English Polski
Vol 25, No 1 (2019)
Articles
Published online: 2019-03-12

open access

Page views 1291
Article views/downloads 911
Get Citation

Connect on Social Media

Connect on Social Media

The review of selected biomarkers of abdominal aortic aneurysm

Stanisław Surma1, Marta Lesiak1, Beata Dorzak2, Grzegorz Bajor2
Acta Angiologica 2019;25(1):19-27.

Abstract

Abdominal aortic aneurysm (AAA) is a disease affecting the main artery transporting oxidized blood to the
abdominal and pelvic organs. Abdominal aortic aneurysms occur 4-8 times more often in men than in women,
usually develop after the age of 55. Among men over 65, 4–7.6%, this diagnosis can be expected. More aneurysms
occur in Caucasian people. Among the most frequently mentioned in the literature, AAA risk factors are
older age, male gender, positive family history, smoking, chronic obstructive pulmonary disease, hypertension,
hypercholesterolemia, peripheral arterial occlusive disease, ischemic heart disease. Biochemical tests to determine
the level of AAA-specific markers appear with potential. There are reports in the literature on the possible
use of concentrations of selected molecules in the diagnosis of AAA. According to cadaveric research, there are
noticed dimensions of the abdominal aorta at its different levels. The relation between aortic size and shape
can be the factor contributing to the development of AAA. Previous studies have shown that the development
of AAA is a crucial fundamental inflammatory response in conjunction with proteolysis tissue, which causes the
destruction and reconstruction of the blood vessel wall. Numerous factors contribute to the pathogenesis of
AAA: proteins, transcription factors, enzymes and microRNAs. The increase in the concentration of most factors
is associated with inflammation. The biomarkers presented in the paper are not limited to AAA, and thus can
be used only for visual assessment of the degree of abdominal aortic aneurysm development.

