Vol 52, No 4 (2021)
Review article
Published online: 2021-08-31

open access

Page views 466
Article views/downloads 443
Get Citation

Connect on Social Media

Connect on Social Media

Calreticulin, a multi-faceted protein: thrombotic and bleeding risks in CALR mutation positive essential thrombocythemiaa

Krzysztof Lewandowski1
DOI: 10.5603/AHP.2021.0055
Acta Haematol Pol 2021;52(4):284-290.

Abstract

Essential thrombocythemia (ET) is a clonal disorder of a multipotent hematopoietic progenitor cell. In most patients, a driving mutation of Janus kinase 2 gene, calreticulin gene or myeloproliferative leukemia virus oncogene is detected. The occurrence of thrombotic and/or bleeding complications is very typical in manifestations of ET, with many cases of both occurring in the same patient. The thrombotic or bleeding phenotype can be a consequence of the coexistence of driving and non-driving molecular mutations and polymorphisms, affecting the platelet number and function. This paper discusses the nature of this disease, paying special attention to calreticulin gene function.

Article available in PDF format

View PDF Download PDF file

References

  1. Wojtaszewska M, Iwoła M, Lewandowski K. Frequency and molecular characteristics of calreticulin gene (CALR) mutations in patients with JAK2 -negative myeloproliferative neoplasms. Acta Haematol. 2015; 133(2): 193–198.
  2. Elala YC, Lasho TL, Gangat N, et al. Calreticulin variant stratified driver mutational status and prognosis in essential thrombocythemia. Am J Hematol. 2016; 91(5): 503–506.
  3. Barbui T, Thiele J, Gisslinger H, et al. The 2016 revision of WHO classification of myeloproliferative neoplasms: Clinical and molecular advances. Blood Rev. 2016; 30(6): 453–459.
  4. Jones AV, Kreil S, Zoi K, et al. Widespread occurrence of the JAK2 V617F mutation in chronic myeloproliferative disorders. Blood. 2005; 106(6): 2162–2168.
  5. Rampal R, Levine RL. A primer on genomic and epigenomic alterations in the myeloproliferative neoplasms. Best Pract Res Clin Haematol. 2014; 27(2): 83–93.
  6. Guglielmelli P, Pietra D, Pane F, et al. Recommendations for molecular testing in classical Ph1-neg myeloproliferative disorder — A consensus project of the Italian Society of Hematology. Leuk Res. 2017; 58: 63–72.
  7. Staerk J, Kallin A, Demoulin JB, et al. JAK1 and Tyk2 activation by the homologous polycythemia vera JAK2 V617F mutation: cross-talk with IGF1 receptor. J Biol Chem. 2005; 280(51): 41893–41899.
  8. Nussenzveig RH, Pham HaT, Perkins SL, et al. Increased frequency of co-existing JAK2 exon-12 or MPL exon-10 mutations in patients with low JAK2(V617F) allelic burden. Leuk Lymphoma. 2016; 57(6): 1429–1435.
  9. Harutyunyan A, Klampfl T, Cazzola M, et al. p53 lesions in leukemic transformation. N Engl J Med. 2011; 364(5): 488–490.
  10. Vainchenker W, Delhommeau F, Constantinescu SN, et al. New mutations and pathogenesis of myeloproliferative neoplasms. Blood. 2011; 118(7): 1723–1735.
  11. Marcellino BK, Hoffman R, Tripodi J, et al. Advanced forms of MPNs are accompanied by chromosomal abnormalities that lead to dysregulation of TP53. Blood Adv. 2018; 2(24): 3581–3589.
  12. Gangat N, Wolanskyj AP, McClure RF, et al. Risk stratification for survival and leukemic transformation in essential thrombocythemia: a single institutional study of 605 patients. Leukemia. 2007; 21(2): 270–276.
  13. Rumi E, Cazzola M. Diagnosis, risk stratification, and response evaluation in classical myeloproliferative neoplasms. Blood. 2017; 129(6): 680–692.
  14. Borowczyk M, Wojtaszewska M, Lewandowski K, et al. The JAK2 V617F mutational status and allele burden may be related with the risk of venous thromboembolic events in patients with Philadelphia-negative myeloproliferative neoplasms. Thromb Res. 2015; 135(2): 272–280.
  15. Alvarez-Larran A, Martínez D, Arenillas L, et al. Essential thrombocythaemia with mutation in : clinicopathological correlation and comparison with 2V617F-mutated and mutated genotypes. J Clin Pathol. 2018; 71(11): 975–980.
