Tom 7, Nr 1 (2022)
Artykuł przeglądowy
Opublikowany online: 2022-02-10

dostęp otwarty

Wyświetlenia strony 5149
Wyświetlenia/pobrania artykułu 1082
Pobierz cytowanie

Eksport do Mediów Społecznościowych

Eksport do Mediów Społecznościowych

Fakomatozy – znaczenie badań genetycznych dla personalizacji postępowania klinicznego (część 2)

Anna Kofla-Dłubacz1, Andrzej Stawarski1, Tomasz Pytrus1, Justyna Gil2
Biuletyn Polskiego Towarzystwa Onkologicznego Nowotwory 2022;7(1):58-65.

Streszczenie

Choroba von Hippla i Lindaua (VHL) oraz stwardnienie guzowate są rzadko występującymi schorzeniami uwarunkowanymi genetycznie, należącymi do grupy fakomatoz. W ich przebiegu występuje zwiększone ryzyko rozwoju mnogich nowotworów, głównie o charakterze łagodnym, które mogą ulegać transformacji do formy złośliwej. Diagnostyka genetyczna obejmująca identyfikację wariantu patogennego genów VHL i TSC1 oraz TSC2 umożliwia optymalizację opieki nad pacjentami oraz typowanie krewnych obciążonych mutacją.

