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Calreticulin, a multi-faceted protein: 
thrombotic and bleeding risks in CALR mutation 

positive essential thrombocythemia
Krzysztof Lewandowski●iD

Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, Poznań, Poland

Abstract
Essential thrombocythemia (ET) is a clonal disorder of a multipotent hematopoietic progenitor cell. In most patients, 
a driving mutation of Janus kinase 2 gene, calreticulin gene  or myeloproliferative leukemia virus oncogene is detected. 
The occurrence of thrombotic and/or bleeding complications is very typical in manifestations of ET, with many cases of 
both occurring in the same patient. The thrombotic or bleeding phenotype can be a consequence of the coexistence of 
driving and non-driving molecular mutations and polymorphisms, affecting the platelet number and function. This paper 
discusses the nature of this disease, paying special attention to calreticulin gene function.
Key words: CALR, JAK2, MPL, acetylsalicylic acid, thrombosis, bleeding, ERp57, calnexin pathway, store-operated  
calcium entry, platelet function
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Introduction

Essential thrombocythemia (ET) is a clonal disorder of 
a multipotent hematopoietic progenitor cell. In 75–89% 
of ET cases, the driving mutations of Janus kinase 2 gene 
(JAK2), calreticulin gene (CALR) or myeloproliferative leu-
kemia virus oncogene (MPL) are detected with frequencies 
of 61–65%, 13–22%, and 1–2%, respectively [1–6]. All of 
the mutations (JAK2, CALR, MPL) identified to date share 
the common characteristics of constitutive activation of 
tyrosine kinase-dependent signaling pathways and cytokine 
independent cellular proliferation [7, 8].

The clinical disease manifestation differs depending 
on the driving mutations and co-operating mutations in 
the myeloid genes status. ET patients are at risk of poly-
cythemic transformation (JAK2V617F positive cases) 
and myelofibrotic transformation (CALR mutation posi-
tive cases, and patients with co-operating mutations in 

the myeloid genes). Leukemic transformation is rare, but 
possible due to the ‘transforming’ mutations acquisition 
(TP53, RUNX1) or overexpression of MDM2/MDM4 by he-
matopoietic progenitor cell(s) [9–11]. The leukemic trans-
formation risk is also higher in ET patients with extreme 
thrombocytosis [12].

The main factors influencing the overall survival of ET 
patients are a previous thrombosis episode, leukocytosis, 
and the presence of co-operating mutations in the myeloid 
genes [13].

The risk of thrombosis is especially high in ET patients 
with JAK2 mutation, a history of previous thrombosis, and 
advanced age (≥60 years). It has been also postulated 
that JAK2 variant allele frequency (VAF) can influence ve-
nous thromboembolism [14]. A detailed analysis of throm-
botic risk, depending on the type of driver mutation sta-
tus, showed 5-year thrombosis-free survival rates of 93%, 
91% and 88% for patients carrying the JAK2V617F, MPL 
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and CALR mutation, respectively [15]. Recently published 
data documents a lower risk of venous thrombosis in ET 
patients carrying the CALR-type 2 mutation [16]. Interest-
ingly, also the lower incidence of arterial thrombosis is 
consistent mostly with CALR mutations and/or extreme 
thrombocytosis [17].

In 3–18% of ET patients, bleeding occurs as an initial 
presenting symptom [18, 19]. The annual frequency of 
bleeding and major bleeding complications amounts 
to 4.6 and 0.79 per patient per year, respectively [20]. 
A report by Stuckey et al. [21] showed that the major 
bleeding complications frequency after an average fol-
low-up period of 87.7 months was 6.6% (91 hemorrhag-
ic events in 1,380 patients observed). Of 249 patients 
from the very-low risk group, 12 with an unknown driver 
mutation status experienced severe bleeding (4.8%). 
Interestingly, nine of them (75%) were treated with an 
anti-aggregatory drug.

The results of large clinical trials have revealed that 
major bleeding during follow-up occurs in 6% of WHO-ET 
defined patients, at the rate of 0.79% of patients per year. 
A detailed analysis of the WHO-ET patients confirmed pre-
vious hemorrhage and acetylsalicylic acid (ASA) as inde-
pendent risk factors for bleeding complications. It should 
be mentioned that the study did not include the muta-
tional status of the ET patients studied (JAK2 vs. CALR vs. 
MPL positive) [19]. In a post hoc survey of 311 patients 
diagnosed with ET (mostly included in the prospective  
UK-PT1 trial) and receiving ASA with either hydroxyurea or 
anagrelide, an increased grade of bone marrow reticulin 
fibrosis predicted higher rates of major hemorrhage during 
the follow-up [22, 23].

