Vol 53, No 1 (2022)
Review article
Published online: 2022-01-20

open access

Page views 5198
Article views/downloads 557
Get Citation

Connect on Social Media

Connect on Social Media

Modeling congenital dyserythropoietic anemia in genetically modified mice

Ranju Kumari12, Piotr Kaźmierczak1
Acta Haematol Pol 2022;53(1):26-38.

Abstract

Congenital dyserythropoietic anemias (CDAs) are a group of inherited disorders distinguished by ineffective production of red blood cells and peculiar abnormalities in the precursors from which red blood cells arise. The identification of disease-causing mutations and CDA-associated genes is rapidly improving the accuracy of diagnosis, aided by the growing accessibility of next-generation sequencing. Currently, it is much easier to identify the morphological abnormalities and classify different CDA types; however, a range of suitable, experimentally tractable models is needed in order to understand the pathogenic mechanisms at the molecular level.

This review explains the basic concepts related to CDAs, covers different genetically modified mouse lines that are available for CDA researchers, and highlights the challenges inherent to modeling human disease in another species.

Article available in PDF format

View PDF Download PDF file

References

  1. Palis J. Primitive and definitive erythropoiesis in mammals. Front Physiol. 2014; 5: 3.
  2. Mei Y, Liu Y, Ji P. Understanding terminal erythropoiesis: an update on chromatin condensation, enucleation, and reticulocyte maturation. Blood Rev. 2021; 46: 100740.
  3. Clarke BJ, Housman D. Characterization of an erythroid precursor cell of high proliferative capacity in normal human peripheral blood. Proc Natl Acad Sci USA. 1977; 74(3): 1105–1109.
  4. Hara H, Ogawa M. Erythropoietic precursors in murine blood. Exp Hematol. 1977; 5(3): 161–165.
  5. Yamane T. Mouse yolk sac hematopoiesis. Front Cell Dev Biol. 2018; 6: 80.
  6. de Back DZ, Kostova EB, van Kr, et al. Of macrophages and red blood cells; a complex love story. Front Physiol. 2014; 5(9).
  7. Kelley LL, Koury MJ, Bondurant MC, et al. Survival or death of individual proerythroblasts results from differing erythropoietin sensitivities: a mechanism for controlled rates of erythrocyte production. Blood. 1993; 82(8): 2340–2352.
  8. Waugh RE, McKenney J, Bauserman R, et al. Surface area and volume changes during maturation of reticulocytes in the circulation of the baboon. J Lab Clin Med. 1997; 129(5): 527–535.
  9. Moras M, Lefevre SD, Ostuni MA. From erythroblasts to mature red blood cells: organelle clearance in mammals. Front Physiol. 2017; 8: 1076.
  10. Crookston JH, Crookston MC, Burnie KL, et al. Hereditary erythroblastic multinuclearity associated with a positive acidified-serum test: a type of congenital dyserythropoietic anaemia. Br J Haematol. 1969; 17(1): 11–26.
  11. Heimpel H, Wendt F. Congenital dyserythropoietic anemia with karyorrhexis and multinuclearity of erythroblasts. Helv Med Acta. 1968; 34(2): 103–115.
  12. Kato K, Sugitani M, Kawataki M, et al. Congenital dyserythropoietic anemia type 1 with fetal onset of severe anemia. J Pediatr Hematol Oncol. 2001; 23(1): 63–66.
  13. Wickramasinghe SN, Wood WG. Advances in the understanding of the congenital dyserythropoietic anaemias. Br J Haematol. 2005; 131(4): 431–446.
