Ahead of print
Original Article
Published online: 2024-03-12

open access

Page views 244
Article views/downloads 130
Get Citation

Connect on Social Media

Connect on Social Media

Functional tricuspid regurgitation and efficacy of electrical cardioversion in patients with atrial fibrillation and atrial functional mitral regurgitation

Katarzyna Klimek1, Michał Tworek1, Konrad Klocek1, Julia Dołęga1, Gabriela Majta1, Klaudia Marcinkiewicz1, Karolina Wrona-Kolasa1, Małgorzata Cichoń1, Katarzyna Mizia-Stec1
Pubmed: 38587117

Abstract

Introduction: Atrial functional mitral regurgitation (afMR) is common in patients with atrial fibrillation (AF).  The presence of functional tricuspid regurgitation (fTR), which arises as a secondary effect of afMR, has the potential to impact the effectiveness of procedures aimed at restoring normal heart rhythm. In this study, we sought to evaluate the efficacy of electrical cardioversion (CVE) in AF regarding the presence and degree of fTR in patients with afMR. 

Material and methods: Retrospective analysis included 521 patients with persistent AF on optimal medical therapy undergoing CVE. 157 (30.1%) patients had afMR (characterized by left ventricle ejection fraction ≥ 50% and LA dilatation) and were divided into 2 groups: the group with fTR (107, 68.2%) and the group without fTR (50, 31.9%).

Results: Patients with afMR and fTR had a higher prevalence of metabolic syndrome (p = 0.02) and greater right atrial area (p < 0.01) compared to patients without fTR. The efficacy of CVE was lower in the group with fTR in comparison to patients with isolated afMR (82.2% vs. 94%; p = 0.048) and it was unrelated to the degree of fTR (p = 0.15) and RVSP (p = 0.56). The energy required for successful CVE was comparable regardless of the presence (p = 0.26) or severity of fTR (p = 0.94).

Conclusions: The fTR frequently coexists with afMR and it significantly diminishes the effectiveness of CVE for treating AF. The degree of fTR does not appear to influence the efficacy of CVE.

