open access

Ahead of print
Original Article
Published online: 2020-10-26
Get Citation

Cardiovascular outcomes with glucagon-like peptide 1 agonists and sodium-glucose cotransporter 2 inhibitors in patients with type 2 diabetes: A meta-analysis

Yeong-Min Lee, Soon-Hee Lee, Tae-Hee Kim, Eun-Ji Park, Young-Ah Park, Jae-Sik Jang
DOI: 10.5603/CJ.a2020.0140
·
Pubmed: 33140391

open access

Ahead of print
Original articles
Published online: 2020-10-26

Abstract

Background: According to available research, there have been no head-to-head studies comparing the effect of glucagon-like peptide 1 (GLP-1) agonists and sodium-glucose cotransporter 2 (SGLT-2) inhibitors on cardiovascular outcomes among patients with type 2 diabetes not reaching glycemic goal with metformin.

Methods: Relevant studies were identified through electronic searches of PubMed and EMBASE published up to January 15, 2020. Efficacy outcomes of interest included the composite of cardiovascular death, non-fatal myocardial infarction, or non-fatal stroke, its individual components, all-cause death, and hospitalization for heart failure (HF). Safety outcomes included all suggested side effects of both agents previously reported.

Results: Eleven studies, including 94,727 patients were used for the analysis. The risk of composite end point was significantly lower in both groups compared to the control group (hazard ratio [HR], 0.88, 95% confidence interval [CI] 0.85–0.92, p < 0.001). The risk of hospitalization for HF was significantly lower in both groups but the magnitude of the effect was more pronounced in the SGLT-2 inhibitors group (HR 0.68, 95% CI 0.60–0.76, p < 0.001) than the GLP-1 agonists group (HR 0.92, 95% CI 0.84–0.99, p = 0.03). Patients treated with GLP-1 agonists discontinued trial medications more frequently compared to conventionally treated patients because of serious side effects.

Conclusions: Both GLP-1 agonists and SGLT-2 inhibitors showed comparable cardiovascular outcomes in patients with type 2 diabetes. However, the SGLT-2 inhibitors were associated with more pronounced reduction of hospitalization for HF and lower risk of treatment discontinuation than GLP-1 agonists.

Abstract

Background: According to available research, there have been no head-to-head studies comparing the effect of glucagon-like peptide 1 (GLP-1) agonists and sodium-glucose cotransporter 2 (SGLT-2) inhibitors on cardiovascular outcomes among patients with type 2 diabetes not reaching glycemic goal with metformin.

Methods: Relevant studies were identified through electronic searches of PubMed and EMBASE published up to January 15, 2020. Efficacy outcomes of interest included the composite of cardiovascular death, non-fatal myocardial infarction, or non-fatal stroke, its individual components, all-cause death, and hospitalization for heart failure (HF). Safety outcomes included all suggested side effects of both agents previously reported.

Results: Eleven studies, including 94,727 patients were used for the analysis. The risk of composite end point was significantly lower in both groups compared to the control group (hazard ratio [HR], 0.88, 95% confidence interval [CI] 0.85–0.92, p < 0.001). The risk of hospitalization for HF was significantly lower in both groups but the magnitude of the effect was more pronounced in the SGLT-2 inhibitors group (HR 0.68, 95% CI 0.60–0.76, p < 0.001) than the GLP-1 agonists group (HR 0.92, 95% CI 0.84–0.99, p = 0.03). Patients treated with GLP-1 agonists discontinued trial medications more frequently compared to conventionally treated patients because of serious side effects.

Conclusions: Both GLP-1 agonists and SGLT-2 inhibitors showed comparable cardiovascular outcomes in patients with type 2 diabetes. However, the SGLT-2 inhibitors were associated with more pronounced reduction of hospitalization for HF and lower risk of treatment discontinuation than GLP-1 agonists.

