English Polski
Vol 30, No 2 (2024)
Review paper
Published online: 2024-08-13

open access

Page views 318
Article views/downloads 187
Get Citation

Connect on Social Media

Connect on Social Media

Transseptal puncture for left atrial access in invasive procedures — state of the art review

Piotr Denysiuk1, Adrianna Denysiuk2, Marcin Szczasny1, Joanna Popiolek-Kalisz13, Piotr Blaszczak1, Andrzej Glowniak4
Acta Angiologica 2024;30(2):79-91.

Abstract

Transseptal puncture is an established technique for achieving left atrium access during cardiac procedures. It is associated with low overall complication rate and high success rates. Although being a decades old technique, recent years brought substantial development in the field, allowing for faster and safer left atrium catheterization. In this paper we discuss its history, complications, available techniques and current state of the art.

Article available in PDF format

View PDF Download PDF file

References

  1. Forssmann W. Die Sondierung des Rechten Herzens. Klinische Wochenschrift. 1929; 8(45): 2085–2087.
  2. COURNAND A, MOTLEY HL. Recording of blood pressure from the left auricle and the pulmonary veins in human subjects with interauricular septal defect. Am J Physiol. 1947; 150(2): 267–271.
  3. ZIMMERMAN HA, SCOTT RW, BECKER NO. Catheterization of the left side of the heart in man. Circulation. 1950; 1(3): 357–359.
  4. Seldinger SI. Catheter replacement of the needle in percutaneous arteriography. Acta Radiologica. 2008; 434: 47–52.
  5. Morrow AG, Braunwald E, Ross J. Jr. Left heart catheterization: an appraisal of techniques and their applications in cardiovascular diagnosis. Arch Intern Med. 1960; 105: 645–655.
  6. ROSS J. Transeptal left heart catheterization: a new method of left atrial puncture. Ann Surg. 1959; 149(3): 395–401.
  7. COPE C. Technique for transseptal catheterization of the left atrium; preliminary report. J Thorac Surg. 1959; 37(4): 482–486.
  8. Brockenbrough E, Braunwald E. A new technic for left ventricular angiocardiography and transseptal left heart catheterization. Am J Cardiol. 1960; 6(6): 1062–1064.
  9. BROCKENBROUGH EC, BRAUNWALD E, ROSS J. Transseptal left heart catheterization. A review of 450 studies and description of an improved technic. Circulation. 1962; 25: 15–21.
  10. Ross J. Considerations regarding the technique for transseptal left heart catheterization. Circulation. 1966; 34(3): 391–399.
  11. Anderson RH, Brown NA, Webb S. Development and structure of the atrial septum. Heart. 2002; 88(1): 104–110.
  12. Klimek-Piotrowska W, Hołda MK, Koziej M, et al. Anatomy of the true interatrial septum for transseptal access to the left atrium. Ann Anat. 2016; 205: 60–64.
  13. Anderson RH, Webb S, Brown NA. Clinical anatomy of the atrial septum with reference to its developmental components. Clin Anat. 1999; 12(5): 362–374, doi: 10.1002/(SICI)1098-2353(1999)12:5<362::AID-CA6>3.0.CO;2-F.
  14. O'Brien B, Zafar H, De Freitas S, et al. Transseptal puncture - Review of anatomy, techniques, complications and challenges. Int J Cardiol. 2017; 233: 12–22.
  15. Laura DM, Donnino R, Kim EE, et al. Lipomatous atrial septal hypertrophy: a review of its anatomy, pathophysiology, multimodality imaging, and relevance to percutaneous interventions. J Am Soc Echocardiogr. 2016; 29(8): 717–723.
  16. Mazur M, Jasinska K, Walocha J. The morphology, clinical significance and imaging methods of the atrial septal pouch: A critical review. Transl Res Anat. 2018; 13: 7–11.
  17. Quininir L, Luk PP, McGuire MA. Catheter entrapment in the Chiari network during catheter ablation. HeartRhythm Case Rep. 2020; 6(12): 896–898.
  18. Hohnloser SH, Calkins H, Willems S, et al. RE-CIRCUIT® investigators, RE-CIRCUIT Investigators. Uninterrupted dabigatran versus warfarin for ablation in atrial fibrillation. N Engl J Med. 2017; 376(17): 1627–1636.
  19. Cappato R, Marchlinski FE, Hohnloser SH, et al. VENTURE-AF Investigators. Uninterrupted rivaroxaban vs. uninterrupted vitamin K antagonists for catheter ablation in non-valvular atrial fibrillation. Eur Heart J. 2015; 36(28): 1805–1811.