  14. Iolascon A, Andolfo I, Russo R. Congenital dyserythropoietic anemias. Blood. 2020; 136(11): 1274–1283.
  15. Tamary H, Dgany O, Proust A, et al. Clinical and molecular variability in congenital dyserythropoietic anaemia type I. Br J Haematol. 2005; 130(4): 628–634.
  16. Gambale A, Iolascon A, Andolfo I, et al. Diagnosis and management of congenital dyserythropoietic anemias. Expert Rev Hematol. 2016; 9(3): 283–296.
  17. Heimpel H, Kellermann K, Neuschwander N, et al. The morphological diagnosis of congenital dyserythropoietic anemia: results of a quantitative analysis of peripheral blood and bone marrow cells. Haematologica. 2010; 95(6): 1034–1036.
  18. Resnitzky P, Shaft D, Shalev H, et al. Morphological features of congenital dyserythropoietic anemia type I: the role of electron microscopy in diagnosis. Eur J Haematol. 2017; 99(4): 366–371.
  19. Dgany O, Avidan N, Delaunay J, et al. Congenital dyserythropoietic anemia type I is caused by mutations in codanin-1. Am J Hum Genet. 2002; 71(6): 1467–1474.
  20. Babbs C, Roberts NA, Sanchez-Pulido L, et al. WGS500 Consortium. Homozygous mutations in a predicted endonuclease are a novel cause of congenital dyserythropoietic anemia type I. Haematologica. 2013; 98(9): 1383–1387.
  21. Renella R, Hall G, Ferguson D, Wood W. Congenital dyserythropoietic anemias. Blood and bone marrow pathology. Elsevier, Philadelpia 2011: 235–244.
  22. Noy-Lotan S, Dgany O, Lahmi R, et al. Codanin-1, the protein encoded by the gene mutated in congenital dyserythropoietic anemia type I (CDAN1), is cell cycle-regulated. Haematologica. 2009; 94(5): 629–637.
  23. Ask K, Jasencakova Z, Menard P, et al. Codanin-1, mutated in the anaemic disease CDAI, regulates Asf1 function in S-phase histone supply. EMBO J. 2012; 31(8): 2013–2023.
  24. Scott C, Downes DJ, Brown JM, et al. Recapitulation of erythropoiesis in congenital dyserythropoietic anaemia type I (CDA-I) identifies defects in differentiation and nucleolar abnormalities. Haematologica. 2021; 106(11): 2960–2970.
  25. Ewing RM, Chu P, Elisma F, et al. Large-scale mapping of human protein-protein interactions by mass spectrometry. Mol Syst Biol. 2007; 3: 89.
  26. Renella R, Roberts N, Sharpe J, et al. A transgenic mouse model for congenital dyserythropoietic anemia type I. Blood. 2008; 112(11): 3455–3455.
  27. Gnanapragasam MN, Bieker JJ. Orchestration of late events in erythropoiesis by KLF1/EKLF. Curr Opin Hematol. 2017; 24(3): 183–190.
  28. Papadopoulos P, Kafasi A, De Cuyper IM, et al. Mild dyserythropoiesis and β-like globin gene expression imbalance due to the loss of histone chaperone ASF1B. Hum Genomics. 2020; 14(1): 39.
  29. Heimpel H, Anselstetter V, Chrobak L, et al. Congenital dyserythropoietic anemia type II: epidemiology, clinical appearance, and prognosis based on long-term observation. Blood. 2003; 102(13): 4576–4581.
  30. Russo R, Gambale A, Langella C, et al. Retrospective cohort study of 205 cases with congenital dyserythropoietic anemia type II: definition of clinical and molecular spectrum and identification of new diagnostic scores. Am J Hematol. 2014; 89(10): E169–E175.
  31. Bianchi P, Schwarz K, Högel J, et al. Analysis of a cohort of 101 CDAII patients: description of 24 new molecular variants and genotype-phenotype correlations. Br J Haematol. 2016; 175(4): 696–704.