Thrombosis and bleeding scoring systems 
for risk stratification in ET patients

Thrombosis risk in ET patients can be calculated with the 
help of the IPSET, IPSET-thrombosis and revised IPSET 
thrombosis scores based on age, previous history of 
thrombosis, JAK2 mutation positivity, and the presence of 
cardiovascular risk factors [24, 25]. Recently, a mutation- 
-enhanced international prognostic system has been pro-
posed (Table I).

There is as yet no final agreement regarding the bleed-
ing risk factors in ET patients. The bleeding risk is higher in 
ET patients with a history of previous major bleeding and 
high platelet count (≥1,500 ×109/L) [13]. The bleeding risk 
in individual cases however may be also influenced by ac-
quired coagulation abnormalities. This is observed in ET 
patients with extreme thrombocytosis and the symptoms 
of acquired von Willebrand syndrome (AvWS) due to con-
sumption coagulopathy. For this reason, the administra-
tion of ASA is not recommended, if the ristocetin cofactor 
activity is <30% [26, 27]. The bleeding risk assessment 

in ET cases should be made with caution, because AvWS 
symptoms can also present in patients with near-normal 
platelet counts [28, 29] (Table II).

In a prospective study of the myeloproliferative neo-
plasms (MPN) registry of the Study Alliance Leukemia, 
bleeding events were rarely diagnosed before the MPN di-
agnosis, and their frequency was constant over a period 
of 160 months. However, the study was limited by the fact 
that the analysis was performed in a group of both ET and 
polycythemia vera (PV) patients, independently from the 
driver mutation status [30]. Another unresolved problem 
is the issue of hemorrhagic complications severity assess-
ment in patients with ET due to the use of different bleed-
ing intensity scales, e.g. International Society on Throm-
bosis and Haemostasis (ISTH), ISTH-like, World Health Or-
ganization and Common Terminology Criteria for Adverse 
Events. This may be the reason for the underestimation of 
the low and moderate bleeding frequency in ET patients. 
The data concerning the severe complication frequency is 
more accurate, and confirms that 13.7% of deaths in ET 
and PV patients was caused by bleeding, especially by fa-
tal cerebral hemorrhage [20]. The pathogenesis of bleed-
ing complications in ET patients is likely multifactorial, in-
cluding alterations of primary hemostasis (mainly related 
to vascular endothelial cells dysfunction), AvWS, as well 
as quantitative and qualitative platelets abnormalities. It 
has been also postulated that anti-platelets drug and/or 
anticoagulants administration may influence the bleeding 
risk in individual patients.

It has been shown that bleeding episodes are more fre-
quently observed in MPN patients who have been treated 
with anti-platelet or anticoagulant drugs (61.3% at time of 
diagnosis vs. 72.4% at time of bleeding) [20]. The risk of 
bleeding with prominent thrombocytosis is even more evi-
dent than an increased risk for thrombosis [31], and ma-
jor bleeding risk is higher in patients with platelet count 
>1,000.0 ×109/L receiving anti-platelet therapy [32]. Re-
cent data shows that prophylactic administration of ASA 
exacerbates the risk of bleeding, particularly in CALR-mu-
tated ET patients, independently from the platelet count 
[20]. Interestingly, in JAK2V617F-mutated ET patients, low-
dose ASA administration is associated with no effect on the 
risk of bleeding [32].

Clinical significance of extreme 
thrombocytosis in ET patients

At the time of diagnosis, extreme thrombocytosis (ExT, 
defined as a platelet count ≥1,000.0 ×109/L) is present 
in 22% of ET patients [33, 34]. In the Mayo Clinic MPN 
database, 18% of adult patients (192/1,070) with ET were 
aged below 40 and 50% of them presented ExT at the time 
of diagnosis. Driver mutational status analysis revealed that 
young patients with ExT harbored the CALR gene mutation 
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more frequently than the JAK2 mutation (46% vs. 35%). 
The frequency of arterial thrombosis and major hemor-
rhage rates at, or prior to, diagnosis also differs between 
young ET patients with and without ExT (2% vs. 8% and 
15% vs. 7%, respectively). Previous data implied that ExT 
was an independent risk factor for leukemic transforma-
tion of ET [12]. This was confirmed by recently published 
results showing that ExT is an independent predictor of 
leukemia-free survival and overall survival in ET patients 
aged below 40 [35].

