citation

Connect on Social Media

Connect on Social Media

Expert consensus for the diagnosis and treatment of patient with hyperuricemia and high cardiovascular risk: 2021 update

Claudio Borghi1, Justyna Domienik-Karłowicz23, Andrzej Tykarski4, Krystyna Widecka5, Krzysztof J. Filipiak6, Miłosz J. Jaguszewski7, Krzysztof Narkiewicz8, Giuseppe Mancia9
Pubmed: 33438180
Cardiol J 2021;28(1):1-14.

Abstract

Not available

Article available in PDF format

View PDF Download PDF file

References

  1. Borghi C, Tykarski A, Widecka K, et al. Expert consensus for the diagnosis and treatment of patient with hyperuricemia and high cardiovascular risk. Cardiol J. 2018; 25(5): 545–563.
  2. Bannasch D, Safra N, Young A, et al. Mutations in the SLC2A9 gene cause hyperuricosuria and hyperuricemia in the dog. PLoS Genet. 2008; 4(11): e1000246.
  3. Bobulescu IA, Moe OW. Renal transport of uric acid: evolving concepts and uncertainties. Adv Chronic Kidney Dis. 2012; 19(6): 358–371.
  4. Zhu Y, Pandya BJ, Choi HK. Prevalence of gout and hyperuricemia in the US general population: the National Health and Nutrition Examination Survey 2007-2008. Arthritis Rheum. 2011; 63(10): 3136–3141.
  5. Chen-Xu M, Yokose C, Rai SK, et al. Contemporary Prevalence of Gout and Hyperuricemia in the United States and Decadal Trends: The National Health and Nutrition Examination Survey, 2007-2016. Arthritis Rheumatol. 2019; 71(6): 991–999.
  6. Kumar A U A, Browne LD, Li X, et al. Temporal trends in hyperuricaemia in the Irish health system from 2006-2014: A cohort study. PLoS One. 2018; 13(5): e0198197.
  7. Feig DI, Kang DH, Johnson RJ. Uric acid and cardiovascular risk. N Engl J Med. 2008; 359(17): 1811–1821.
  8. Johnson RJ, Titte S, Cade JR, et al. Uric acid, evolution and primitive cultures. Semin Nephrol. 2005; 25(1): 3–8.
  9. Arlot ME, Meunier PJ. Effects of two diphosphonates (EHDP and Cl2MDP) on serum uric acid in pagetic patients. Calcif Tissue Int. 1981; 33(3): 195–198.
  10. Puig JG, Mateos FA. Clinical and biochemical aspects of uric acid overproduction. Pharm World Sci. 1994; 16(2): 40–54.
  11. Dong H, Xu Y, Zhang X, et al. Visceral adiposity index is strongly associated with hyperuricemia independently of metabolic health and obesity phenotypes. Sci Rep. 2017; 7(1): 8822.
  12. de Oliveira EP, Burini RC. High plasma uric acid concentration: causes and consequences. Diabetol Metab Syndr. 2012; 4: 12.
  13. Perez-Ruiz F, Calabozo M, Erauskin GG, et al. Renal underexcretion of uric acid is present in patients with apparent high urinary uric acid output. Arthritis Rheum. 2002; 47(6): 610–613.
  14. Reginato AM, Mount DB, Yang I, et al. The genetics of hyperuricaemia and gout. Nat Rev Rheumatol. 2012; 8(10): 610–621.
  15. Nigam SK, Bush KT, Martovetsky G, et al. The organic anion transporter (OAT) family: a systems biology perspective. Physiol Rev. 2015; 95(1): 83–123.
  16. Xu L, Shi Y, Zhuang S, et al. Recent advances on uric acid transporters. Oncotarget. 2017; 8(59): 100852–100862.
  17. Vitart V, Rudan I, Hayward C, et al. SLC2A9 is a newly identified urate transporter influencing serum urate concentration, urate excretion and gout. Nature Genetics. 2008; 40(4): 437–442.
  18. Ichida K, Matsuo H, Takada T, et al. Decreased extra-renal urate excretion is a common cause of hyperuricemia. Nat Commun. 2012; 3: 764.
  19. Ristic B, Sivaprakasam S, Narayanan M, et al. Hereditary hemochromatosis disrupts uric acid homeostasis and causes hyperuricemia via altered expression/activity of xanthine oxidase and ABCG2. Biochem J. 2020; 477(8): 1499–1513.