  32. Tandon B, Peterson L, Norwood S, et al. Congenital dyserythropoietic anemia type II (CDA II) diagnosed in an adult patient. J Hematopathol. 2010; 3(4): 149–153.
  33. Schwarz K, Iolascon A, Verissimo F, et al. Mutations affecting the secretory COPII coat component SEC23B cause congenital dyserythropoietic anemia type II. Nat Genet. 2009; 41(8): 936–940.
  34. De Matteis MA, Luini A. Mendelian disorders of membrane trafficking. N Engl J Med. 2011; 365(10): 927–938.
  35. Iolascon A, Esposito MR, Russo R. Clinical aspects and pathogenesis of congenital dyserythropoietic anemias: from morphology to molecular approach. Haematologica. 2012; 97(12): 1786–1794.
  36. Iolascon A, De Mattia D, Perrotta S, et al. Genetic heterogeneity of congenital dyserythropoietic anemia type II. Blood. 1998; 92(7): 2593–2594.
  37. Iolascon A, Russo R, Esposito MR, et al. Molecular analysis of 42 patients with congenital dyserythropoietic anemia type II: new mutations in the SEC23B gene and a search for a genotype-phenotype relationship. Haematologica. 2010; 95(5): 708–715.
  38. Satchwell TJ, Pellegrin S, Bianchi P, et al. Characteristic phenotypes associated with congenital dyserythropoietic anemia (type II) manifest at different stages of erythropoiesis. Haematologica. 2013; 98(11): 1788–1796.
  39. Russo R, Langella C, Esposito MR, et al. Hypomorphic mutations of SEC23B gene account for mild phenotypes of congenital dyserythropoietic anemia type II. Blood Cells Mol Dis. 2013; 51(1): 17–21.
  40. Tao J, Zhu M, Wang He, et al. SEC23B is required for the maintenance of murine professional secretory tissues. Proc Natl Acad Sci USA. 2012; 109(29): E2001–E2009.
  41. Khoriaty R, Vasievich M, Jones M, et al. Disparate phenotypes of SEC23B deficiency in humans and mice. Blood. 2013; 122(21): 312–312.
  42. An X, Schulz VP, Li J, et al. Global transcriptome analyses of human and murine terminal erythroid differentiation. Blood. 2014; 123(22): 3466–3477.
  43. King R, Friedman A, Lin Z, et al. Functional overlap between the SEC23 paralogs suggests a novel treatment paradigm for congenital dyserythropoietic anemia type II. Blood. 2019; 134(Suppl_1): 2221–2221.
  44. Sandström H, Wahlin A. Congenital dyserythropoietic anemia type III. Haematologica. 2000; 85(7): 753–757.
  45. Liljeholm M, Irvine AF, Vikberg AL, et al. Congenital dyserythropoietic anemia type III (CDA III) is caused by a mutation in kinesin family member, KIF23. Blood. 2013; 121(23): 4791–4799.
  46. Iolascon A, Heimpel H, Wahlin A, et al. Congenital dyserythropoietic anemias: molecular insights and diagnostic approach. Blood. 2013; 122(13): 2162–2166.
  47. Wickramasinghe SN, Parry TE, Williams C, et al. A new case of congenital dyserythropoietic anaemia, type III: studies of the cell cycle distribution and ultrastructure of erythroblasts and of nucleic acid synthesis in marrow cells. J Clin Pathol. 1982; 35(10): 1103–1109.
  48. Björkstén B, Holmgren G, Roos G, et al. Congenital dyserythropoietic anaemia type III: an electron microscopic study. Br J Haematol. 1978; 38(1): 37–42.
  49. Makyio H, Ohgi M, Takei T, et al. Structural basis for Arf6-MKLP1 complex formation on the Flemming body responsible for cytokinesis. EMBO J. 2012; 31(11): 2590–2603.
  50. Matuliene J, Kuriyama R. Kinesin-like protein CHO1 is required for the formation of midbody matrix and the completion of cytokinesis in mammalian cells. Mol Biol Cell. 2002; 13(6): 1832–1845.
