Vol 55, No 4 (2024)
Review article
Published online: 2024-08-29

open access

Page views 24
Article views/downloads 10
Get Citation

Connect on Social Media

Connect on Social Media

Therapy-related myeloid malignancies in patients with multiple myeloma.

Tadeusz Kubicki12, Monika Adamska2, Krzysztof Żyłka2, Dominik Dytfeld2, Lidia Gil2
DOI: 10.5603/ahp.101051
Acta Haematol Pol 2024;55(4):192-201.

Abstract

The significant advances in the efficacy of myeloma treatment in recent years have brought greater focus to the issues of long-term therapy complications. Therapy-related myeloid neoplasms are among the most severe secondary malignancies that can arise as a consequence of myeloma treatment. Although this complication is relatively rare, the prognosis for the small subset of patients who experience it is bleak. This review describes the incidence, pathogenesis, risk factors, and prognosis of acute myeloid leukemia and myelodysplastic neoplasms related to cytotoxic therapy in multiple myeloma patients.

Article available in PDF format

View PDF (Polish) Download PDF file

References

  1. Siegel R, Miller K, Fuchs H, et al. Cancer statistics, 2022. CA Cancer J Clin. 2022; 72(1): 7–33.
  2. Costa L, Brill I, Omel J, et al. Recent trends in multiple myeloma incidence and survival by age, race, and ethnicity in the United States. Blood Advances. 2017; 1(4): 282–287.
  3. Eisfeld C, Kajüter H, Möller L, et al. Time trends in survival and causes of death in multiple myeloma: a population-based study from Germany. BMC Cancer. 2023; 23(1): 317.
  4. San-Miguel J, Dhakal B, Yong K, et al. Cilta-cel or standard care in lenalidomide-refractory multiple myeloma. N Eng J Med. 2023; 389(4): 335–347.
  5. Sonneveld P, Dimopoulos M, Boccadoro M, et al. Daratumumab, bortezomib, lenalidomide, and dexamethasone for multiple myeloma. N Engl J Med. 2024; 390(4): 301–313.
  6. Kubicki T, Jamroziak K, Robak P, et al. Health-related quality of life in patients with multiple myeloma treated in the phase 3 ATLAS trial of post-transplant maintenance with carfilzomib, lenalidomide, dexamethasone or lenalidomide alone. Pol Arch Intern Med. 2024; 134(5): 16749.
  7. Jurczyszyn A, Charliński G, Vesole D. Supportive care in multiple myeloma. Acta Haematol Pol. 2022; 53(4): 227–240.
  8. Godley L, Njiaju U, Green M, et al. Treatment of therapy-related myeloid neoplasms with high-dose cytarabine/mitoxantrone followed by hematopoietic stem cell transplant. Leuk Lymphoma. 2010; 51(6): 995–1006.
  9. Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016; 127(20): 2391–2405.
  10. Khoury JD, Solary E, Abla O, et al. The 5th edition of the World Health Organization Classification of haematolymphoid tumours: myeloid and histiocytic/dendritic neoplasms. Leukemia. 2022; 36(7): 1703–1719.
  11. Mądry K, Drozd-Sokołowska J, Lis K, et al. Diagnosis of myelodysplastic syndromes in Poland: Polish Adult Leukemia Group (PALG) 2021 recommendations. Acta Haematol Pol. 2022; 53(1): 3–18.
  12. Arber D, Orazi A, Hasserjian R, et al. International Consensus Classification of myeloid neoplasms and acute leukemias: integrating morphologic, clinical, and genomic data. Blood. 2022; 140(11): 1200–1228.
  13. Larson R. Cytogenetics, not just previous therapy, determines the course of therapy-related myeloid neoplasms. J Clin Oncol. 2012; 30(19): 2300–2302.
  14. Morton LM, Dores GM, Tucker MA, et al. Evolving risk of therapy-related acute myeloid leukemia following cancer chemotherapy among adults in the United States, 1975-2008. Blood. 2013; 121(15): 2996–3004.
