Endothelial dysfunction and thrombosis in polycythemia vera
Abstract
Polycythemia vera (PV) is a chronic myeloproliferative neoplasm with an increased risk of thrombotic events. Endothelial dysfunction is a pathogenetic mechanism contributing to thrombus formation in PV. The presence of the JAK2 V617F mutation is associated with an increased risk of thrombosis due to changes in endothelial homeostasis mediated by overexpression of pro-adhesive and proinflammatory agents. Cytoreductive treatment that decreases the JAK2 allele burden and inhibits the JAK/STAT signaling pathway is potentially more effective in thrombosis prevention than drugs that are less effective in the reduction of the JAK2 allele burden. This review aims to present the spectrum of endothelial dysfunction and the impact of cytoreductive treatment on the condition of endothelial cells and thrombosis risk in patients suffering from polycythemia vera.
Keywords: polycythemia veraendotheliumendothelial dysfunctionthrombosisthrombotic complications
References
- Polycythemia vera: the natural history of 1213 patients followed for 20 years. Gruppo Italiano Studio Policitemia. Ann Intern Med. 1995; 123(9): 656–664.
- Tefferi A, Elliott M. Thrombosis in myeloproliferative disorders: prevalence, prognostic factors, and the role of leukocytes and JAK2V617F. Semin Thromb Hemost. 2007; 33(4): 313–320.
- Vannucchi AM. Insights into the pathogenesis and management of thrombosis in polycythemia vera and essential thrombocythemia. Intern Emerg Med. 2010; 5(3): 177–184.
- Barbui T, Vannucchi AM, Finazzi G, et al. A reappraisal of the benefit-risk profile of hydroxyurea in polycythemia vera: A propensity-matched study. Am J Hematol. 2017; 92(11): 1131–1136.
- Hasselbalch HC, Elvers M, Schafer AI. The pathobiology of thrombosis, microvascular disease, and hemorrhage in the myeloproliferative neoplasms. Blood. 2021; 137(16): 2152–2160.
- Griesshammer M, Kiladjian JJ, Besses C. Thromboembolic events in polycythemia vera. Ann Hematol. 2019; 98(5): 1071–1082.
- Cerquozzi S, Barraco D, Lasho T, et al. Risk factors for arterial versus venous thrombosis in polycythemia vera: a single center experience in 587 patients. Blood Cancer J. 2017; 7(12): 662.
- Grunwald MR, Stein BL, Boccia RV, et al. Clinical and Disease Characteristics From REVEAL at Time of Enrollment (Baseline): Prospective Observational Study of Patients With Polycythemia Vera in the United States. Clin Lymphoma Myeloma Leuk. 2018; 18(12): 788–795.e2.
- Beauverd Y, Ianotto JC, Thaw K, et al. Impact of Cytoreductive Drugs upon Outcomes in a Contemporary Cohort of Adolescent and Young Adults with Essential Thrombocythemia and Polycythemia Vera. Blood. 2023; 142(Supplement 1): 748–748.
- Moliterno AR, Ginzburg YZ, Hoffman R. Clinical insights into the origins of thrombosis in myeloproliferative neoplasms. Blood. 2021; 137(9): 1145–1153.
- Marchioli R, Finazzi G, Specchia G, et al. Cardiovascular Events and Intensity of Treatment in Polycythemia Vera. New England Journal of Medicine. 2013; 368(1): 22–33.
- Barbui T, Carobbio A, Rumi E, et al. In contemporary patients with polycythemia vera, rates of thrombosis and risk factors delineate a new clinical epidemiology. Blood. 2014; 124(19): 3021–3023.
- Verstovsek S, Pemmaraju N, Reaven NL, et al. Real-world treatments and thrombotic events in polycythemia vera patients in the USA. Ann Hematol. 2023; 102(3): 571–581.
- Szuber N, Mudireddy M, Nicolosi M, et al. 3023 Mayo Clinic Patients With Myeloproliferative Neoplasms: Risk-Stratified Comparison of Survival and Outcomes Data Among Disease Subgroups. Mayo Clin Proc. 2019; 94(4): 599–610.
- Kroll MH, Michaelis LC, Verstovsek S. Mechanisms of thrombogenesis in polycythemia vera. Blood Rev. 2015; 29(4): 215–221.
- Stein BL, Martin K. From Budd-Chiari syndrome to acquired von Willebrand syndrome: thrombosis and bleeding complications in the myeloproliferative neoplasms. Hematology Am Soc Hematol Educ Program. 2019; 2019(1): 397–406.
- Falanga A, Marchetti M. Thrombotic disease in the myeloproliferative neoplasms. Hematology Am Soc Hematol Educ Program. 2012; 2012(1): 571–581.