  51. Vikberg AL, Malla S, Golovleva I. Differential tissue specific expression of Kif23 alternative transcripts in mice with the human mutation causing congenital dyserythropoietic anemia type III. Blood Cells Mol Dis. 2020; 85: 102483.
  52. Barbarani G, Fugazza C, Strouboulis J, et al. The pleiotropic effects of GATA1 and KLF1 in physiological erythropoiesis and in dyserythropoietic disorders. Front Physiol. 2019; 10: 91.
  53. Arnaud L, Saison C, Helias V, et al. A dominant mutation in the gene encoding the erythroid transcription factor KLF1 causes a congenital dyserythropoietic anemia. Am J Hum Genet. 2010; 87(5): 721–727.
  54. Jaffray JA, Mitchell WB, Gnanapragasam MN, et al. Erythroid transcription factor EKLF/KLF1 mutation causing congenital dyserythropoietic anemia type IV in a patient of Taiwanese origin: review of all reported cases and development of a clinical diagnostic paradigm. Blood Cells Mol Dis. 2013; 51(2): 71–75.
  55. Ortolano R, Forouhar M, Warwick A, et al. A Case of Congenital Dyserythropoeitic Anemia Type IV Caused by E325K Mutation in Erythroid Transcription Factor KLF1. J Pediatr Hematol Oncol. 2018; 40(6): e389–e391.
  56. Ravindranath Y, Johnson RM, Goyette G, et al. KLF1 E325K-associated congenital dyserythropoietic anemia type IV: insights into the variable clinical severity. J Pediatr Hematol Oncol. 2018; 40(6): e405–e409.
  57. Kohara H, Utsugisawa T, Sakamoto C, et al. KLF1 mutation E325K induces cell cycle arrest in erythroid cells differentiated from congenital dyserythropoietic anemia patient-specific induced pluripotent stem cells. Exp Hematol. 2019; 73: 25–37.e8.
  58. Siatecka M, Bieker JJ. The multifunctional role of EKLF/KLF1 during erythropoiesis. Blood. 2011; 118(8): 2044–2054.
  59. Borg J, Patrinos GP, Felice AE, et al. Erythroid phenotypes associated with KLF1 mutations. Haematologica. 2011; 96(5): 635–638.
  60. Perkins A, Xu X, Higgs DR, et al. KLF1 Consensus Workgroup. Krüppeling erythropoiesis: an unexpected broad spectrum of human red blood cell disorders due to KLF1 variants. Blood. 2016; 127: 1856–1862.
  61. Nuez B, Michalovich D, Bygrave A, et al. Defective haematopoiesis in fetal liver resulting from inactivation of the EKLF gene. Nature. 1995; 375(6529): 316–318.
  62. Perkins AC, Sharpe AH, Orkin SH. Lethal beta-thalassaemia in mice lacking the erythroid CACCC-transcription factor EKLF. Nature. 1995; 375(6529): 318–322.
  63. Magor GW, Tallack MR, Gillinder KR, et al. KLF1-null neonates display hydrops fetalis and a deranged erythroid transcriptome. Blood. 2015; 125(15): 2405–2417.
  64. Feng WC, Southwood CM, Bieker JJ. Analyses of beta-thalassemia mutant DNA interactions with erythroid Krüppel-like factor (EKLF), an erythroid cell-specific transcription factor. J Biol Chem. 1994; 269(2): 1493–1500.
  65. Crossley M, Whitelaw E, Perkins A, et al. Isolation and characterization of the cDNA encoding BKLF/TEF-2, a major CACCC-box-binding protein in erythroid cells and selected other cells. Mol Cell Biol. 1996; 16(4): 1695–1705.
  66. Tallack MR, Whitington T, Yuen WS, et al. A global role for KLF1 in erythropoiesis revealed by ChIP-seq in primary erythroid cells. Genome Res. 2010; 20(8): 1052–1063.