  20. Drabkin M, Yogev Y, Zeller L, et al. Hyperuricemia and gout caused by missense mutation in d-lactate dehydrogenase. J Clin Invest. 2019; 129(12): 5163–5168.
  21. Torres RJ, Puig JG. Hypoxanthine-guanine phosophoribosyltransferase (HPRT) deficiency: Lesch-Nyhan syndrome. Orphanet J Rare Dis. 2007; 2: 48.
  22. Belostotsky R, Ben-Shalom E, Rinat C, et al. Mutations in the mitochondrial seryl-tRNA synthetase cause hyperuricemia, pulmonary hypertension, renal failure in infancy and alkalosis, HUPRA syndrome. Am J Hum Genet. 2011; 88(2): 193–200.
  23. Chung HY, Baek BS, Song SH, et al. Xanthine dehydrogenase/xanthine oxidase and oxidative stress. Age (Omaha). 1997; 20(3): 127–140.
  24. Mackenzie IS, Ford I, Walker A, et al. Multicentre, prospective, randomised, open-label, blinded end point trial of the efficacy of allopurinol therapy in improving cardiovascular outcomes in patients with ischaemic heart disease: protocol of the ALL-HEART study. BMJ Open. 2016; 6(9): e013774.
  25. Grayson PC, Kim SY, LaValley M, et al. Hyperuricemia and incident hypertension: a systematic review and meta-analysis. Arthritis Care Res (Hoboken). 2011; 63(1): 102–110.
  26. Bombelli M, Ronchi I, Volpe M, et al. Prognostic value of serum uric acid: new-onset in and out-of-office hypertension and long-term mortality. J Hypertens. 2014; 32(6): 1237–1244.
  27. Krishnan E, Kwoh CK, Schumacher HR, et al. Hyperuricemia and incidence of hypertension among men without metabolic syndrome. Hypertension. 2007; 49(2): 298–303.
  28. Perlstein TS, Gumieniak O, Williams GH, et al. Uric acid and the development of hypertension: the normative aging study. Hypertension. 2006; 48(6): 1031–1036.
  29. Forman JP, Choi H, Curhan GC. Uric acid and insulin sensitivity and risk of incident hypertension. Arch Intern Med. 2009; 169(2): 155–162.
  30. Mellen PB, Bleyer AJ, Erlinger TP, et al. Serum uric acid predicts incident hypertension in a biethnic cohort: the atherosclerosis risk in communities study. Hypertension. 2006; 48(6): 1037–1042.
  31. Zhang W, Sun K, Yang Y, et al. Plasma uric acid and hypertension in a Chinese community: prospective study and metaanalysis. Clin Chem. 2009; 55(11): 2026–2034.
  32. Shankar A, Klein R, Klein BEK, et al. The association between serum uric acid level and long-term incidence of hypertension: Population-based cohort study. J Hum Hypertens. 2006; 20(12): 937–945.
  33. Sundström J, Sullivan L, D'Agostino RB, et al. Relations of serum uric acid to longitudinal blood pressure tracking and hypertension incidence. Hypertension. 2005; 45(1): 28–33.
  34. Tatsumi Y, Asayama K, Morimoto A, et al. Hyperuricemia predicts the risk for developing hypertension independent of alcohol drinking status in men and women: the Saku study. Hypertens Res. 2020; 43(5): 442–449.
  35. Ae R, Kanbay M, Kuwabara M. The causality between the serum uric acid level and stroke. Hypertens Res. 2020; 43(4): 354–356.
  36. Kim SY, Guevara JP, Kim KM, et al. Hyperuricemia and risk of stroke: a systematic review and meta-analysis. Arthritis Rheum. 2009; 61(7): 885–892.
  37. Zhong C, Zhong X, Xu T, et al. Sex-Specific relationship between serum uric acid and risk of stroke: a dose-response meta-analysis of prospective studies. J Am Heart Assoc. 2017; 6(4).
  38. Li J, Muraki I, Imano H, et al. Serum uric acid and risk of stroke and its types: the Circulatory Risk in Communities Study (CIRCS). Hypertens Res. 2020; 43(4): 313–321.