  20. Kirchhof P, Haeusler KG, Blank B, et al. Apixaban in patients at risk of stroke undergoing atrial fibrillation ablation. Eur Heart J. 2018; 39(32): 2942–2955.
  21. Cardoso R, Knijnik L, Bhonsale A, et al. An updated meta-analysis of novel oral anticoagulants versus vitamin K antagonists for uninterrupted anticoagulation in atrial fibrillation catheter ablation. Heart Rhythm. 2018; 15(1): 107–115.
  22. Hindricks G, Potpara T, Dagres N, et al. Corrigendum to: 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): The Task Force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) Developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. Eur Heart J. 2021; 42(40): 4194.
  23. Calkins H, Hindricks G, Cappato R, et al. 2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation. Heart Rhythm. 2017; 14(10): e275–e444.
  24. Derejko P, Hasiec A, Bardyszewski A, et al. Distances between transseptal puncture site and anatomical landmarks. J Cardiovasc Electrophysiol. 2019; 30(12): 2841–2848.
  25. Earley MJ. How to perform a transseptal puncture. Heart. 2009; 95(1): 85–92.
  26. Ruisi CP, Brysiewicz N, Asnes JD, et al. Use of intracardiac echocardiography during atrial fibrillation ablation. Pacing Clin Electrophysiol. 2013; 36(6): 781–788.
  27. Wang Y, Xue YuM, Mohanty P, et al. Dilator method and needle method for atrial transseptal puncture: a retrospective study from a cohort of 4443 patients. Europace. 2012; 14(10): 1450–1456.
  28. Zuercher R, Herling A, Schmidt MT, et al. Transesophageal echocardiography-guided transseptal left atrial access to improve safety in patients undergoing pulmonary vein isolation. J Clin Med. 2022; 11(9).
  29. Enriquez A, Saenz LC, Rosso R, et al. Use of intracardiac echocardiography in interventional cardiology: working with the anatomy rather than fighting it. Circulation. 2018; 137(21): 2278–2294.
  30. Bottoni N, Donateo P, Rossi L, et al. Impact of systematic use of intracardiac ultrasound during transseptal catheterization in the electrophysiology laboratory. J Cardiovasc Dev Dis. 2023; 10(2).
  31. Pimentel RC, Rahai N, Maccioni S, et al. Differences in outcomes among patients with atrial fibrillation undergoing catheter ablation with versus without intracardiac echocardiography. J Cardiovasc Electrophysiol. 2022; 33(9): 2015–2047.
  32. Isath A, Padmanabhan D, Haider SW, et al. Does the use of intracardiac echocardiography during atrial fibrillation catheter ablation improve outcomes and cost? A nationwide 14-year analysis from 2001 to 2014. J Interv Card Electrophysiol. 2021; 61(3): 461–468.
  33. Clark CB, Davies LR, Kerber RE. Intracardiac echocardiography identifies pericardial fluid and can monitor the success of pericardiocentesis: experimental studies. J Am Soc Echocardiogr. 2001; 14(7): 712–714.
  34. Guarguagli S, Nagarajan V, Marinelli A, et al. Transseptal puncture via a superior access as an alternative to the conventional femoral route. Int J Cardiol Congenit Heart Dis. 2021; 4: 100187.
  35. Baszko A, Kałmucki P, Dankowski R, et al. Transseptal puncture from the jugular vein and balloon cryoablation for atrial fibrillation in a patient with azygos continuation of an interrupted inferior vena cava. Europace. 2015; 17(7): 1153–1156.
  36. Suryanarayana PG, Ayers M, Trerotola SO, et al. Direct hepatic vein puncture and transseptal access for atrial flutter and fibrillation ablation in a patient with prior ligation of the inferior vena cava. HeartRhythm Case Rep. 2020; 6(7): 382–385.
  37. Calkins H, Hindricks G, Cappato R, et al. 2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation: Executive summary. J Arrhythm. 2017; 33(5): 369–409.
  38. Zeljkovic I, Brusich S, Scherr D, et al. Differences in activated clotting time and total unfractionated heparin dose during pulmonary vein isolation in patients on different anticoagulation therapy. Clin Cardiol. 2021; 44(8): 1177–1182.
  39. Radinovic A, Mazzone P, Landoni G, et al. Different transseptal puncture for different procedures: Optimization of left atrial catheterization guided by transesophageal echocardiography. Ann Card Anaesth. 2016; 19(4): 589–593.