  15. Kayser S, Döhner K, Krauter J, et al. German-Austrian AMLSG. The impact of therapy-related acute myeloid leukemia (AML) on outcome in 2853 adult patients with newly diagnosed AML. Blood. 2011; 117(7): 2137–2145.
  16. Chantadisai M, Kulkarni HR, Baum RP. Therapy-related myeloid neoplasm after peptide receptor radionuclide therapy (PRRT) in 1631 patients from our 20 years of experiences: prognostic parameters and overall survival. Eur J Nucl Med Mol Imaging. 2021; 48(5): 1390–1398.
  17. Morton L, Dores G, Schonfeld S, et al. Association of chemotherapy for solid tumors with development of therapy-related myelodysplastic syndrome or acute myeloid leukemia in the modern era. JAMA Oncol. 2019; 5(3): 318.
  18. Strzałka P, Czemerska M, Krawiec K, et al. Characterization and prognostic factors of secondary to MDS/MPN and therapy-related AML: a single-center study. Acta Haematol Pol. 2023; 54(3): 176–186.
  19. Kantarjian H, Estey E, Keating M. Treatment of therapy-related leukemia and myelodysplastic syndrome. Hematol Oncol Clin North Am. 1993; 7(1): 81–107.
  20. Larson RA, Wernli M, Le Beau MM, et al. Short remission durations in therapy-related leukemia despite cytogenetic complete responses to high-dose cytarabine. Blood. 1988; 72(4): 1333–1339.
  21. Fianchi L, Pagano L, Piciocchi A, et al. Characteristics and outcome of therapy‐related myeloid neoplasms: Report from the Italian network on secondary leukemias. Am J Hematol. 2015; 90(5): E80-5.
  22. Dores GM, Devesa SS, Curtis RE, et al. Acute leukemia incidence and patient survival among children and adults in the United States, 2001-2007. Blood. 2012; 119(1): 34–43.
  23. Østgård LG, Medeiros B, Sengeløv H, et al. Epidemiology and clinical significance of secondary and therapy-related acute myeloid leukemia: a national population-based cohort study. J Clin Oncol. 2015; 33(31): 3641–3649.
  24. Metafuni E, Chiusolo P, Laurenti L, et al. Allogeneic hematopoietic stem cell transplantation in therapy-related myeloid neoplasms (t-MN) of the adult: monocentric observational study and review of the literature. Mediterr J Hematol Infect Dis. 2018; 10(1): e2018005.
  25. Strickland S, Vey N. Diagnosis and treatment of therapy-related acute myeloid leukemia. Crit Rev Oncol Hematol. 2022; 171: 103607.
  26. Heuser M. Therapy-related myeloid neoplasms: does knowing the origin help to guide treatment? Hematology Am Soc Hematol Educ Program. 2016; 2016(1): 24–32.
  27. McNerney M, Godley L, Beau MLe. Therapy-related myeloid neoplasms: when genetics and environment collide. Nat Rev Cancer. 2017; 17(9): 513–527.
  28. Awada H, Kuzmanovic T, Kishtagari A, et al. Mutational patterns and clonal architecture of therapy-related acute myeloid leukemia. Blood. 2019; 134(Supplement_1): 1405–1405.
  29. Ma J, Wang Y. Myeloid neoplasms post cytotoxic therapy: epidemiology, pathogenesis outcomes, prognostic factors, and treatment options. Ann Med. 2024; 56(1): 2329132.
  30. Ley TL, Miller C, Ding L, et al. Cancer Genome Atlas Research Network. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013; 368(22): 2059–2074.
  31. Ding Li, Ley T, Larson D, et al. Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature. 2012; 481(7382): 506–510.
  32. Gill H, Leung A, Kwong YL. Molecular and cellular mechanisms of myelodysplastic syndrome: implications on targeted therapy. Int J Mol Sci. 2016; 17(4): 440.
  33. Jentzsch M, Grimm J, Bill M, et al. ELN risk stratification and outcomes in secondary and therapy-related AML patients consolidated with allogeneic stem cell transplantation. Bone Marrow Transplant. 2021; 56(4): 936–945.