  39. Norvik JV, Storhaug HM, Ytrehus K, et al. Overweight modifies the longitudinal association between uric acid and some components of the metabolic syndrome: The Tromsø Study. BMC Cardiovasc Disord. 2016; 16: 85.
  40. Shirasawa T, Ochiai H, Yoshimoto T, et al. Cross-sectional study of associations between normal body weight with central obesity and hyperuricemia in Japan. BMC Endocr Disord. 2020; 20(1): 2.
  41. Li S, Cheng J, Cui L, et al. Cohort study of repeated measurements of serum urate and risk of incident atrial fibrillation. J Am Heart Assoc. 2019; 8(13): e012020.
  42. Hong M, Park JW, Yang PS, et al. A mendelian randomization analysis: The causal association between serum uric acid and atrial fibrillation. Eur J Clin Invest. 2020; 50(10): e13300.
  43. Villegas R, Xiang YB, Elasy T, et al. Purine-rich foods, protein intake, and the prevalence of hyperuricemia: the Shanghai Men's Health Study. Nutr Metab Cardiovasc Dis. 2012; 22(5): 409–416.
  44. Caliceti C, Calabria D, Roda A, et al. Fructose intake, serum uric acid, and cardiometabolic disorders: a critical review. Nutrients. 2017; 9(4).
  45. Bleyer AJ, Hart TC. Genetic factors associated with gout and hyperuricemia. Adv Chronic Kidney Dis. 2006; 13(2): 124–130.
  46. Nakagawa T, Hu H, Zharikov S, et al. A causal role for uric acid in fructose-induced metabolic syndrome. Am J Physiol Renal Physiol. 2006; 290(3): F625–F631.
  47. Sanchez-Lozada LG, Andres-Hernando A, Garcia-Arroyo FE, et al. Uric acid activates aldose reductase and the polyol pathway for endogenous fructose and fat production causing development of fatty liver in rats. J Biol Chem. 2019; 294(11): 4272–4281.
  48. Choi YJ, Shin HS, Choi HS, et al. Uric acid induces fat accumulation via generation of endoplasmic reticulum stress and SREBP-1c activation in hepatocytes. Lab Invest. 2014; 94(10): 1114–1125.
  49. Jang TY, Yeh ML, Huang CI, et al. Association of hyperuricemia with disease severity in chronic hepatitis C patients. PLoS One. 2018; 13(11): e0207043.
  50. Petta S, Macaluso FS, Cammà C, et al. Hyperuricaemia: another metabolic feature affecting the severity of chronic hepatitis because of HCV infection. Liver Int. 2012; 32(9): 1443–1450.
  51. Jang TY, Huang CI, Yeh ML, et al. Improvement of hyperuricemia in chronic hepatitis C patients receiving directly acting antiviral agents. J Gastroenterol Hepatol. 2020; 35(3): 473–481.
  52. Zhang X, Liu L, Liang R, et al. Hyperuricemia is a biomarker of early mortality in patients with chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 2015; 10: 2519–2523.
  53. Rumora L, Hlapčić I, Popović-Grle S, et al. Uric acid and uric acid to creatinine ratio in the assessment of chronic obstructive pulmonary disease: Potential biomarkers in multicomponent models comprising IL-1beta. PLoS One. 2020; 15(6): e0234363.
  54. Cannon PJ, Stason WB, Demartini FE, et al. Hyperuricemia in primary and renal hypertension. N Engl J Med. 1966; 275(9): 457–464.
  55. Ford ES, Li C, Cook S, et al. Serum concentrations of uric acid and the metabolic syndrome among US children and adolescents. Circulation. 2007; 115(19): 2526–2532.
  56. Puig JG, Martínez MA. Hyperuricemia, gout and the metabolic syndrome. Curr Opin Rheumatol. 2008; 20(2): 187–191.
  57. Tuttle K, Short R, Johnson R. Sex differences in uric acid and risk factors for coronary artery disease. Am J Cardiol. 2001; 87(12): 1411–1414.
  58. Dehghan A, van Hoek M, Sijbrands EJG, et al. High serum uric acid as a novel risk factor for type 2 diabetes. Diabetes Care. 2008; 31(2): 361–362.
  59. Schretlen DJ, Inscore AB, Vannorsdall TD, et al. Serum uric acid and brain ischemia in normal elderly adults. Neurology. 2007; 69(14): 1418–1423.