Get Citation

Keywords

diabetes mellitus, sodium-glucose transporter 2 inhibitors, glucagon-like peptide-1 receptor, cardiovascular disease

Supplementary Files (2)
Supplementary Figures 1, 2, 3
Download
103KB
PRISMA checklist
Download
28KB
About this article
Title

Cardiovascular outcomes with glucagon-like peptide 1 agonists and sodium-glucose cotransporter 2 inhibitors in patients with type 2 diabetes: A meta-analysis

Journal

Cardiology Journal

Issue

Ahead of print

Article type

Original Article

Published online

2020-10-26

DOI

10.5603/CJ.a2020.0140

Pubmed

33140391

Keywords

diabetes mellitus
sodium-glucose transporter 2 inhibitors
glucagon-like peptide-1 receptor
cardiovascular disease

Authors

Yeong-Min Lee
Soon-Hee Lee
Tae-Hee Kim
Eun-Ji Park
Young-Ah Park
Jae-Sik Jang

References (36)
  1. Campbell PT, Newton CC, Patel AV, et al. Diabetes and cause-specific mortality in a prospective cohort of one million U.S. adults. Diabetes Care. 2012; 35(9): 1835–1844.
  2. American Diabetes Association. 8. Pharmacologic Approaches to Glycemic Treatment:. Diabetes Care. 2018; 41(Suppl 1): S73–S85.
  3. Nesti L, Natali A. Metformin effects on the heart and the cardiovascular system: A review of experimental and clinical data. Nutr Metab Cardiovasc Dis. 2017; 27(8): 657–669.
  4. Garber AJ, Abrahamson MJ, Barzilay JI, et al. Consensus Statement by the American Association of Clinical Endocrinologists and American College of Endocrinology on the Comprehensive Type 2 Diabetes Management Algorithm - 2018 Executive Summary. Endocr Pract. 2018; 24(1): 91–120.
  5. Liu J, Li L, Deng Ke, et al. Incretin based treatments and mortality in patients with type 2 diabetes: systematic review and meta-analysis. BMJ. 2017; 357: j2499.
  6. American Diabetes Association. 9. Pharmacologic Approaches to Glycemic Treatment:. Diabetes Care. 2019; 42(Suppl 1): S90–S102.
  7. Cosentino F, Grant PJ, Aboyans V, et al. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J. 2020; 41(2): 255–323.
  8. Pi-Sunyer X, Astrup A, Fujioka K, et al. A randomized, controlled trial of 3.0 mg of liraglutide in weight management. N Engl J Med. 2015; 373(1): 11–22.
  9. Holman RR, Bethel MA, Mentz RJ, et al. Effects of once-weekly exenatide on cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2017; 377(13): 1228–1239.
  10. Marso SP, Bain SC, Consoli A, et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2016; 375(19): 1834–1844.
  11. Marso SP, Daniels GH, Brown-Frandsen K, et al. Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med. 2016; 375(4): 311–322.
  12. Neal B, Perkovic V, Mahaffey KW, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017; 377(7): 644–657.
  13. Pfeffer MA, Claggett B, Diaz R, et al. Lixisenatide in patients with type 2 diabetes and acute coronary syndrome. N Engl J Med. 2015; 373(23): 2247–2257.
  14. Scirica BM, Bhatt DL, Braunwald E, et al. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med. 2013; 369(14): 1317–1326.
  15. White W, Kupfer S, Zannad F, et al. Cardiovascular mortality in patients with type 2 diabetes and recent acute coronary syndromes from the EXAMINE trial. Diabetes Care. 2016; 39(7): 1267–1273.
  16. Zheng SL, Roddick AJ, Aghar-Jaffar R, et al. Association Between Use of Sodium-Glucose Cotransporter 2 Inhibitors, Glucagon-like Peptide 1 Agonists, and Dipeptidyl Peptidase 4 Inhibitors With All-Cause Mortality in Patients With Type 2 Diabetes: A Systematic Review and Meta-analysis. JAMA. 2018; 319(15): 1580–1591.
  17. Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015; 373(22): 2117–2128.
  18. Higgins JPT, Altman DG, Gøtzsche PC, et al. The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. BMJ. 2011; 343: d5928.
  19. Higgins JPT, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses. BMJ. 2003; 327(7414): 557–560.