- Yau JW, Teoh H, Verma S. Endothelial cell control of thrombosis. BMC Cardiovasc Disord. 2015; 15: 130.
- Wakefield TW, Myers DD, Henke PK. Mechanisms of venous thrombosis and resolution. Arterioscler Thromb Vasc Biol. 2008; 28(3): 387–391.
- Cacciola R, Gentilini Cacciola E, Vecchio V, et al. Impact of Anti-Endothelial Cell Antibodies (AECAs) in Patients with Polycythemia Vera and Thrombosis. Diagnostics (Basel). 2022; 12(5).
- Krüger-Genge A, Blocki A, Franke RP, et al. Vascular Endothelial Cell Biology: An Update. Int J Mol Sci. 2019; 20(18).
- Guadall A, Lesteven E, Letort G, et al. Endothelial Cells Harbouring the JAK2V617F Mutation Display Pro-Adherent and Pro-Thrombotic Features. Thromb Haemost. 2018; 118(9): 1586–1599.
- Guy A, Gourdou-Latyszenok V, Le Lay N, et al. Vascular endothelial cell expression of JAK2 is sufficient to promote a pro-thrombotic state due to increased P-selectin expression. Haematologica. 2019; 104(1): 70–81.
- Farina M, Russo D, Hoffman R. The possible role of mutated endothelial cells in myeloproliferative neoplasms. Haematologica. 2021; 106(11): 2813–2823.
- Kietzmann T. JAK2 and Endothelial Function: New Options for Anti-Thrombotic Therapies. Thromb Haemost. 2018; 118(9): 1512–1514.
- De Gr, Cambot M, Wautier MP, et al. JAK2V617F activates Lu/BCAM-mediated red cell adhesion in polycythemia vera through an EpoR-independent Rap1/Akt pathway. Blood. 2013; 121(4): 658–65.
- Lu WJ, Lin KC, Huang SY, et al. Role of a Janus kinase 2-dependent signaling pathway in platelet activation. Thromb Res. 2014; 133(6): 1088–1096.
- Guglielmelli P, Loscocco GG, Mannarelli C, et al. JAK2V617F variant allele frequency >50% identifies patients with polycythemia vera at high risk for venous thrombosis. Blood Cancer J. 2021; 11(12): 199.
- Tefferi A, Barbui T. Polycythemia vera: 2024 update on diagnosis, risk-stratification, and management. Am J Hematol. 2023; 98(9): 1465–1487.
- Marchetti M, Vannucchi AM, Griesshammer M, et al. Appropriate management of polycythaemia vera with cytoreductive drug therapy: European LeukemiaNet 2021 recommendations. Lancet Haematol. 2022; 9(4): e301–e311.
- Marchioli R, Finazzi G, Specchia G, et al. Cardiovascular Events and Intensity of Treatment in Polycythemia Vera. New England Journal of Medicine. 2013; 368(1): 22–33.
- Abu-Zeinah G, Krichevsky S, Cruz T, et al. Interferon-alpha for treating polycythemia vera yields improved myelofibrosis-free and overall survival. Leukemia. 2021; 35(9): 2592–2601.
- Alvarez-Larrán A, Pérez-Encinas M, Ferrer-Marín F, et al. Grupo Español de Neoplasias Mieloproliferativas Filadelfia Negativas. Risk of thrombosis according to need of phlebotomies in patients with polycythemia vera treated with hydroxyurea. Haematologica. 2017; 102(1): 103–109.
- Harrison CN, Nangalia J, Boucher R, et al. Ruxolitinib Versus Best Available Therapy for Polycythemia Vera Intolerant or Resistant to Hydroxycarbamide in a Randomized Trial. J Clin Oncol. 2023; 41(19): 3534–3544.
- Sergueeva A, Miasnikova G, Lisina E, et al. Thrombotic Complications Are Associated with Phlebotomy Therapy in Patients with Chuvash Polycythemia. Blood. 2015; 126(23): 936–936.
- Song J, Sergueeva A, Miasnikova G, et al. Phlebotomy-Induced Iron Deficiency Increases the Expression of Prothrombotic Genes. Blood. 2020; 136(Supplement 1): 11–12.
- Jimenez K, Leitner F, Leitner A, et al. Iron deficiency-induced thrombocytosis increases thrombotic tendency in rats. Haematologica. 2021; 106(3): 782–794.
- Jimenez K, Khare V, Evstatiev R, et al. Increased expression of HIF2α during iron deficiency-associated megakaryocytic differentiation. J Thromb Haemost. 2015; 13(6): 1113–1127.