  60. Lehto S, Niskanen L, Rönnemaa T, et al. Serum uric acid is a strong predictor of stroke in patients with non-insulin-dependent diabetes mellitus. Stroke. 1998; 29(3): 635–639.
  61. Yu KH, Kuo CF, Luo SF, et al. Risk of end-stage renal disease associated with gout: a nationwide population study. Arthritis Res Ther. 2012; 14(2): R83.
  62. Abbott R, Brand F, Kannel W, et al. Gout and coronary heart disease: The framingham study. J Clin Epidemiol. 1988; 41(3): 237–242.
  63. De Vera MA, Rahman MM, Bhole V, et al. Independent impact of gout on the risk of acute myocardial infarction among elderly women: a population-based study. Ann Rheum Dis. 2010; 69(6): 1162–1164.
  64. Borghi C, Rosei EA, Bardin T, et al. Serum uric acid and the risk of cardiovascular and renal disease. J Hypertens. 2015; 33(9): 1729–41; discussion 1741.
  65. Wattanachayakul P, Rujirachun P, Charoenngam N, et al. Chronic obstructive pulmonary disease (COPD) is associated with a higher level of serum uric acid. A systematic review and meta-analysis. Adv Respir Med. 2020; 88(3): 215–222.
  66. Wang H, Jia Y, Yi Mo, et al. High serum uric acid was a risk factor for incident asthma: an open cohort study. Risk Manag Healthc Policy. 2020; 13: 2337–2346.
  67. Feig DI, Johnson RJ. Hyperuricemia in childhood primary hypertension. Hypertension. 2003; 42(3): 247–252.
  68. Nakagawa T, Tuttle KR, Short RA, et al. Hypothesis: fructose-induced hyperuricemia as a causal mechanism for the epidemic of the metabolic syndrome. Nat Clin Pract Nephrol. 2005; 1(2): 80–86.
  69. Niskanen LK, Laaksonen DE, Nyyssönen K, et al. Uric acid level as a risk factor for cardiovascular and all-cause mortality in middle-aged men: a prospective cohort study. Arch Intern Med. 2004; 164(14): 1546–1551.
  70. Desideri G, Virdis A, Casiglia E, et al. Exploration into uric and cardiovascular disease: uric acid right for heArt health (URRAH) project, a study protocol for a retrospective observational study. High Blood Press Cardiovasc Prev. 2018; 25(2): 197–202.
  71. Virdis A, Masi S, Casiglia E, et al. Identification of the uric acid thresholds predicting an increased total and cardiovascular mortality over 20 years. Hypertension. 2020; 75(2): 302–308.
  72. Perticone M, Tripepi G, Maio R, et al. Risk reclassification ability of uric acid for cardiovascular outcomes in essential hypertension. Int J Cardiol. 2017; 243: 473–478.
  73. Dutta A, Henley W, Pilling LC, et al. Uric acid measurement improves prediction of cardiovascular mortality in later life. J Am Geriatr Soc. 2013; 61(3): 319–326.
  74. Tscharre M, Herman R, Rohla M, et al. Uric acid is associated with long-term adverse cardiovascular outcomes in patients with acute coronary syndrome undergoing percutaneous coronary intervention. Atherosclerosis. 2018; 270: 173–179.
  75. Zalawadiya SK, Veeranna V, Mallikethi-Reddy S, et al. Uric acid and cardiovascular disease risk reclassification: findings from NHANES III. Eur J Prev Cardiol. 2015; 22(4): 513–518.
  76. Kleber ME, Delgado G, Grammer TB, et al. Uric acid and cardiovascular events: a mendelian randomization study. J Am Soc Nephrol. 2015; 26(11): 2831–2838.
  77. Yan D, Wang J, Jiang F, et al. A causal relationship between uric acid and diabetic macrovascular disease in Chinese type 2 diabetes patients: A Mendelian randomization analysis. Int J Cardiol. 2016; 214: 194–199.
  78. Kuwabara M, Borghi C, Cicero AFG, et al. Elevated serum uric acid increases risks for developing high LDL cholesterol and hypertriglyceridemia: A five-year cohort study in Japan. Int J Cardiol. 2018; 261: 183–188.