  16. Pérez Encinas MM, Sobas M, Gómez-Casares MT, et al. The risk of thrombosis in essential thrombocythemia is associated with the type of CALR mutation: A multicentre collaborative study. Eur J Haematol. 2021; 106(3): 371–379.
  17. Tefferi A, Wassie EA, Guglielmelli P, et al. Type 1 versus Type 2 calreticulin mutations in essential thrombocythemia: a collaborative study of 1027 patients. Am J Hematol. 2014; 89(8): E121–E124.
  18. Papadakis E, Hoffman R, Brenner B. Thrombohemorrhagic complications of myeloproliferative disorders. Blood Rev. 2010; 24(6): 227–232.
  19. Finazzi G, Carobbio A, Thiele J, et al. Incidence and risk factors for bleeding in 1104 patients with essential thrombocythemia or prefibrotic myelofibrosis diagnosed according to the 2008 WHO criteria. Leukemia. 2012; 26(4): 716–719.
  20. Nicol C, Lacut K, Pan-Petesch B, et al. Hemorrhage in essential thrombocythemia or polycythemia vera: epidemiology, location, risk factors, and lessons learned from the literature. Thromb Haemost. 2021; 121(5): 553–564.
  21. Stuckey R, Ianotto J-Ch, Santoro M, et al. Analysis of thrombotic and bleeding complications in 1381 essential thrombocythaemia patients assessed by R-IPSET thrombosis risk score: a multicenter retrospective study EHA 2021.
  22. Harrison CN, Campbell PJ, Buck G, et al. United Kingdom Medical Research Council Primary Thrombocythemia 1 Study. Hydroxyurea compared with anagrelide in high-risk essential thrombocythemia. N Engl J Med. 2005; 353(1): 33–45.
  23. Campbell PJ, Bareford D, Erber WN, et al. Reticulin accumulation in essential thrombocythemia: prognostic significance and relationship to therapy. J Clin Oncol. 2009; 27(18): 2991–2999.
  24. Barbui T, Finazzi G, Carobbio A, et al. Development and validation of an International Prognostic Score of thrombosis in World Health Organization — essential thrombocythemia (IPSET-thrombosis). Blood. 2012; 120(26): 5128–5133, quiz 5252.
  25. Falchi L, Kantarjian HM, Verstovsek S. Assessing the thrombotic risk of patients with essential thrombocythemia in the genomic era. Leukemia. 2017; 31(9): 1845–1854.
  26. Tefferi A, Vannucchi AM, Barbui T. Essential thrombocythemia treatment algorithm 2018. Blood Cancer J. 2018; 8(1): 2.
  27. Tefferi A. Polycythemia vera and essential thrombocythemia: 2013 update on diagnosis, risk-stratification, and management. Am J Hematol. 2013; 88(6): 507–516.
  28. Lancellotti S, Dragani A, Ranalli P, et al. Qualitative and quantitative modifications of von Willebrand factor in patients with essential thrombocythemia and controlled platelet count. J Thromb Haemost. 2015; 13(7): 1226–1237.
  29. Rottenstreich A, Kleinstern G, Krichevsky S, et al. Factors related to the development of acquired von Willebrand syndrome in patients with essential thrombocythemia and polycythemia vera. Eur J Intern Med. 2017; 41: 49–54.
  30. Kaifie A, Kirschner M, Wolf D, et al. Study Alliance Leukemia (SAL). Bleeding, thrombosis, and anticoagulation in myeloproliferative neoplasms (MPN): analysis from the German SAL-MPN-registry. J Hematol Oncol. 2016; 9: 18.
  31. Kuykendall AT, Komrokji R. What's in a number? Examining the prognostic and predictive importance of platelet count in patients with essential thrombocythemia. J Natl Compr Canc Netw. 2020; 18(9): 1279–1284.
  32. Alvarez-Larrán A, Cervantes F, Pereira A, et al. Observation versus antiplatelet therapy as primary prophylaxis for thrombosis in low-risk essential thrombocythemia. Blood. 2010; 116(8): 1205–1210, quiz 1387.
  33. Szuber N, Mudireddy M, Nicolosi M, et al. 3023 Mayo Clinic patients with myeloproliferative neoplasms: risk-stratified comparison of survival and outcomes data among disease subgroups. Mayo Clin Proc. 2019; 94(4): 599–610.
  34. Tefferi A, Szuber N, Pardanani A, et al. Extreme thrombocytosis in low-risk essential thrombocythemia: Retrospective review of vascular events and treatment strategies. Am J Hematol. 2021; 96(6): E182–E184.