  34. Lancet J, Uy G, Newell L, et al. CPX-351 versus 7+3 cytarabine and daunorubicin chemotherapy in older adults with newly diagnosed high-risk or secondary acute myeloid leukaemia: 5-year results of a randomised, open-label, multicentre, phase 3 trial. Lancet Haematol. 2021; 8(7): e481–e491.
  35. Uy G, Newell L, Lin T, et al. Transplant outcomes after CPX-351 vs 7 + 3 in older adults with newly diagnosed high-risk and/or secondary AML. Blood Adv. 2022; 6(17): 4989–4993.
  36. Dombret H, Seymour JF, Butrym A, et al. International phase 3 study of azacitidine vs conventional care regimens in older patients with newly diagnosed AML with >30% blasts. Blood. 2015; 126(3): 291–299.
  37. Kantarjian H, Thomas X, Dmoszynska A, et al. Multicenter, randomized, open-label, phase III trial of decitabine versus patient choice, with physician advice, of either supportive care or low-dose cytarabine for the treatment of older patients with newly diagnosed acute myeloid leukemia. J Clin Oncol. 2012; 30(21): 2670–2677.
  38. Konopleva M, Pollyea DA, Potluri J, et al. Efficacy and biological correlates of response in a phase II study of venetoclax monotherapy in patients with acute myelogenous leukemia. Cancer Discov. 2016; 6(10): 1106–1117.
  39. DiNardo C, Jonas B, Pullarkat V, et al. Azacitidine and venetoclax in previously untreated acute myeloid leukemia. N Eng J Med. 2020; 383(7): 617–629.
  40. Wei A, Montesinos P, Ivanov V, et al. Venetoclax plus LDAC for newly diagnosed AML ineligible for intensive chemotherapy: a phase 3 randomized placebo-controlled trial. Blood. 2020; 135(24): 2137–2145.
  41. Daver N, Garcia-Manero G, Basu S, et al. Efficacy, safety, and biomarkers of response to azacitidine and nivolumab in relapsed/refractory acute myeloid leukemia: a nonrandomized, open-label, phase II study. Cancer Discov. 2019; 9(3): 370–383.
  42. Paschka P, Schlenk RF, Weber D, et al. Adding dasatinib to intensive treatment in core-binding factor acute myeloid leukemia-results of the AMLSG 11-08 trial. Leukemia. 2018; 32(7): 1621–1630.
  43. Cluzeau T, Sebert M, Rahmé R, et al. APR-246 combined with azacitidine (AZA) in TP53 mutated myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). a phase 2 study by the Groupe Francophone Des Myélodysplasies (GFM). Blood. 2019; 134(Supplement_1): 677–677.
  44. Aldoss I, Uy G, Vey N, et al. Flotetuzumab as salvage therapy for primary induction failure and early relapse acute myeloid leukemia. Blood. 2020; 136(Supplement 1): 16–18.
  45. Mailankody S, Pfeiffer RM, Kristinsson SY, et al. Risk of acute myeloid leukemia and myelodysplastic syndromes after multiple myeloma and its precursor disease (MGUS). Blood. 2011; 118(15): 4086–4092.
  46. Roeker LE, Larson DR, Kyle RA, et al. Risk of acute leukemia and myelodysplastic syndromes in patients with monoclonal gammopathy of undetermined significance (MGUS): a population-based study of 17 315 patients. Leukemia. 2013; 27(6): 1391–1393.
  47. Dhodapkar M. The immune system in multiple myeloma and precursor states: Lessons and implications for immunotherapy and interception. Am J Hematol. 2023; 98(Suppl 2): S4–S12.
  48. Kyle R, Pierre R, Bayrd E. Multiple myeloma and acute myelomonocytic leukemia. N Eng J Med. 1970; 283(21): 1121–1125.
  49. Razavi P, Rand KA, Cozen W, et al. Patterns of second primary malignancy risk in multiple myeloma patients before and after the introduction of novel therapeutics. Blood Cancer J. 2013; 3(6): e121.
  50. Dong C, Hemminki K. Second primary neoplasms among 53 159 haematolymphoproliferative malignancy patients in Sweden, 1958–1996: a search for common mechanisms. Br J Cancer. 2001; 85(7): 997–1005.