Article available in PDF format

View PDF Download PDF file

References

  1. Siwko A, Hendiger W, Eberhardt A, et al. Parametryzacja wymiarów tętniaków aorty brzusznej w materiale Kliniki Chirurgii Naczyniowej i Angiologii Centrum Medycznego Kształcenia Podyplomowego Szpitala Bielańskiego w Warszawie. Post N Med. 2016; XXIX(11B): 21–24.
  2. Johnston KW, Rutherford RB, Tilson MD, et al. Suggested standards for reporting on arterial aneurysms. Subcommittee on Reporting Standards for Arterial Aneurysms, Ad Hoc Committee on Reporting Standards, Society for Vascular Surgery and North American Chapter, International Society for Cardiovascular Surgery. J Vasc Surg. 1991; 13(3): 452–458.
  3. Cameron JL. Current surgical therapy. 7th ed. Mosby, St Louis 2001: 807–812.
  4. Oszkinis G. Znaczenie czynnika zapalnego w patogenezie tętniaka aorty brzusznej; praca habilitacyjna, AM w Poznaniu, 2000, 11–12; 54–56; 60–122.
  5. Kent KC. Clinical practice. Abdominal aortic aneurysms. N Engl J Med. 2014; 371(22): 2101–2108.
  6. Karwowska A, Kurianiuk A, Łapiński R. Epidemiology of abdominal aortic aneurysm. Prog Health Sci . 2015; 5(1): 238–245.
  7. Barratt-Boyes BG. Symptomatology and prognosis of abdominal aortic aneurysm. The Lancet. 1957; 270(6998): 716–159.
  8. Millar AJ, Gilbert RD, Brown RA, et al. Abdominal aortic aneurysms in children. J Pediatr Surg. 1996; 31(12): 1624–1628.
  9. http://www.mp.pl/interna/chapter/B16.II.2.22. (4.01.2019).
  10. Januszewicz W, Grodzicki T, Sitkowska-Janaszek H, et al. Nadciśnienie tętnicze — czynnik ryzyka rozwoju tętniaka aorty brzusznej. Arterial Hypertension. 2005; 9(6): 469–473.
  11. Frómankiewicz B, Jawień A. Rola badań przesiewowych we wczesnym wykrywaniu tętniaka aorty brzusznej. Acta Angiol. 2012; 18(1): 1–8.
  12. Siennicka A, Jastrzębska M. Rola homocysteiny w patogenezie tętniaka aorty brzusznej. Journal of Laboratory Diagnostics. 2012; 48(4): 413–422.
  13. Czyżewska – Bu, Żuk N, Bałasz S, et al. Ocena stężenia osteopontyny i osteoprotegryny u chorych z tętniakiem aorty brzusznej. Przegląd Lekarski. 2013; 70(3): 102–105.
  14. Licholai S, Szczeklik W, Sanak M. miR-29c-3p is an Effective Biomarker of Abdominal Aortic Aneurysm in Patients Undergoing Elective Surgery. Microrna. 2016; 5(2): 124–131.
  15. Maegdefessel L, Spin JM, Tsao PS. New ways to dismantle a ticking time bomb: microRNA 712/205 and abdominal aortic aneurysm development. Arterioscler Thromb Vasc Biol. 2014; 34(7): 1339–1340.
  16. Oszkinis G, Kamiński J, Gabriel M, et al. Wartość oznaczania cytokin prozapalnych oraz zmian ilościowych białka ostrej fazy u chorych z tętniakiem aorty brzusznej. Chirurgia Polska. 2007; 9(4): 223–230.
  17. Gacko M, Łapiński R, Guzowski A, et al. Aktywność i stężenie inhibitorów proteinaz osocza krwi chorych z tętniakiem aorty brzusznej. Chirurgia Polska. 2003; 5(4): 189–193.
  18. Pahl MC, Erdman R, Kuivaniemi H, et al. Transcriptional (ChIP-Chip) Analysis of ELF1, ETS2, RUNX1 and STAT5 in Human Abdominal Aortic Aneurysm. Int J Mol Sci. 2015; 16(5): 11229–11258.
  19. Choke E, Cockerill G, Wilson WRW, et al. A review of biological factors implicated in abdominal aortic aneurysm rupture. Eur J Vasc Endovasc Surg. 2005; 30(3): 227–244.
  20. Ailawadi G, Eliason JL, Upchurch GR. Current concepts in the pathogenesis of abdominal aortic aneurysm. J Vasc Surg. 2003; 38(3): 584–588.
  21. Guzik B, Ignacak A, Anders M, et al. Czynniki ryzyka i etiopatogeneza tętniaków aorty brzusznej. Czynniki Ryzyka. 2012; 1: 6–16.
  22. Refsum H, Smith AD, Ueland PM, et al. Facts and recommendations about total homocysteine determinations: an expert opinion. Clin Chem. 2004; 50(1): 3–32.
  23. Piotrkowska R, Landowska A, Książek J, et al. Methods for surgical treatment of abdominal aortic aneurysm – therapeutic and nursing implications. Medycyna Rodzinna. 2015; 1: 28–33.
  24. Szmidt J, Jakimowicz T. Postępy w leczeniu tętniaków aorty brzusznej. Postępy Nauk Medycznych. 2012; 1: 37–43.
  25. Mandal L, Mukhopadhyay P, Roy T, et al. Impact and biomechanical mechanisms of tortuosity of abdominal aorta — a case report. Natl J Med Res. 2016; 6(2): 219–221.
  26. Lopamudra M, Paramita M, Tapati R, et al. Impact and biomechanical mechanisms of tortuosity of abdominal aorta — a case report. N J Medical Research. 2016; 6(2): 219–221.
  27. Newman DL, Gosling RG, Bowden NL. Changes in aortic distensibility and area ratio with the development of atherosclerosis. Atherosclerosis. 1971; 14(2): 231–240.