  67. Siatecka M, Sahr KE, Andersen SG, et al. Severe anemia in the Nan mutant mouse caused by sequence-selective disruption of erythroid Kruppel-like factor. Proc Natl Acad Sci USA. 2010; 107(34): 15151–15156.
  68. Singleton BK, Lau W, Fairweather VSS, et al. Mutations in the second zinc finger of human EKLF reduce promoter affinity but give rise to benign and disease phenotypes. Blood. 2011; 118(11): 3137–3145.
  69. Lyon M, Glenister P, Loutit J, et al. Dominant hemolytic anemia. Mouse News Lett. 1983; 68: 68.
  70. Lyon M, Glenister P. Position of neonatal anaemia (Nan) on chromosome 8. Mouse News Lett. 1986; 74: 95.
  71. White RA, Sokolovsky IV, Britt MI, et al. Hematologic characterization and chromosomal localization of the novel dominantly inherited mouse hemolytic anemia, neonatal anemia (Nan). Blood Cells Mol Dis. 2009; 43(2): 141–148.
  72. Heruth DP, Hawkins T, Logsdon DP, et al. Mutation in erythroid specific transcription factor KLF1 causes hereditary spherocytosis in the Nan hemolytic anemia mouse model. Genomics. 2010; 96(5): 303–307.
  73. Nébor D, Graber JH, Ciciotte SL, et al. Mutant KLF1 in adult anemic Nan mice leads to profound transcriptome changes and disordered erythropoiesis. Sci Rep. 2018; 8(1): 12793.
  74. Cantú I, van de Werken HJG, Gillemans N, et al. The mouse KLF1 Nan variant impairs nuclear condensation and erythroid maturation. PLoS One. 2019; 14(3): e0208659.
  75. Shimizu R, Yamamoto M. GATA-related hematologic disorders. Exp Hematol. 2016; 44(8): 696–705.
  76. Russo R, Andolfo I, Gambale A, et al. GATA1 erythroid-specific regulation of SEC23B expression and its implication in the pathogenesis of congenital dyserythropoietic anemia type II. Haematologica. 2017; 102(9): e371–e374.
  77. Ling T, Crispino JD. GATA1 mutations in red cell disorders. IUBMB Life. 2020; 72: 106–118.
  78. Fujiwara Y, Browne CP, Cunniff K, et al. Arrested development of embryonic red cell precursors in mouse embryos lacking transcription factor GATA-1. Proceedings of the National Academy of Sciences 1996;:12355–8. Proc Natl Acad Sci USA. 1996; 93(22): 12355–12358.
  79. Shivdasani RA, Fujiwara Y, McDevitt MA, et al. A lineage-selective knockout establishes the critical role of transcription factor GATA-1 in megakaryocyte growth and platelet development. The EMBO Journal. 1997; 16(13): 3965–3973.
  80. McDevitt MA, Shivdasani RA, Fujiwara Y, et al. A "knockdown" mutation created by cis-element gene targeting reveals the dependence of erythroid cell maturation on the level of transcription factor GATA-1. Proc Natl Acad Sci USA. 1997; 94(13): 6781–6785.
  81. Kobayashi E, Shimizu R, Kikuchi Y, et al. Loss of the Gata1 gene IE exon leads to variant transcript expression and the production of a GATA1 protein lacking the N-terminal domain. J Biol Chem. 2010; 285(1): 773–783.
  82. Shimizu R, Ohneda K, Engel JD, et al. Transgenic rescue of GATA-1-deficient mice with GATA-1 lacking a FOG-1 association site phenocopies patients with X-linked thrombocytopenia. Blood. 2004; 103(7): 2560–2567.
  83. Majeed HA, Kalaawi M, Mohanty D, et al. Congenital dyserythropoietic anemia and chronic recurrent multifocal osteomyelitis in three related children and the association with Sweet syndrome in two siblings. J Pediatrics. 1989; 115(5 Pt 1): 730–734.
  84. Dwyer JR, Donkor J, Zhang P, et al. Mouse lipin-1 and lipin-2 cooperate to maintain glycerolipid homeostasis in liver and aging cerebellum. Proc Natl Acad Sci USA. 2012; 109(37): E2486–E2495.