- Timson J. Hydroxyurea. Mutat Res 1975: 115–32.
- Brun M, Bourdoulous S, Couraud PO, et al. Hydroxyurea downregulates endothelin-1 gene expression and upregulates ICAM-1 gene expression in cultured human endothelial cells. Pharmacogenomics J. 2003; 3(4): 215–226.
- Chenou F, Hounkpe BW, Domingos Id, et al. Effect of hydroxyurea therapy on intravascular hemolysis and endothelial dysfunction markers in sickle cell anemia patients. Ann Hematol. 2021; 100(11): 2669–2676.
- Cokic VP, Beleslin-Cokic BB, Tomic M, et al. Hydroxyurea induces the eNOS-cGMP pathway in endothelial cells. Blood. 2006; 108(1): 184–191.
- Elsherif L, Scott LC, Wichlan D, et al. Hydroxyurea therapy decreases coagulation and endothelial activation in sickle cell disease: a Longitudinal Study. Br J Haematol. 2021; 194(3): e71–e73.
- Brusson M, De Gr, Cochet S, et al. Impact of hydroxycarbamide and interferon-α on red cell adhesion and membrane protein expression in polycythemia vera. Haematologica. 2018; 103(6): 972–981.
- Kiladjian JJ, Cassinat B, Chevret S, et al. Pegylated interferon-alfa-2a induces complete hematologic and molecular responses with low toxicity in polycythemia vera. Blood. 2008; 112(8): 3065–3072.
- Gisslinger H, Zagrijtschuk O, Buxhofer-Ausch V, et al. Ropeginterferon alfa-2b, a novel IFNα-2b, induces high response rates with low toxicity in patients with polycythemia vera. Blood. 2015; 126(15): 1762–1769.
- How J, Hobbs G. Use of Interferon Alfa in the Treatment of Myeloproliferative Neoplasms: Perspectives and Review of the Literature. Cancers (Basel). 2020; 12(7).
- Riley CH, Brimnes MK, Hansen M, et al. Interferon-α induces marked alterations in circulating regulatory T cells, NK cell subsets, and dendritic cells in patients with JAK2V617F-positive essential thrombocythemia and polycythemia vera. Eur J Haematol. 2016; 97(1): 83–92.
- Kiladjian JJ, Giraudier S, Cassinat B. Interferon-alpha for the therapy of myeloproliferative neoplasms: targeting the malignant clone. Leukemia. 2016; 30(4): 776–781.
- Gisslinger H, Klade C, Georgiev P, et al. PROUD-PV Study Group. Ropeginterferon alfa-2b versus standard therapy for polycythaemia vera (PROUD-PV and CONTINUATION-PV): a randomised, non-inferiority, phase 3 trial and its extension study. Lancet Haematol. 2020; 7(3): e196–e208.
- Barbui T, Vannucchi AM, De Stefano V, et al. Ropeginterferon alfa-2b versus phlebotomy in low-risk patients with polycythaemia vera (Low-PV study): a multicentre, randomised phase 2 trial. Lancet Haematol. 2021; 8(3): e175–e184.
- Utke Rank C, Weis Bjerrum O, Larsen TS, et al. Minimal residual disease after long-term interferon-alpha2 treatment: a report on hematological, molecular and histomorphological response patterns in 10 patients with essential thrombocythemia and polycythemia vera. Leuk Lymphoma. 2016; 57(2): 348–354.
- Verger E, Soret-Dulphy J, Maslah N, et al. Ropeginterferon alpha-2b targets JAK2V617F-positive polycythemia vera cells in vitro and in vivo. Blood Cancer J. 2018; 8(10): 94.
- Stauffer Larsen T, Iversen KF, Hansen E, et al. Long term molecular responses in a cohort of Danish patients with essential thrombocythemia, polycythemia vera and myelofibrosis treated with recombinant interferon alpha. Leuk Res. 2013; 37(9): 1041–1045.
- Crisà E, Cerrano M, Beggiato E, et al. Can pegylated interferon improve the outcome of polycythemia vera patients? J Hematol Oncol. 2017; 10(1): 15.
- Gisslinger H, Klade C, Georgiev P, et al. PROUD-PV Study Group. Event-free survival in patients with polycythemia vera treated with ropeginterferon alfa-2b versus best available treatment. Leukemia. 2023; 37(10): 2129–2132.
- Thacker SG, Zhao W, Smith CK, et al. Type I interferons modulate vascular function, repair, thrombosis, and plaque progression in murine models of lupus and atherosclerosis. Arthritis Rheum. 2012; 64(9): 2975–2985.