  51. Chen T, Fallah M, Brenner H, et al. Risk of second primary cancers in multiple myeloma survivors in German and Swedish cancer registries. Sci Rep. 2016; 6(1): 22084.
  52. Jia J, Chen W. Characterization and prognostic features of secondary acute myeloid leukemia in survivors of multiple myeloma. Am J Cancer Res. 2023; 13(10): 4803–4810.
  53. Takahashi K, Wang F, Kantarjian H, et al. Preleukaemic clonal haemopoiesis and risk of therapy-related myeloid neoplasms: a case-control study. Lancet Oncol. 2017; 18(1): 100–111.
  54. Shlush L, Zandi S, Mitchell A, et al. Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia. Nature. 2014; 506(7488): 328–333.
  55. Steensma DP, Bejar R, Jaiswal S, et al. Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood. 2015; 126(1): 9–16.
  56. Genovese G, Kähler A, Handsaker R, et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Eng J Med. 2014; 371(26): 2477–2487.
  57. Bolton KL, Ptashkin RN, Gao T, et al. Cancer therapy shapes the fitness landscape of clonal hematopoiesis. Nat Genet. 2020; 52(11): 1219–1226.
  58. Gao T, Ptashkin R, Bolton KL, et al. Interplay between chromosomal alterations and gene mutations shapes the evolutionary trajectory of clonal hematopoiesis. Nat Commun. 2021; 12(1): 338.
  59. Mouhieddine TH, Sperling AS, Redd R, et al. Clonal hematopoiesis is associated with adverse outcomes in multiple myeloma patients undergoing transplant. Nat Commun. 2020; 11(1): 2996.
  60. Meier J, Jensen J, Dittus C, et al. Game of clones: Diverse implications for clonal hematopoiesis in lymphoma and multiple myeloma. Blood Reviews. 2022; 56: 100986.
  61. Soerensen JF, Aggerholm A, Rosenberg CA, et al. Clonal evolution in patients developing therapy-related myeloid neoplasms following autologous stem cell transplantation. Bone Marrow Transplant. 2022; 57(3): 460–465.
  62. Chitre S, Stölzel F, Cuthill K, et al. Clonal hematopoiesis in patients with multiple myeloma undergoing autologous stem cell transplantation. Leukemia. 2018; 32(9): 2020–2024.
  63. Hall AG, Tilby MJ. Mechanisms of action of, and modes of resistance to, alkylating agents used in the treatment of haematological malignancies. Blood Rev. 1992; 6(3): 163–173.
  64. Maura F, Weinhold N, Diamond B, et al. The mutagenic impact of melphalan in multiple myeloma. Leukemia. 2021; 35(8): 2145–2150.
  65. Bergsagel D, Bailey A, Langley G, et al. The chemotherapy of plasma-cell myeloma and the incidence of acute leukemia. N Eng J Med. 1979; 301(14): 743–748.
  66. Facon T, Dimopoulos MA, Dispenzieri A, et al. Final analysis of survival outcomes in the phase 3 FIRST trial of up-front treatment for multiple myeloma. Blood. 2018; 131(3): 301–310.
  67. Facon T, Kumar S, Plesner T, et al. Daratumumab, lenalidomide, and dexamethasone versus lenalidomide and dexamethasone alone in newly diagnosed multiple myeloma (MAIA): overall survival results from a randomised, open-label, phase 3 trial. Lancet Oncol. 2021; 22(11): 1582–1596.
  68. Radivoyevitch T, Dean R, Shaw B, et al. Risk of acute myeloid leukemia and myelodysplastic syndrome after autotransplants for lymphomas and plasma cell myeloma. Leuk Res. 2018; 74: 130–136.
  69. Poh C, Keegan T, Rosenberg A. Second primary malignancies in multiple myeloma: A review. Blood Rev. 2021; 46: 100757.
  70. Attal M, Lauwers-Cances V, Hulin C, et al. Lenalidomide, bortezomib, and dexamethasone with transplantation for myeloma. N Eng J Med. 2017; 376(14): 1311–1320.
  71. Richardson P, Jacobus S, Weller E, et al. Triplet therapy, transplantation, and maintenance until progression in myeloma. N Eng J Med. 2022; 387(2): 132–147.