Article available in PDF format

View PDF Download PDF file

References

  1. Benjamin EJ, Muntner P, Alonso A, et al. American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. Heart Disease and Stroke Statistics-2019 Update: A Report From the American Heart Association. Circulation. 2019; 139(10): e56–e5e528.
  2. Deferm S, Bertrand P, Verbrugge F, et al. Atrial Functional Mitral Regurgitation. Journal of the American College of Cardiology. 2019; 73(19): 2465–2476.
  3. Topilsky Y, Khanna A, Le Tourneau T, et al. Clinical context and mechanism of functional tricuspid regurgitation in patients with and without pulmonary hypertension. Circ Cardiovasc Imaging. 2012; 5(3): 314–323.
  4. Ortiz-Leon XA, Posada-Martinez EL, Trejo-Paredes MC, et al. Understanding tricuspid valve remodelling in atrial fibrillation using three-dimensional echocardiography. Eur Heart J Cardiovasc Imaging. 2020; 21(7): 747–755.
  5. Brodsky MA, Allen BJ, Capparelli EV, et al. Factors determining maintenance of sinus rhythm after chronic atrial fibrillation with left atrial dilatation. Am J Cardiol. 1989; 63(15): 1065–1068.
  6. Muraru D, Guta AC, Ochoa-Jimenez RC, et al. Functional Regurgitation of Atrioventricular Valves and Atrial Fibrillation: An Elusive Pathophysiological Link Deserving Further Attention. J Am Soc Echocardiogr. 2020; 33(1): 42–53.
  7. Liang JJ, Silvestry FE. Mechanistic insights into mitral regurgitation due to atrial fibrillation: "Atrial functional mitral regurgitation". Trends Cardiovasc Med. 2016; 26(8): 681–689.
  8. Naeije R, Badagliacca R. The overloaded right heart and ventricular interdependence. Cardiovasc Res. 2017; 113(12): 1474–1485.
  9. Nath J, Foster E, Heidenreich PA. Impact of tricuspid regurgitation on long-term survival. J Am Coll Cardiol. 2004; 43(3): 405–409.
  10. Najib MQ, Vinales KL, Vittala SS, et al. Predictors for the development of severe tricuspid regurgitation with anatomically normal valve in patients with atrial fibrillation. Echocardiography. 2012; 29(2): 140–146.
  11. Vahanian A, Beyersdorf F, Praz F, et al. 2021 ESC/EACTS Guidelines for the management of valvular heart disease. Eur Heart J. 2021; 43: 561–632.
  12. Ponikowski P, Voors AA, Anker SD, et al. ESC Scientific Document Group. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC)Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2016; 37(27): 2129–2200.
  13. Lechartier B, Kularatne M, Jaïs X, et al. ESC/ERS Scientific Document Group, ESC/ERS Scientific Document Group, ESC/ERS Scientific Document Group. 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Heart J. 2022; 43(38): 3618–3731.
  14. Kirchhof P, Camm AJ, Goette A, et al. EAST-AFNET 4 Trial Investigators. Early Rhythm-Control Therapy in Patients with Atrial Fibrillation. N Engl J Med. 2020; 383(14): 1305–1316.
  15. Soulat-Dufour L, Lang S, Addetia K, et al. Restoring Sinus Rhythm Reverses Cardiac Remodeling and Reduces Valvular Regurgitation in Patients With Atrial Fibrillation. J Am Coll Cardiol. 2022; 79(10): 951–961.
  16. Klocek K, Klimek K, Tworek M, et al. Efficacy of Electrical Cardioversion in Relation to Occurrence and Type of Functional Mitral Regurgitation in Patients with Atrial Fibrillation. J Clin Med. 2022; 11(8).
  17. Kirchhof P, Mönnig G, Wasmer K, et al. A trial of self-adhesive patch electrodes and hand-held paddle electrodes for external cardioversion of atrial fibrillation (MOBIPAPA). Eur Heart J. 2005; 26(13): 1292–1297.
  18. Alberti KG, Zimmet P, Shaw J. Metabolic syndrome--a new world-wide definition. A Consensus Statement from the International Diabetes Federation. Diabet Med. 2006; 23(5): 469–480.
  19. Abe Y, Akamatsu K, Ito K, et al. Prevalence and Prognostic Significance of Functional Mitral and Tricuspid Regurgitation Despite Preserved Left Ventricular Ejection Fraction in Atrial Fibrillation Patients. Circ J. 2018; 82(5): 1451–1458.
  20. Chugh SS, Havmoeller R, Narayanan K, et al. Worldwide epidemiology of atrial fibrillation: a Global Burden of Disease 2010 Study. Circulation. 2014; 129(8): 837–847.
  21. Dell'Era G, Rondano E, Franchi E, et al. Novara Atrial Fibrillation (NAIF) Study Group. Atrial asynchrony and function before and after electrical cardioversion for persistent atrial fibrillation. Eur J Echocardiogr. 2010; 11(7): 577–583.
  22. Wang J, Han J, Li Y, et al. Impact of Surgical Ablation of Atrial Fibrillation on the Progression of Tricuspid Regurgitation and Right-Sided Heart Remodeling After Mitral-Valve Surgery: A Propensity-Score Matching Analysis. J Am Heart Assoc. 2016; 5(12).
  23. Kiliszek M, Opolski G, Włodarczyk P, et al. Cardioversion differences among first detected episode, paroxysmal, and persistent atrial fibrillation patients in the RHYTHM AF registry in Poland. Cardiol J. 2015; 22(4): 453–458.
  24. Joglar JA, Hamdan MH, Ramaswamy K, et al. Initial energy for elective external cardioversion of persistent atrial fibrillation. Am J Cardiol. 2000; 86(3): 348–350.
  25. Boodhoo L, Mitchell ARJ, Bordoli G, et al. DC cardioversion of persistent atrial fibrillation: a comparison of two protocols. Int J Cardiol. 2007; 114(1): 16–21.