  85. Shteyer E, Saada A, Shaag A, et al. Exocrine pancreatic insufficiency, dyserythropoeitic anemia, and calvarial hyperostosis are caused by a mutation in the COX4I2 gene. Am J Hum Genet. 2009; 84(3): 412–417.
  86. Hüttemann M, Lee I, Gao X, et al. Cytochrome c oxidase subunit 4 isoform 2-knockout mice show reduced enzyme activity, airway hyporeactivity, and lung pathology. FASEB J. 2012; 26(9): 3916–3930.
  87. Motoyama N, Wang F, Roth KA, et al. Massive cell death of immature hematopoietic cells and neurons in Bcl-x-deficient mice. Science. 1995; 267(5203): 1506–1510.
  88. Wagner KU, Claudio E, Rucker EB, et al. Conditional deletion of the Bcl-x gene from erythroid cells results in hemolytic anemia and profound splenomegaly. Development. 2000; 127(22): 4949–4958.
  89. Afreen S, Bohler S, Müller A, et al. BCL-XL expression is essential for human erythropoiesis and engraftment of hematopoietic stem cells. Cell Death Dis. 2020; 11(1): 8.
  90. Samkari A, Borzutzky A, Fermo E, et al. A novel missense mutation in MVK associated with MK deficiency and dyserythropoietic anemia. Pediatrics. 2010; 125(4): e964–e968.
  91. Hager EJ, Tse HM, Piganelli JD, et al. Deletion of a single mevalonate kinase (Mvk) allele yields a murine model of hyper-IgD syndrome. J Inherit Metab Dis. 2007; 30(6): 888–895.
  92. Konstantinidis DG, Giger KM, Risinger M, et al. Cytokinesis failure in RhoA-deficient mouse erythroblasts involves actomyosin and midbody dysregulation and triggers p53 activation. Blood. 2015; 126(12): 1473–1482.
  93. Mei Y, Zhao B, Yang J, et al. Ineffective erythropoiesis caused by binucleated late-stage erythroblasts in mDia2 hematopoietic specific knockout mice. Haematologica. 2016; 101(1): e1–e5.
  94. Zhou X, Florian MC, Arumugam P, et al. RhoA GTPase controls cytokinesis and programmed necrosis of hematopoietic progenitors. J Exp Med. 2013; 210(11): 2371–2385.
  95. Velasco-Hernandez T, Säwén P, Bryder D, et al. Potential pitfalls of the Mx1-Cre system: implications for experimental modeling of normal and malignant hematopoiesis. Stem Cell Reports. 2016; 7(1): 11–18.
  96. Niss O, Lorsbach RB, Christakopoulos GE, et al. The First Registry for Patients with Congenital Dyserythropoietic Anemia in North America: design and preliminary results. Blood. 2017; 130: 2210.
  97. Seu KG, Trump LR, Emberesh S, et al. VPS4A mutations in humans cause syndromic congenital dyserythropoietic anemia due to cytokinesis and trafficking defects. Am J Hum Genet. 2020; 107(6): 1149–1156.
  98. Niss O, Lorsbach RB, Berger M, et al. CDAR consortium. Congenital dyserythropoietic anemia type I: first report from the Congenital Dyserythropoietic Anemia Registry of North America (CDAR). Blood Cells Mol Dis. 2021; 87: 102534.
  99. Cheng Y, Wu W, Kumar SA, et al. Erythroid GATA1 function revealed by genome-wide analysis of transcription factor occupancy, histone modifications, and mRNA expression. Genome Res. 2009; 19(12): 2172–2184.
  100. Tallack MR, Magor GW, Dartigues B, et al. Novel roles for KLF1 in erythropoiesis revealed by mRNA-seq. Genome Res. 2012; 22(12): 2385–2398.
  101. Wolfe D, Dudek S, Ritchie MD, et al. Visualizing genomic information across chromosomes with PhenoGram. BioData Min. 2013; 6(1): 18.