  28. Liu Q, Han HC. Mechanical buckling of artery under pulsatile pressure. J Biomech. 2012; 45(7): 1192–1198.
  29. Han HC. Nonlinear buckling of blood vessels: a theoretical study. J Biomech. 2008; 41(12): 2708–2713.
  30. Marfuni G. Biomechanism of abdominal aortic aneurysym: Experimental evidence and multiscale constitutive modeling. Doctoral thesis no. 80 KTH School of Engineering Sciences Department of Solid Mechanics Royal Institute of Technology SE-100 44 Stockholm Sweden. : 2012.
  31. Davies MJ. Aortic aneurysm formation: lessons from human studies and experimental models. Circulation. 1998; 98(3): 193–195.
  32. Carey DJ. Control of growth and differentiation of vascular cells by extracellular matrix proteins. Annu Rev Physiol. 1991; 53: 161–177.
  33. Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD. Molecular biology of the cell. Garland Publishing, Ypsilanti 1994: Garland.
  34. Humphrey JD. Remodeling of a collagenous tissue at fixed lengths. J Biomech Eng. 1999; 121(6): 591–597.
  35. Nissen R, Cardinale GJ, Udenfriend S. Increased turnover of arterial collagen in hypertensive rats. Proc Natl Acad Sci U S A. 1978; 75(1): 451–453.
  36. Bashey RI, Cox R, McCann J, et al. Changes in collagen biosynthesis, types, and mechanics of aorta in hypertensive rats. J Lab Clin Med. 1989; 113(5): 604–611.
  37. Vorp DA, Raghavan ML, Webster MW. Mechanical wall stress in abdominal aortic aneurysm: influence of diameter and asymmetry. J Vasc Surg. 1998; 27(4): 632–639.
  38. Berillis P. The Role of Collagen in the Aorta's Structure. The Open Circulation and Vascular Journal. 2013; 6(1): 1–8.
  39. Holmes DR, Liao S, Parks WC, et al. Medial neovascularization in abdominal aortic aneurysms: a histopathologic marker of aneurysmal degeneration with pathophysiologic implications. J Vasc Surg. 1995; 21(5): 761–71; discussion 771.
  40. Juvonen J, Surcel HM, Satta J, et al. Elevated circulating levels of inflammatory cytokines in patients with abdominal aortic aneurysm. Arterioscler Thromb Vasc Biol. 1997; 17(11): 2843–2847.
  41. Jones KG, Brull DJ, Brown LC, et al. Interleukin-6 (IL-6) and the prognosis of abdominal aortic aneurysms. Circulation. 2001; 103(18): 2260–2265.
  42. Tamarina NA, McMillan WD, Shively VP, et al. Expression of matrix metalloproteinases and their inhibitors in aneurysms and normal aorta. Surgery. 1997; 122(2): 264–71; discussion 271.
  43. Thompson RW, Parks WC. Role of matrix metalloproteinases in abdominal aortic aneurysms. Ann N Y Acad Sci. 1996; 800: 157–174.
  44. Tilson MD. Aortic aneurysms and atherosclerosis. Circulation. 1992; 85(1): 378–379.
  45. Blake GJ, Ridker PM. Novel clinical markers of vascular wall inflammation. Circ Res. 2001; 89(9): 763–771.
  46. Ailawadi G, Eliason JL, Upchurch GR. Current concepts in the pathogenesis of abdominal aortic aneurysm. J Vasc Surg. 2003; 38(3): 584–588.
  47. Naruszewicz M. Aktualne spojrzenie na rolę hiperhomocysteinemii w patogenezie miażdżycy. Pol Prz Neurol. 2005; 1(1): 19–22.
  48. Costantino TG, Bruno EC, Handly N, et al. Accuracy of emergency medicine ultrasound in the evaluation of abdominal aortic aneurysm. J Emerg Med. 2005; 29(4): 455–460.
  49. Wassef M, Baxter BT, Chisholm RL, et al. Pathogenesis of abdominal aortic aneurysms: a multidisciplinary research program supported by the National Heart, Lung, and Blood Institute. J Vasc Surg. 2001; 34(4): 730–738.
  50. Kraczkowska S, Suchocka Z, Pachecki J. Podwyższone stężenie homocysteiny we krwi jako wskaźnik zagrożenia zdrowia. Biul Wydz Farm AMW. 2005; 3: 4–13.
  51. Li JJ, Fang CH. Atheroscleritis is a more rational term for the pathological entity currently known as atherosclerosis. Med Hypotheses. 2004; 63(1): 100–102.
  52. Ferrara F, Novo S, Grimaudo S, et al. Methylenetetrahydrofolate reductase mutation in subjects with abdominal aortic aneurysm subdivided for age. Clin Hemorheol Microcirc. 2006; 34(3): 421–426.
  53. Palko-Łabuz A, Sadakierska-Chudy A, Pilecki W. The genetic background of thrombosis - the distributions of factor V Leiden, prothrombin G20210A, and MTHFR C677T polymorphisms. Adv Clin Exp Med. 2010; 19: 51–55.
  54. Cao H, Hu X, Zhang Q, et al. Homocysteine level and risk of abdominal aortic aneurysm: a meta-analysis. PLoS One. 2014; 9(1): e85831.
  55. Brunelli T, Prisco D, Fedi S, et al. High prevalence of mild hyperhomocysteinemia in patients with abdominal aortic aneurysm. J Vasc Surg. 2000; 32(3): 531–536.