  35. Gangat N, Szuber N, Jawaid T, et al. Young platelet millionaires with essential thrombocythemia. Am J Hematol. 2021; 96(4): E93–E95.
  36. Rodríguez-Liñares B, Watson SP. Phosphorylation of JAK2 in thrombin-stimulated human platelets. FEBS Lett. 1994; 352(3): 335–338.
  37. Zhou Z, Gushiken FC, Bolgiano D, et al. Signal transducer and activator of transcription 3 (STAT3) regulates collagen-induced platelet aggregation independently of its transcription factor activity. Circulation. 2013; 127(4): 476–485.
  38. Lu WJ, Lin KC, Huang SY, et al. Role of a Janus kinase 2-dependent signaling pathway in platelet activation. Thromb Res. 2014; 133(6): 1088–1096.
  39. Merlinsky TR, Levine RL, Pronier E. Unfolding the role of calreticulin in myeloproliferative neoplasm pathogenesis. Clin Cancer Res. 2019; 25(10): 2956–2962.
  40. Reilly D, Larkin D, Devocelle M, et al. Calreticulin-independent regulation of the platelet integrin alphaIIbbeta3 by the KVGFFKR alphaIIb-cytoplasmic motif. Platelets. 2004; 15(1): 43–54.
  41. Klampfl T, Gisslinger H, Harutyunyan AS, et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med. 2013; 369(25): 2379–2390.
  42. Nangalia J, Massie CE, Baxter EJ, et al. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N Engl J Med. 2013; 369(25): 2391–2405.
  43. Araki M, Komatsu N. The role of calreticulin mutations in myeloproliferative neoplasms. Int J Hematol. 2020; 111(2): 200–205.
  44. Pronier E, Cifani P, Merlinsky TR, et al. Targeting the CALR interactome in myeloproliferative neoplasms. JCI Insight. 2018; 3(22): e122703.
  45. Pietra D, Rumi E, Ferretti VV, et al. Differential clinical effects of different mutation subtypes in CALR-mutant myeloproliferative neoplasms. Leukemia. 2016; 30(2): 431–438.
  46. Di Buduo CA, Balduini A, Moccia F. Pathophysiological significance of store-operated calcium entry in megakaryocyte function: opening new paths for understanding the role of calcium in thrombopoiesis. Int J Mol Sci. 2016; 17(12): 2055.
  47. Di Buduo CA, Abbonante V, Marty C, et al. Defective interaction of mutant calreticulin and SOCE in megakaryocytes from patients with myeloproliferative neoplasms. Blood. 2020; 135(2): 133–144.
  48. Kozlov G, Gehring K. Calnexin cycle — structural features of the ER chaperone system. FEBS J. 2020; 287(20): 4322–4340.
  49. Holbrook LM, Sasikumar P, Stanley RG, et al. The platelet-surface thiol isomerase enzyme ERp57 modulates platelet function. J Thromb Haemost. 2012; 10(2): 278–288.
  50. Sharda A, Furie B. Regulatory role of thiol isomerases in thrombus formation. Expert Rev Hematol. 2018; 11(5): 437–448.
  51. Prins D, Groenendyk J, Touret N, et al. Modulation of STIM1 and capacitative Ca2+ entry by the endoplasmic reticulum luminal oxidoreductase ERp57. EMBO Rep. 2011; 12(11): 1182–1188.
  52. Xu W, Longo FJ, Wintermantel MR, et al. Calreticulin modulates capacitative Ca2+ influx by controlling the extent of inositol 1,4,5-trisphosphate-induced Ca2+ store depletion. J Biol Chem. 2000; 275(47): 36676–36682.
  53. Elf S, Abdelfattah NS, Baral AJ, et al. Defining the requirements for the pathogenic interaction between mutant calreticulin and MPL in MPN. Blood. 2018; 131(7): 782–786.
  54. Hauschner H, Bokstad Horev M, Misgav M, et al. Platelets from Calreticulin mutated essential thrombocythemia patients are less reactive than JAK2 V617F mutated platelets. Am J Hematol. 2020; 95(4): 379–386.
  55. Lindström S, Wang L, Smith EN, et al. Million Veteran Program, CHARGE Hemostasis Working Group. Genomic and transcriptomic association studies identify 16 novel susceptibility loci for venous thromboembolism. Blood. 2019; 134(19): 1645–1657.
  56. Veninga A, De Simone I, Heemskerk JWM, et al. Clonal hematopoietic mutations linked to platelet traits and the risk of thrombosis or bleeding. Haematologica. 2020; 105(8): 2020–2031.
  57. El Jahrani N, Cretin G, de Brevern AG. CALR-ETdb, the database of calreticulin variants diversity in essential thrombocythemia. Platelets. 2021 [Epub ahead of print].