- Lee PY, Li Yi, Richards HB, et al. Type I interferon as a novel risk factor for endothelial progenitor cell depletion and endothelial dysfunction in systemic lupus erythematosus. Arthritis Rheum. 2007; 56(11): 3759–3769.
- Jones Buie JN, Oates JC. Role of interferon alpha in endothelial dysfunction: insights into endothelial nitric oxide synthase-related mechanisms. Am J Med Sci. 2014; 348(2): 168–175.
- Faille D, Lamrani L, Loyau S, et al. Interferon Alpha Therapy Increases Pro-Thrombotic Biomarkers in Patients with Myeloproliferative Neoplasms. Cancers (Basel). 2020; 12(4).
- How J, Hobbs G. Use of Interferon Alfa in the Treatment of Myeloproliferative Neoplasms: Perspectives and Review of the Literature. Cancers (Basel). 2020; 12(7).
- Barbui T, Carobbio A, De Stefano V. Thrombosis in myeloproliferative neoplasms during cytoreductive and antithrombotic drug treatment. Res Pract Thromb Haemost. 2022; 6(1): e12657.
- Skov V, Thomassen M, Kjær L, et al. Interferon-alpha2 treatment of patients with polycythemia vera and related neoplasms favorably impacts deregulation of oxidative stress genes and antioxidative defense mechanisms. PLoS One. 2022; 17(6): e0270669.
- Bjørn ME, Hasselbalch HC. The Role of Reactive Oxygen Species in Myelofibrosis and Related Neoplasms. Mediators Inflamm. 2015; 2015: 648090.
- Sørensen AL, Hasselbalch HC, Bjørn ME, et al. Elevated levels of oxidized nucleosides in individuals with the JAK2V617F mutation from a general population study. Redox Biol. 2021; 41: 101895.
- Mascarenhas J, Kosiorek HE, Prchal JT, et al. A randomized phase 3 trial of interferon-α vs hydroxyurea in polycythemia vera and essential thrombocythemia. Blood. 2022; 139(19): 2931–2941.
- Mascarenhas J, Hoffman R. Ruxolitinib: the first FDA approved therapy for the treatment of myelofibrosis. Clin Cancer Res. 2012; 18(11): 3008–3014.
- Beckman JD, DaSilva A, Aronovich E, et al. JAK-STAT inhibition reduces endothelial prothrombotic activation and leukocyte-endothelial proadhesive interactions. J Thromb Haemost. 2023; 21(5): 1366–1380.
- DaSilva A, Aronovich E, Nguyen A, et al. Ruxolitinib Reduces Endothelial Pro-Adhesive Interactions: Implications for JAK2V617+ MPN Thrombosis. Blood. 2020; 136(Supplement 1): 1–1.
- Wolach O, Sellar RS, Martinod K, et al. Increased neutrophil extracellular trap formation promotes thrombosis in myeloproliferative neoplasms. Sci Transl Med. 2018; 10(436).
- Masciulli A, Ferrari A, Carobbio A, et al. Ruxolitinib for the prevention of thrombosis in polycythemia vera: a systematic review and meta-analysis. Blood Adv. 2020; 4(2): 380–386.
- Curto-Garcia N, Baxter J, Harris E, et al. S1607 MOLECULAR ANALYSIS IN MAJIC PV CORRELATION WITH CLINICAL ENDPOINTS. HemaSphere. 2019; 3(S1): 740.
- Sozer S, Fiel MI, Schiano T, et al. The presence of JAK2V617F mutation in the liver endothelial cells of patients with Budd-Chiari syndrome. Blood. 2009; 113(21): 5246–5249.
- Rosti V, Villani L, Riboni R, et al. Associazione Italiana per la Ricerca sul Cancro Gruppo Italiano Malattie Mieloproliferative (AGIMM) investigators. Spleen endothelial cells from patients with myelofibrosis harbor the JAK2V617F mutation. Blood. 2013; 121(2): 360–368.
- Teofili L, Martini M, Iachininoto MG, et al. Endothelial progenitor cells are clonal and exhibit the JAK2(V617F) mutation in a subset of thrombotic patients with Ph-negative myeloproliferative neoplasms. Blood. 2011; 117(9): 2700–2707.
- Scherber RM, Geyer HL, Dueck AC, et al. The potential role of hematocrit control on symptom burden among polycythemia vera patients: Insights from the CYTO-PV and MPN-SAF patient cohorts. Leuk Lymphoma. 2017; 58(6): 1481–1487.
- Verden A, Dimbil Mo, Kyle R, et al. Analysis of Spontaneous Postmarket Case Reports Submitted to the FDA Regarding Thromboembolic Adverse Events and JAK Inhibitors. Drug Saf. 2018; 41(4): 357–361.