  79. Borghi C, Desideri G. Urate-Lowering drugs and prevention of cardiovascular disease: the emerging role of xanthine oxidase inhibition. Hypertension. 2016; 67(3): 496–498.
  80. Bove M, Cicero AF, Veronesi M, et al. An evidence-based review on urate-lowering treatments: implications for optimal treatment of chronic hyperuricemia. Vasc Health Risk Manag. 2017; 13: 23–28.
  81. Muiesan ML, Salvetti M, Virdis A, et al. Serum uric acid, predicts heart failure in a large Italian cohort: search for a cut-off value the URic acid Right for heArt Health study. J Hypertens. 2021; 39(1): 62–69.
  82. Huang G, Qin J, Deng X, et al. Prognostic value of serum uric acid in patients with acute heart failure: A meta-analysis. Medicine (Baltimore). 2019; 98(8): e14525.
  83. Casiglia E, Tikhonoff V, Virdis A, et al. Serum uric acid and fatal myocardial infarction: The URRAH (Uric Acid Right for Heart Health) study. J Hypertens. 2020; 38(3): 412–419.
  84. Stack AG, Hanley A, Casserly LF, et al. Independent and conjoint associations of gout and hyperuricaemia with total and cardiovascular mortality. QJM. 2013; 106(7): 647–658.
  85. Rahimi-Sakak F, Maroofi M, Rahmani J, et al. Serum uric acid and risk of cardiovascular mortality: a systematic review and dose-response meta-analysis of cohort studies of over a million participants. BMC Cardiovasc Disord. 2019; 19(1): 218.
  86. Lee SY, Park W, Suh YJu, et al. Association of serum uric acid with cardiovascular disease risk scores in Koreans. Int J Environ Res Public Health. 2019; 16(23).
  87. Li Q, Li X, Wang J, et al. Diagnosis and treatment for hyperuricemia and gout: a systematic review of clinical practice guidelines and consensus statements. BMJ Open. 2019; 9(8): e026677.
  88. Tykarski A, Filipiak KJ, Januszewicz A, et al. Zasady postępowania w nadciśnieniu tętniczym — 2019 rok. Nadciśnienie Tętnicze w Praktyce. 2019; 5(1): 1–86.
  89. Bardin T, Richette P. FAST: new look at the febuxostat safety profile. Lancet. 2020; 396(10264): 1704–1705.
  90. Mackenzie I, Ford I, Nuki G, et al. Long-term cardiovascular safety of febuxostat compared with allopurinol in patients with gout (FAST): a multicentre, prospective, randomised, open-label, non-inferiority trial. Lancet. 2020; 396(10264): 1745–1757.
  91. White WB, Saag KG, Becker MA, et al. Cardiovascular safety of febuxostat or allopurinol in patients with gout. N Engl J Med. 2018; 378(13): 1200–1210.
  92. Keenan RT, Pillinger MH. Febuxostat: A new agent for lowering serum urate. Drugs of Today. 2009; 45(4): 247.
  93. Becker MA, Schumacher HR, Wortmann RL, et al. Febuxostat compared with allopurinol in patients with hyperuricemia and gout. N Engl J Med. 2005; 353(23): 2450–2461.
  94. Zhang T, Pope JE. Cardiovascular effects of urate-lowering therapies in patients with chronic gout: a systematic review and meta-analysis. Rheumatology (Oxford). 2017; 56(7): 1144–1153.
  95. Joshi S, Parkar J, Ansari A, et al. Role of favipiravir in the treatment of COVID-19. Int J Infect Dis. 2021; 102: 501–508.
  96. Mishima E, Anzai N, Miyazaki M, et al. Uric acid elevation by favipiravir, an antiviral drug. Tohoku J Exp Med. 2020; 251(2): 87–90.
  97. Pilkington V, Pepperrell T, Hill A. A review of the safety of favipiravir – a potential treatment in the COVID-19 pandemic? J Virus Eradication. 2020; 6(2): 45–51.
  98. Doi Y, Hibino M, Hase R, et al. A prospective, randomized, open-label trial of early versus late favipiravir therapy in hospitalized patients with COVID-19. Antimicrob Agents Chemother. 2020; 64(12).
  99. Williams B, Mancia G, Spiering W, et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur Heart J. 2018; 31(33): 3021–3104.