Role of driver mutations  
in pathogenesis of bleeding  
in patients with essential thrombocythemia

It cannot be excluded that driver mutation-specific abnor-
malities of platelet function play an important role in the 
pathogenesis of bleeding complications in ET patients. The 
data published so far in this field is limited. It has been 
documented that abnormal function of Janus kinase 2, the 
signal transducer and activator of transcription pathway 

Table I. Thrombotic risk factors and thrombosis risk categories in essential thrombocytosis patients 

Scale/risk IPSET-thrombosis Revised IPSET-thrombosis Mutation-Enhanced International 
Prognostic System (MIPSS-ET)

Factors Age >60 years =1 point

Cardiovascular risk factors (tobacco 
use, diabetes, hypercholesterolemia, 
hypertension) =1 point

Previous thrombosis =2 points

JAK2V617F =2 points

Thrombosis
Age
JAK/MPL mutation

Adverse mutations
SRSF2, SF3B1, U2AF1, TP53 =2 points
Age >60 years =4 points
Male sex =1 point
Leukocyte count ≥11.0 ×109/L =1 point

Category Low: 0–1 point
Intermediate: 2 points
High: ≥3 points

Very low
No thrombosis history
Age ≤60 years
No JAK2 or MPL gene mutation
Low
No thrombosis history
Age ≤60 years
JAK2 or MPL mutation
Intermediate
No thrombosis history
Age >60 years
No JAK2 or MPL mutation
High
Thrombosis history
Age >60 years 
JAK2 or MPL mutation

Low: 0–1 point
Intermediate: 2–3 points
High: ≥4 points

Table II. Postulated bleeding risk factors in essential thrombocythemia patients

Author Bleeding risk factor

Rumi et al. [13] 1. History of previous major bleeding

2. Platelet count ≥1,500.0 ×109/L

Tefferi et al. [26, 27] 3. Ristocetin cofactor activity <30%

4. CALR mutation*#

5. Clonal hematopoiesis indeterminate potential (CHIP) associated mutations — i.e. IDH2*

6. Germline polymorphisms predisposing for bleeding

*Postulated, #documented in the case of antiplatelet drug administration
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(JAK2-STAT pathway), may be responsible for abnormal 
platelets function in platelet aggregation studies. The 
phosphorylation of JAK2 in thrombin stimulated human 
platelets was previously reported by Rodriguez-Linares et al. 
[36]. Also, the regulatory role of STAT3 in collagen-induced 
platelet aggregation was confirmed by Zhou et al. in 2013 
[37]. The involvement of JAK2-STAT3 pathway in the process 
of collagen-induced platelet activation through the activa-
tion of JAK2-JNK/PKC-STAT3 signaling was documented by 
Lu et al. [38]. The critical role of JAK2 in this process was 
supported by the observation that JAK2 inhibitor AG490 
(tyrphostin) attenuated collagen-induced platelet aggrega-
tion and calcium mobilization in a concentration-dependent 
manner [38].

Potential role of calreticulin 
in bleeding predisposition

CALR is made up of three protein domains: 1) an amino 
N-terminal lectin binding domain containing an endoplas-
matic reticulum (ER) targeting signal sequence; 2) a pro
line-rich P-domain containing high-affinity binding sites for 
Ca2+; and 3) a C-domain containing multiple low-affinity 
Ca2+-binding sites and an ER retention signal (KDEL). Within 
the endoplasmatic reticulum, CALR participates in the 
control process of newly synthesized proteins (conforma-
tional dependent molecular sorting). Misfolded or unfolded 
proteins are retained in the ER, thereafter transported to 
the cytosol, and finally ubiquinated and degradated by the 
proteasome [39]. Due to the physiological role of CALR 
and the key role of calcium ions homeostasis and calcium 
ions flow in platelets, it is possible that abnormal cellular 
localization of CALR and abnormal CALR-associated cel-
lular storage of calcium ions (including megakaryocytes 
and platelets) may be responsible for abnormal platelet 
function and an increased risk of bleeding. In 2009, Reilly 
et al. [40] demonstrated that calreticulin in platelets was 
localized to the granulomere. Co-immunoprecipitation 
techniques, however, did not show an interaction between 
calreticulin and platelet glykoprotein αIIbβ3 under various 
platelet activation states. 