Artykuł dostępny w formacie PDF

Pokaż PDF Pobierz plik PDF

Referencje

  1. Chittiboina P, Lonser RR. Von Hippel-Lindau disease. Handb Clin Neurol. 2015; 132: 139–156.
  2. Ning XH, Zhang N, Li T, et al. Telomere shortening is associated with genetic anticipation in Chinese Von Hippel-Lindau disease families. Cancer Res. 2014; 74(14): 3802–3809.
  3. Wilding A, Ingham SL, Lalloo F, et al. Life expectancy in hereditary cancer predisposing diseases: an observational study. J Med Genet. 2012; 49(4): 264–269.
  4. Neumann H, Wiestler OD. Clustering of features of von Hippel-Lindau syndrome: evidence for a complex genetic locus. Lancet. 1991; 337(8749): 1052–1054.
  5. Manski TJ. Endolymphatic sac tumors. A source of morbid hearing loss in von Hippel-Lindau disease. JAMA. 1997; 277(18): 1461–1466.
  6. Poulsen MLM, Budtz-Jørgensen E, Bisgaard ML. Surveillance in von Hippel-Lindau disease (vHL). Clin Genet. 2010; 77(1): 49–59.
  7. Knutsson KA, De Benedetto U, Querques G, et al. Primitive retinal vascular abnormalities: tumors and telangiectasias. Ophthalmologica. 2012; 228(2): 67–77.
  8. Renal Cell Carcinoma EAU Guidelines on. 2018.
  9. Palapattu GS, Kristo B, Rajfer J. Paraneoplastic syndromes in urologic malignancy: the many faces of renal cell carcinoma. Rev Urol. 2002; 4(4): 163–170.
  10. Shuin T, Yamasaki I, Tamura K, et al. Von Hippel-Lindau disease: molecular pathological basis, clinical criteria, genetic testing, clinical features of tumors and treatment. Jpn J Clin Oncol. 2006; 36(6): 337–343.
  11. Choyke PL, Glenn GM, Walther MM, et al. von Hippel-Lindau disease: genetic, clinical, and imaging features. Radiology. 1995; 194(3): 629–642.
  12. Clark PE, Cookson MS. The von Hippel-Lindau gene: turning discovery into therapy. Cancer. 2008; 113(7 Suppl): 1768–1778.
  13. Maher E, Sandford R. von Hippel-Lindau Disease: an Update. Current Genetic Medicine Reports. 2019; 7(4): 227–235.
  14. Lonser R, Glenn G, Walther M, et al. von Hippel-Lindau disease. The Lancet. 2003; 361(9374): 2059–2067.
  15. Groulx I, Lee S. Oxygen-dependent ubiquitination and degradation of hypoxia-inducible factor requires nuclear-cytoplasmic trafficking of the von Hippel-Lindau tumor suppressor protein. Mol Cell Biol. 2002; 22(15): 5319–5336.
  16. Strowitzki MJ, Cummins EP, Taylor CT. Protein Hydroxylation by Hypoxia-Inducible Factor (HIF) Hydroxylases: Unique or Ubiquitous? Cells. 2019; 8(5).
  17. Aronow M, Wiley H, Gaudric A, et al. VON HIPPEL–LINDAU DISEASE. Retina. 2019; 39(12): 2243–2253.
  18. Haase VH. The VHL tumor suppressor: master regulator of HIF. Curr Pharm Des. 2009; 15(33): 3895–3903.
  19. Ben-Skowronek I, Kozaczuk S. Von Hippel-Lindau Syndrome. Horm Res Paediatr. 2015; 84(3): 145–152.
  20. Decker J, Neuhaus C, Macdonald F, et al. Clinical utility gene card for: von Hippel-Lindau (VHL). Eur J Hum Genet. 2014; 22(4).
  21. Leeuwaarde RS, Ahmad S, Links TP, et al. Von Hippel-Lindau Syndrome. In: Adam MP, Ardinger HH, Pagon RA, et al. ed. GeneReviews®. University of Washington, Seattle 2018: 1–32.
  22. Kondo K, Kaelin WG. The von Hippel-Lindau tumor suppressor gene. Exp Cell Res. 2001; 264(1): 117–125.
  23. Priesemann M, Davies KM, Perry LA, et al. Benefits of screening in von Hippel-Lindau disease--comparison of morbidity associated with initial tumours in affected parents and children. Horm Res. 2006; 66(1): 1–5.
  24. Santarpia L, Sarlis NJ, Santarpia M, et al. Mosaicism in von Hippel-Lindau disease: an event important to recognize. J Cell Mol Med. 2007; 11(6): 1408–1415.
  25. Yates J. Tuberous sclerosis. European Journal of Human Genetics. 2006; 14(10): 1065–1073.
  26. Portocarrero LK, Quental KN, Samorano LP, et al. Tuberous sclerosis complex: review based on new diagnostic criteria. An Bras Dermatol. 2018; 93(3): 323–331.
  27. Roach ES, Sparagana SP. Diagnosis of tuberous sclerosis complex. J Child Neurol. 2004; 19(9): 643–649.
  28. Kandt RS, Haines JL, Smith M, et al. Linkage of an important gene locus for tuberous sclerosis to a chromosome 16 marker for polycystic kidney disease. Nat Genet. 1992; 2(1): 37–41.
  29. Joinson C, O'Callaghan FJ, Osborne JP, et al. Learning disability and epilepsy in an epidemiological sample of individuals with tuberous sclerosis complex. Psychol Med. 2003; 33(2): 335–344.
  30. DiMario F. Brain Abnormalities in Tuberous Sclerosis Complex. J Child Neurol. 2016; 19(9): 650–657.
  31. McClintock W. Neurologic manifestations of tuberous sclerosis complex. J Child Neurol. 2002; 2(2): 158–163.
  32. Rodrigues DA, Gomes CM, Costa IM. Tuberous sclerosis complex. An Bras Dermatol. 2012; 87(2): 184–196.
  33. Rowley SA, O'Callaghan FJ, Osborne JP. Ophthalmic manifestations of tuberous sclerosis: a population based study. Br J Ophthalmol. 2001; 85(4): 420–423.
  34. Krueger D, Northrup H, Northrup H, et al. Tuberous Sclerosis Complex Surveillance and Management: Recommendations of the 2012 International Tuberous Sclerosis Complex Consensus Conference. Pediatric Neurology. 2013; 49(4): 255–265.
  35. Rosset C, Netto CB, Ashton-Prolla P. TSC1 and TSC2 gene mutations and their implications for treatment in Tuberous Sclerosis Complex: a review. Genet Mol Biol. 2017; 40(1): 69–79.
  36. Tee A, Manning B, Roux P, et al. Tuberous Sclerosis Complex Gene Products, Tuberin and Hamartin, Control mTOR Signaling by Acting as a GTPase-Activating Protein Complex toward Rheb. Curr Biol. 2003; 13(15): 1259–1268.
  37. Huang J, Manning BD. The TSC1-TSC2 complex: a molecular switchboard controlling cell growth. Biochem J. 2008; 412(2): 179–190.
  38. Hoogeveen-Westerveld M, Ekong R, Povey S, et al. Functional assessment of TSC1 missense variants identified in individuals with tuberous sclerosis complex. Hum Mutat. 2012; 33(3): 476–479.
  39. Northrup H, Koenig MK, Pearson DA, Au KS. Tuberous Sclerosis Complex-GeneReviews®. GeneReviews®. University of Washington, Seattle 1993.
  40. Strizheva GD, Carsillo T, Kruger WD, et al. The spectrum of mutations in TSC1 and TSC2 in women with tuberous sclerosis and lymphangiomyomatosis. Am J Respir Crit Care Med. 2001; 163(1): 253–258.
  41. Woerner AC, Au KS, Williams AT, et al. Tuberous sclerosis complex and polycystic kidney disease together: an exception to the contiguous gene syndrome. Genet Med. 2006; 8(3): 197–198.
  42. Fox J, Ben-Shachar S, Uliel S, et al. Rare familial TSC2 gene mutation associated with atypical phenotype presentation of Tuberous Sclerosis Complex. Am J Med Genet A. 2017; 173(3): 744–748.
  43. Farach LS, Gibson WT, Sparagana SP, et al. TSC2 c.1864C>T variant associated with mild cases of tuberous sclerosis complex. Am J Med Genet A. 2017; 173(3): 771–775.