  100. Matsumura K, Arima H, Tominaga M, et al. Effect of losartan on serum uric acid in hypertension treated with a diuretic: the COMFORT study. Clin Exp Hypertens. 2015; 37(3): 192–196.
  101. Choi JW, Ford ES, Gao X, et al. Sugar-sweetened soft drinks, diet soft drinks, and serum uric acid level: the Third National Health and Nutrition Examination Survey. Arthritis Rheum. 2008; 59(1): 109–116.
  102. Ralston SH, Capell HA, Sturrock RD. Alcohol and response to treatment of gout. Br Med J (Clin Res Ed). 1988; 296(6637): 1641–1642.
  103. Richette P, Poitou C, Manivet P, et al. Weight loss, xanthine oxidase, and serum urate levels: a prospective longitudinal study of obese patients. Arthritis Care Res (Hoboken). 2016; 68(7): 1036–1042.
  104. Chen JH, Wen CP, Wu SB, et al. Attenuating the mortality risk of high serum uric acid: the role of physical activity underused. Ann Rheum Dis. 2015; 74(11): 2034–2042.
  105. Jacob RA, Spinozzi GM, Simon VA, et al. Consumption of cherries lowers plasma urate in healthy women. J Nutr. 2003; 133(6): 1826–1829.
  106. Schlesinger N. Dietary factors and hyperuricaemia. Curr Pharm Des. 2005; 11(32): 4133–4138.
  107. Richette P, Doherty M, Pascual E, et al. 2016 updated EULAR evidence-based recommendations for the management of gout. Ann Rheum Dis. 2017; 76(1): 29–42.
  108. Borghi C, Perez-Ruiz F. Urate lowering therapies in the treatment of gout: a systematic review and meta-analysis. Eur Rev Med Pharmacol Sci. 2016; 20(5): 983–992.
  109. Neogi T, Dalbeth N, Stamp L, et al. Renal dosing of allopurinol results in suboptimal gout care. Ann Rheum Dis. 2017; 76(1): e1.
  110. Stamp LK, O'Donnell JL, Zhang M, et al. Using allopurinol above the dose based on creatinine clearance is effective and safe in patients with chronic gout, including those with renal impairment. Arthritis Rheum. 2011; 63(2): 412–421.
  111. Rees F, Jenkins W, Doherty M. Patients with gout adhere to curative treatment if informed appropriately: proof-of-concept observational study. Ann Rheum Dis. 2013; 72(6): 826–830.
  112. Ramasamy SN, Korb-Wells CS, Kannangara DRW, et al. Allopurinol hypersensitivity: a systematic review of all published cases, 1950-2012. Drug Saf. 2013; 36(10): 953–980.
  113. Hershfield MS, Callaghan JT, Tassaneeyakul W, et al. Clinical Pharmacogenetics Implementation Consortium guidelines for human leukocyte antigen-B genotype and allopurinol dosing. Clin Pharmacol Ther. 2013; 93(2): 153–158.
  114. Hande K, Noone R, Stone W. Severe allopurinol toxicity. Am J Med. 1984; 76(1): 47–56.
  115. Wei L, Fahey T, Struthers AD, et al. Association between allopurinol and mortality in heart failure patients: a long-term follow-up study. Int J Clin Pract. 2009; 63(9): 1327–1333.
  116. Scirè CA, Rossi C, Punzi L, et al. Change gout: how to deal with this "silently-developing killer" in everyday clinical practice. Curr Med Res Opin. 2018; 34(8): 1411–1417.
  117. Saag KG, Fitz-Patrick D, Kopicko J, et al. Lesinurad combined with allopurinol: a randomized, double-blind, placebo-controlled study in gout patients with an inadequate response to standard-of-care allopurinol (a US-based study). Arthritis Rheumatol. 2017; 69(1): 203–212.
  118. Deeks ED. Lesinurad: a review in hyperuricaemia of gout. Drugs Aging. 2017; 34(5): 401–410.
  119. Pérez-Ruiz F, Jansen T, Tausche AK, et al. Efficacy and safety of lesinurad for the treatment of hyperuricemia in gout. Drugs Context. 2019; 8: 212581.
  120. Dalbeth N, Jones G, Terkeltaub R, et al. Efficacy and safety during extended treatment of lesinurad in combination with febuxostat in patients with tophaceous gout: CRYSTAL extension study. Arthritis Res Ther. 2019; 21(1): 8.