  20. Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ. 2009; 339: b2700.
  21. Gerstein HC, Colhoun HM, Dagenais GR, et al. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double-blind, randomised placebo-controlled trial. Lancet. 2019; 394(10193): 121–130.
  22. Hernandez AF, Green JB, Janmohamed S, et al. Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (Harmony Outcomes): a double-blind, randomised placebo-controlled trial. Lancet. 2018; 392(10157): 1519–29.
  23. Husain M, Birkenfeld AL, Donsmark M, et al. Oral semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2019; 381(9): 841–851.
  24. Perkovic V, Jardine MJ, Neal B, et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med. 2019; 380(24): 2295–2306.
  25. Wiviott S, Raz I, Bonaca M, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2019; 380(4): 347–357.
  26. Birkeland KI, Jørgensen ME, Carstensen B, et al. Cardiovascular mortality and morbidity in patients with type 2 diabetes following initiation of sodium-glucose co-transporter-2 inhibitors versus other glucose-lowering drugs (CVD-REAL Nordic): a multinational observational analysis. Lancet Diabetes Endocrinol. 2017; 5(9): 709–717.
  27. Kosiborod M, Cavender MA, Fu AZ, et al. Lower risk of heart failure and death in patients initiated on sodium-glucose cotransporter-2 inhibitors versus other glucose-lowering drugs: the CVD-REAL study (comparative effectiveness of cardiovascular outcomes in new users of sodium-glucose cotransporter-2 inhibitors). Circulation. 2017; 136(3): 249–259.
  28. Fitchett D, Butler J, van de Borne P, et al. Effects of empagliflozin on risk for cardiovascular death and heart failure hospitalization across the spectrum of heart failure risk in the EMPA-REG OUTCOME® trial. Eur Heart J. 2018; 39(5): 363–370.
  29. Zelniker TA, Braunwald E. Cardiac and renal effects of sodium-glucose co-transporter 2 inhibitors in diabetes: JACC state-of-the-art review. J Am Coll Cardiol. 2018; 72(15): 1845–1855.
  30. Heerspink HJL, Perkins BA, Fitchett DH, et al. Sodium glucose cotransporter 2 inhibitors in the treatment of diabetes mellitus: cardiovascular and kidney effects, potential mechanisms, and clinical applications. Circulation. 2016; 134(10): 752–772.
  31. Zelniker TA, Wiviott SD, Raz I, et al. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet. 2019; 393(10166): 31–39.
  32. Verma S, McMurray JJV. SGLT2 inhibitors and mechanisms of cardiovascular benefit: a state-of-the-art review. Diabetologia. 2018; 61(10): 2108–2117.
  33. Butler J, Hamo CE, Filippatos G, et al. The potential role and rationale for treatment of heart failure with sodium-glucose co-transporter 2 inhibitors. Eur J Heart Fail. 2017; 19(11): 1390–1400.
  34. Shyangdan DS, Royle P, Clar C, et al. Glucagon-like peptide analogues for type 2 diabetes mellitus: systematic review and meta-analysis. BMC Endocr Disord. 2010; 10(10): 20.
  35. Madsbad S. Review of head-to-head comparisons of glucagon-like peptide-1 receptor agonists. Diabetes Obes Metab. 2016; 18(4): 317–332.
  36. Uccellatore A, Genovese S, Dicembrini I, et al. Comparison review of short-acting and long-acting glucagon-like peptide-1 receptor agonists. Diabetes Ther. 2015; 6(3): 239–256.

Important: This website uses cookies. More >>

The cookies allow us to identify your computer and find out details about your last visit. They remembering whether you've visited the site before, so that you remain logged in - or to help us work out how many new website visitors we get each month. Most internet browsers accept cookies automatically, but you can change the settings of your browser to erase cookies or prevent automatic acceptance if you prefer.

By "Via Medica sp. z o.o." sp.k., ul. Świętokrzyska 73, 80–180 Gdańsk, Poland
tel.:+48 58 320 94 94, fax:+48 58 320 94 60, e-mail: viamedica@viamedica.pl