In 2013, Klampfl et al. [41] and Nangalia et al. [42] de-
scribed new genetic variants of CALR in patients with ET 
and primary myelofibrosis. More than 50 different types 
of CALR exon 9 mutants have been found in ET patients. 
All of these mutants lead to a 1-bp frameshift and loss 
of the KDEL sequence (endoplasmatic reticulum reten-
tion peptide) and the original CALR stop codon [43]. The 
most frequent variants, type 1 (c.1092_1143del) and type 
2 (c.1154_1155insTTGTC), account for c. 80% of all CALR 
mutations. Type 1 mutations are more frequent, account-
ing for c.50% of CALR-mutated cases of ET. Recently, it 
was shown that CALR mutations promoted the formation 
of abnormal protein chaperone complexes, which resulted 

in its mislocalization to the nucleus to enhanced MPL tran-
scription due to increased recruitment of Friend leukemia 
integration 1 transcription factor (FLI1), ERp57, and CALR 
to the MPL promoter [44–47].

The abovementioned abnormalities may have resulted 
in an increase in platelets production. However, the role of 
mutant CALR protein on platelet function is still an open 
question. Recently published data has shed light on this 
field, stressing the role of abnormal interaction between 
proteins in the calnexin pathway. The calnexin pathway in-
cludes, among others, thiol isomerase ERp57 (ER protein 
57, ERp57), calnexin and its soluble homolog, calreticulin, 
and is dedicated for N-glycosylated proteins folding in ER 
[48]. Under physiological conditions, ERp57 is mobilized to 
the surface of activated platelets, regulating their function 
(platelet aggregation, dense granule secretion, fibrinogen 
binding, calcium mobilization and thrombus formation) [49, 
50]. Moreover, ERp57 modulates store-operated calcium 
(Ca2+) entry (SOCE) activity, a key regulator of megakaryo-
poiesis. The abovementioned process is mediated by the 
C-terminal domain of CALR protein which is deleted in the 
case of CALR mutants [51, 52]. The regulatory role of the 
C-domain of CALR on SOCE was confirmed by experimen-
tal results documenting significantly increased SOCE in 
megakaryocytes positive for the CALR mutation [47], and 
interactome data confirming that CALRwt binds directly to 
ERp57, but CALRmut does not [44, 53].

The hypothesis that CALR mutants can affect not only 
the platelet number, but also their function, was confirmed 
by Hauschner et al. [54], who showed that after ADP stim-
ulation aggregation of CALR mutated platelets was less 
pronounced that in the case of normal or JAK2 mutated 
platelets. Moreover, CALR mutated platelets attachment 
to immobilized fibrinogen and the number of CALR mutat-
ed platelets achieving the fully spread state is lower than 
in the case of normal and JAK2 mutated platelets. This is 
accomplished by an increased and more dispersed local-
ization of intracellular free Ca2+ in the case of CARL muta-
tion positive platelets. The abovementioned data may, at 
least in part, explain the increased bleeding frequency ob-
served in CALR mutation positive MPN patients who have 
been treated with anti-aggregatory drugs.

Other potential molecular aberrations 
affecting thrombotic and bleeding risks

The occurrence of thrombotic and/or bleeding complications 
is very typical in manifestations of ET, with cases of both oc-
curring in the same patient. The thrombotic or bleeding phe-
notype may be a consequence of the coexistence of driving 
and non-driving molecular mutations and polymorphisms, 
affecting the platelet number and function. Lindstrom et 
al. [55], with the help of a genome-wide association study 
(GWAS) and a transcriptome-wide association study (TWAS), 
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identified 16 novel susceptibility loci for venous thromboem-
bolism. Some of them (GP6, ZFPM2) have been associated 
with megakaryopoiesis and platelet biology [55].

In 2020, Veninga et al. [56] documented a predispo-
sition for thrombosis and bleeding in patients with clonal 
hematopoiesis of indeterminate potential (CHIP). According 
to this concept, in ET patients carrying the CHIP-associat-
ed gene mutations, the risk of thrombosis may be affected 
by elevated platelet counts (i.e. ABCB6, ASXL1, DNMT3A, 
GATA1, SF3B1, SH2B3) or elevated platelet counts and 
hyper-reactive platelet phenotype (ABCB6 and SH2B3). On 
the contrary, the coexistence of CHIP-associated IDH2 mu-
tations may result in an increase in the platelet count and 
bleeding phenotype.

Conclusion

Thrombotic and bleeding risk assessment is an essential 
part of the treatment strategy in ET patients. However, labo-
ratory and clinical data should be interpreted with caution, 
especially in CALR mutation positive individuals who can 
experience bleeding episodes during anti-platelet therapy. 
Also, molecular study results should be carefully analyzed, 
since data from the COSMIC database has revealed 155 
different CALR variants, including the newly created class E  
(about 10% of CALR variants) which seems not be to as-
sociated with ET [57].
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