  26. Schmidt AS, Lauridsen KG, Torp P, et al. Maximum-fixed energy shocks for cardioverting atrial fibrillation. Eur Heart J. 2020; 41(5): 626–631.
  27. Pisters R, Nieuwlaat R, Prins MH, et al. Euro Heart Survey Investigators. Clinical correlates of immediate success and outcome at 1-year follow-up of real-world cardioversion of atrial fibrillation: the Euro Heart Survey. Europace. 2012; 14(5): 666–674.
  28. Ortiz-Leon XA, Posada-Martinez EL, Trejo-Paredes MC, et al. Tricuspid and mitral remodelling in atrial fibrillation: a three-dimensional echocardiographic study. Eur Heart J Cardiovasc Imaging. 2022; 23(7): 944–955.
  29. Luong C, Thompson DJS, Bennett M, et al. Right atrial volume is superior to left atrial volume for prediction of atrial fibrillation recurrence after direct current cardioversion. Can J Cardiol. 2015; 31(1): 29–35.
  30. Frick M, Frykman V, Jensen-Urstad M, et al. Factors predicting success rate and recurrence of atrial fibrillation after first electrical cardioversion in patients with persistent atrial fibrillation. Clin Cardiol. 2001; 24(3): 238–244.
  31. Toso E, Blandino A, Sardi D, et al. Electrical cardioversion of persistent atrial fibrillation: acute and long-term results stratified according to arrhythmia duration. Pacing Clin Electrophysiol. 2012; 35(9): 1126–1134.
  32. Marchese P, Bursi F, Delle Donne G, et al. Indexed left atrial volume predicts the recurrence of non-valvular atrial fibrillation after successful cardioversion. Eur J Echocardiogr. 2011; 12(3): 214–221.
  33. Raitt MH, Volgman AS, Zoble RG, et al. AFFIRM Investigators. Prediction of the recurrence of atrial fibrillation after cardioversion in the Atrial Fibrillation Follow-up Investigation of Rhythm Management (AFFIRM) study. Am Heart J. 2006; 151(2): 390–396.
  34. Tanimoto M, Pai RG. Effect of isolated left atrial enlargement on mitral annular size and valve competence. Am J Cardiol. 1996; 77(9): 769–774.
  35. Cichoń M, Mizia-Szubryt M, Owczarek A, et al. Wpływ otyłości na skuteczność kardiowersji elektrycznej u pacjentów z przetrwałym migotaniem przedsionków. Folia Cardiologica. 2021.
  36. Rafaqat S, Sharif S, Majeed M, et al. Biomarkers of Metabolic Syndrome: Role in Pathogenesis and Pathophysiology Of Atrial Fibrillation. J Atr Fibrillation. 2021; 14(2): 20200495.
  37. Shimano M, Shibata R, Tsuji Y, et al. Circulating adiponectin levels in patients with atrial fibrillation. Circ J. 2008; 72(7): 1120–1124.
  38. Liew R, Khairunnisa K, Gu Y, et al. Role of tumor necrosis factor-α in the pathogenesis of atrial fibrosis and development of an arrhythmogenic substrate. Circ J. 2013; 77(5): 1171–1179.
  39. Fukui A, Takahashi N, Nakada C, et al. Role of leptin signaling in the pathogenesis of angiotensin II-mediated atrial fibrosis and fibrillation. Circ Arrhythm Electrophysiol. 2013; 6(2): 402–409.
  40. Mutlak D, Aronson D, Lessick J, et al. Functional tricuspid regurgitation in patients with pulmonary hypertension: is pulmonary artery pressure the only determinant of regurgitation severity? Chest. 2009; 135(1): 115–121.
  41. Olsson KM, Nickel NP, Tongers J, et al. Atrial flutter and fibrillation in patients with pulmonary hypertension. Int J Cardiol. 2013; 167(5): 2300–2305.
  42. Zhou X, Otsuji Y, Yoshifuku S, et al. Impact of atrial fibrillation on tricuspid and mitral annular dilatation and valvular regurgitation. Circ J. 2002; 66(10): 913–916.
  43. Shiran A, Sagie A. Tricuspid Regurgitation in Mitral Valve Disease. Journal of the American College of Cardiology. 2009; 53(5): 401–408.
  44. Kassis N, Layoun H, Goyal A, et al. Mechanistic Insights into Tricuspid Regurgitation Secondary to Pulmonary Arterial Hypertension. Am J Cardiol. 2022; 175: 97–105.
  45. Florescu DR, Muraru D, Florescu C, et al. Right heart chambers geometry and function in patients with the atrial and the ventricular phenotypes of functional tricuspid regurgitation. Eur Heart J Cardiovasc Imaging. 2022; 23(7): 930–940.
  46. Lechartier B, Kularatne M, Jaïs X, et al. ESC/ERS Scientific Document Group, ESC/ERS Scientific Document Group, ESC/ERS Scientific Document Group. 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Heart J. 2022; 43(38): 3618–3731.
  47. Silbiger JJ, Silbiger JJ. Does left atrial enlargement contribute to mitral leaflet tethering in patients with functional mitral regurgitation? Proposed role of atriogenic leaflet tethering. Echocardiography. 2014; 31(10): 1310–1311.
  48. Guta AC, Badano LP, Tomaselli M, et al. The Pathophysiological Link between Right Atrial Remodeling and Functional Tricuspid Regurgitation in Patients with Atrial Fibrillation: A Three-Dimensional Echocardiography Study. J Am Soc Echocardiogr. 2021; 34(6): 585–594.e1.
  49. Vincenti A, Genovesi S, Sonaglioni A, et al. Mechanical atrial recovery after cardioversion in persistent atrial fibrillation evaluated by bidimensional speckle tracking echocardiography. J Cardiovasc Med (Hagerstown). 2019; 20(11): 745–751.
  50. Moreno-Ruiz LA, Madrid-Miller A, Martínez-Flores JE, et al. Left atrial longitudinal strain by speckle tracking as independent predictor of recurrence after electrical cardioversion in persistent and long standing persistent non-valvular atrial fibrillation. Int J Cardiovasc Imaging. 2019; 35(9): 1587–1596.