  56. Millo B, Wiernicki I, Bukowska H, et al. 2P-0380 Serum homocysteine and MCP-1 are associated with abdominal aortic aneurysm size and interluminal thrombus dimension. Atherosclerosis Supplements. 2003; 4(2): 122.
  57. Schoppet M, Preissner KT, Hofbauer LC. RANK ligand and osteoprotegerin: paracrine regulators of bone metabolism and vascular function. Arterioscler Thromb Vasc Biol. 2002; 22(4): 549–553.
  58. Demer LL, Tintut Y. Mechanisms linking osteoprosis and cardiovascular calcification. Curr Osteoporos Rep. 2009; 7(2): 42–46.
  59. Knudsen ST, Foss CH, Poulsen PL, et al. Increased plasma concentrations of osteoprotegerin in type 2 diabetic patients with microvascular complications. Eur J Endocrinol. 2003; 149(1): 39–42.
  60. Nagasaka A, Matsue H, Matsushima H, et al. Osteopontin is produced by mast cells and affects IgE-mediated degranulation and migration of mast cells. Eur J Immunol. 2008; 38(2): 489–499.
  61. Witkiewicz W, Czyżewska-Buczyńska A, Bałasz S, et al. Rola osteopontyny w chorobach serco¬wo-naczyniowych. Pol Merk Lek. 2010; 170: 79.
  62. Kim CW, Kumar S, Son DJu, et al. Prevention of abdominal aortic aneurysm by anti-microRNA-712 or anti-microRNA-205 in angiotensin II-infused mice. Arterioscler Thromb Vasc Biol. 2014; 34(7): 1412–1421.
  63. Jung P, Zimowska M. Metaloproteinazy macierzy zewnątrzkomórkowej w rozwoju, fizjologii i procesach degeneracyjnych mięśni szkieletowych. Postępy Biochemii. 2016; 1(62): 25–35.
  64. Boon RA, Seeger T, Heydt S, et al. MicroRNA-29 in aortic dilation: implications for aneurysm formation. Circ Res. 2011; 109(10): 1115–1119.
  65. Tokarz-Deptuła B, Miller T, Deptuła W. Cytokiny z rodziny interleukiny 1. Post Mikrobiol. 2011; 50(3): 217–221.
  66. Marnell L, Mold C, Du Clos TW. C-reactive protein: ligands, receptors and role in inflammation. Clin Immunol. 2005; 117(2): 104–111.
  67. Crowther M, Goodall S, Jones JL, et al. Increased matrix metalloproteinase 2 expression in vascular smooth muscle cells cultured from abdominal aortic aneurysms. J Vasc Surg. 2000; 32(3): 575–583.
  68. Gacko M, Chyczewski L, Chrostek L. Distribution, activity and concentration of cathepsin B and cystatin C in the wall of aortic aneurysm. Pol J Pathol. 1999; 50(2): 83–86.
  69. Gacko M, Worowska A, Głowiński S. Aktywność proteolityczna i antyproteolityczna ściany tętniaka i aorty zmienionej miażdżycowo. Pamiętnik 56 Zjazd Tow. Chir. Pol., Lublin 1993; 4: 1632–1635. 1993.
  70. Jean-Claude J, Newman KM, Li H, et al. Possible key role for plasmin in the pathogenesis of abdominal aortic aneurysms. Surgery. 1994; 116(2): 472–478.
  71. Lindholt JS, Erlandsen EJ, Henneberg EW. Cystatin C deficiency is associated with the progression of small abdominal aortic aneurysms. Br J Surg. 2001; 88(11): 1472–1475.
  72. Shah P. Inflammation, Metalloproteinases, and Increased Proteolysis. Circulation. 1997; 96(7): 2115–2117.
  73. Skóra J, Janczak D, Barć P, et al. Badanie poziomu elastyny w ścianie tętniaków aorty brzusznej. Pol Merk Lek. 2000; 9: 552–553.
  74. Tamarina NA, McMillan WD, Shively VP, et al. Expression of matrix metalloproteinases and their inhibitors in aneurysms and normal aorta. Surgery. 1997; 122(2): 264–271.
  75. Thompson RW, Parks WC. Role of matrix metalloproteinases in abdominal aortic aneurysms. Ann N Y Acad Sci. 1996; 800: 157–174.
  76. Badmer JL, Schnebli HP. Plasma proteinase inhibitors. Schweiz Med Wsch. 1984; 114: 1359–1363.
  77. Ikari Y, Mulvihill E, Schwartz SM. alpha 1-Proteinase inhibitor, alpha 1-antichymotrypsin, and alpha 2-macroglobulin are the antiapoptotic factors of vascular smooth muscle cells. J Biol Chem. 2001; 276(15): 11798–11803.
  78. Lindholt JS, Jørgensen B, Fasting H, et al. Plasma levels of plasmin-antiplasmin-complexes are predictive for small abdominal aortic aneurysms expanding to operation-recommendable sizes. J Vasc Surg. 2001; 34(4): 611–615.
  79. Hinterseher I, Erdman R, Donoso LA, et al. Role of complement cascade in abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol. 2011; 31(7): 1653–1660.
  80. Gallant S, Gilkeson G. ETS transcription factors and regulation of immunity. Arch Immunol Ther Exp (Warsz). 2006; 54(3): 149–163.
  81. Nottingham WT, Jarratt A, Burgess M, et al. Runx1-mediated hematopoietic stem-cell emergence is controlled by a Gata/Ets/SCL-regulated enhancer. Blood. 2007; 110(13): 4188–4197.
  82. Mahmud SA, Manlove LS, Farrar MA. Interleukin-2 and STAT5 in regulatory T cell development and function. JAKSTAT. 2013; 2(1): e23154.