  72. McCarthy P, Owzar K, Hofmeister C, et al. Lenalidomide after stem-cell transplantation for multiple myeloma. N Eng J Med. 2012; 366(19): 1770–1781.
  73. Palumbo A, Cavallo F, Gay F, et al. Autologous transplantation and maintenance therapy in multiple myeloma. N Eng J Med. 2014; 371(10): 895–905.
  74. Attal M, Lauwers-Cances V, Marit G, et al. Lenalidomide maintenance after stem-cell transplantation for multiple myeloma. N Eng J Med. 2012; 366(19): 1782–1791.
  75. McCarthy P, Holstein S, Petrucci M, et al. Lenalidomide maintenance after autologous stem-cell transplantation in newly diagnosed multiple myeloma: a meta-analysis. J Clin Oncol. 2017; 35(29): 3279–3289.
  76. Jones J, Cairns D, Menzies T, et al. Maintenance lenalidomide in newly diagnosed transplant eligible and non-eligible myeloma patients; profiling second primary malignancies in 4358 patients treated in the Myeloma XI Trial. eClinicalMedicine. 2023; 62: 102099.
  77. Musto P, Anderson KC, Attal M, et al. International Myeloma Working Group. Second primary malignancies in multiple myeloma: an overview and IMWG consensus. Ann Oncol. 2017; 28(2): 228–245.
  78. Quach H, Ritchie D, Stewart AK, et al. Mechanism of action of immunomodulatory drugs (IMiDS) in multiple myeloma. Leukemia. 2009; 24(1): 22–32.
  79. Sperling A, Guerra V, Kennedy J, et al. Lenalidomide promotes the development of TP53-mutated therapy-related myeloid neoplasms. Blood. 2022; 140(16): 1753–1763.
  80. Hadidi SAl, Heslop H, Brenner M, et al. Bispecific antibodies and autologous chimeric antigen receptor T cell therapies for treatment of hematological malignancies. Mol Ther. 2024; 32(8): 2444–2460.
  81. Martin T, Usmani S, Berdeja J, et al. Ciltacabtagene autoleucel, an anti–B-cell maturation antigen chimeric antigen receptor T-cell therapy, for relapsed/refractory multiple myeloma: CARTITUDE-1 2-year follow-up. J Clin Oncol. 2023; 41(6): 1265–1274.
  82. Rodriguez-Otero P, Ailawadhi S, Arnulf B, et al. Ide-cel or standard regimens in relapsed and refractory multiple myeloma. N Eng J Med. 2023; 388(11): 1002–1014.
  83. Chari A, Minnema M, Berdeja J, et al. Talquetamab, a T-cell-redirecting GPRC5D bispecific antibody for multiple myeloma. N Eng J Med. 2022; 387(24): 2232–2244.
  84. Moreau P, Garfall A, Donk Nv, et al. Teclistamab in relapsed or refractory multiple myeloma. N Eng J Med. 2022; 387(6): 495–505.
  85. Lesokhin AM, Tomasson MH, Arnulf B, et al. Elranatamab in relapsed or refractory multiple myeloma: phase 2 MagnetisMM-3 trial results. Nat Med. 2023; 29(9): 2259–2267.
  86. Pasvolsky O, Wang Z, Milton DR, et al. Multiple myeloma patients with a long remission after autologous hematopoietic stem cell transplantation. Blood Cancer J. 2024; 14(1): 82.
  87. Nadiminti K, Sidiqi MH, Meleveedu K, et al. Characteristics and outcomes of therapy-related myeloid neoplasms following autologous stem cell transplantation for multiple myeloma. Blood Cancer J. 2021; 11(3): 63.
  88. Yalniz F, Greenbaum U, Pasvolsky O, et al. Characteristics and outcomes of patients with multiple myeloma who developed therapy-related acute myeloid leukemia and myelodysplastic syndrome after autologous cell transplantation. Transplant Cell Ther. 2024; 30(2): 205.e1–205.e12.
  89. Holstein S, Jung SH, Richardson P, et al. Updated analysis of CALGB (Alliance) 100104 assessing lenalidomide versus placebo maintenance after single autologous stem-cell transplantation for multiple myeloma: a randomised, double-blind, phase 3 trial. Lancet Haematol. 2017; 4(9): e431–e442.