  40. Sweda R, Haeberlin A, Seiler J, et al. How to reach the left atrium in atrial fibrillation ablation?: patent foramen ovale versus transseptal puncture. Circ Arrhythm Electrophysiol. 2019; 12(4): e006744.
  41. Stauber A, Kornej J, Sepehri Shamloo A, et al. Impact of single versus double transseptal puncture on outcome and complications in pulmonary vein isolation procedures. Cardiol J. 2021; 28(5): 671–677.
  42. De Ponti R, Cappato R, Curnis A, et al. Trans-septal catheterization in the electrophysiology laboratory: data from a multicenter survey spanning 12 years. J Am Coll Cardiol. 2006; 47(5): 1037–1042.
  43. Pręgowski J, Kłapyta A, Chmielak Z, et al. Incidence, clinical correlates, timing, and consequences of acute thrombus formation in patients undergoing the MitraClip procedure. Kardiol Pol. 2020; 78(1): 45–50.
  44. Asbach S, Biermann J, Bode C, et al. Early heparin administration reduces risk for left atrial thrombus formation during atrial fibrillation ablation procedures. Cardiol Res Pract. 2011; 2011: 615087.
  45. Cappato R, Calkins H, Chen SA, et al. Updated worldwide survey on the methods, efficacy, and safety of catheter ablation for human atrial fibrillation. Circ Arrhythm Electrophysiol. 2010; 3(1): 32–38.
  46. Noseworthy PA, Kapa S, Deshmukh AJ, et al. Risk of stroke after catheter ablation versus cardioversion for atrial fibrillation: A propensity-matched study of 24,244 patients. Heart Rhythm. 2015; 12(6): 1154–1161.
  47. Abdelfattah O, Saad A, Hisung I, et al. Temporal trends of transcatheter edge-to-edge repair of the mitral valve short-term outcomes in the united states: nationwide representative study. Structural Heart. 2021; 5(3): 279–286.
  48. Holmes DR, Reddy VY, Turi ZG, et al. PROTECT AF Investigators. Percutaneous closure of the left atrial appendage versus warfarin therapy for prevention of stroke in patients with atrial fibrillation: a randomised non-inferiority trial. Lancet. 2009; 374(9689): 534–542.
  49. Glowniak A, Tarkowski A, Janczarek M, et al. Silent cerebral infarcts following pulmonary vein isolation with different atrial fibrillation ablation techniques - incidence and risk factors. Arch Med Sci. 2022; 18(3): 632–638.
  50. Miyazaki S, Kajiyama T, Yamao K, et al. Silent cerebral events/lesions after second-generation cryoballoon ablation: How can we reduce the risk of silent strokes? Heart Rhythm. 2019; 16(1): 41–48.
  51. Gaita F, Caponi D, Pianelli M, et al. Radiofrequency catheter ablation of atrial fibrillation: a cause of silent thromboembolism? Magnetic resonance imaging assessment of cerebral thromboembolism in patients undergoing ablation of atrial fibrillation. Circulation. 2010; 122(17): 1667–1673.
  52. Głowniak A, Janczarek M, Tarkowski A, et al. Silent cerebral infarcts following left-sided accessory pathway ablation in Wolff-Parkinson-White (WPW) syndrome: a preliminary report. Med Sci Monit. 2019; 25: 1336–1341.
  53. Laible M, Möhlenbruch M, Horstmann S, et al. Peri-procedural silent cerebral infarcts after left atrial appendage occlusion. Eur J Neurol. 2017; 24(1): 53–57.
  54. Wang Z, Wang K, Lu S, et al. Surgical and percutaneous left atrial appendage intervention: silent cerebral embolism considerations. Eur J Cardiothorac Surg. 2023; 63(6).
  55. Schnitzler K, Hell M, Geyer M, et al. Complications Following MitraClip Implantation. Curr Cardiol Rep. 2021; 23(9): 131.
  56. Di Biase L, Gaita F, Toso E, et al. Does periprocedural anticoagulation management of atrial fibrillation affect the prevalence of silent thromboembolic lesion detected by diffusion cerebral magnetic resonance imaging in patients undergoing radiofrequency atrial fibrillation ablation with open irrigated catheters? Results from a prospective multicenter study. Heart Rhythm. 2014; 11(5): 791–798.
  57. Vermeer SE, Prins ND, den Heijer T, et al. Silent brain infarcts and the risk of dementia and cognitive decline. N Engl J Med. 2003; 348(13): 1215–1222.
  58. Wasmer K, Zellerhoff S, Köbe J, et al. Incidence and management of inadvertent puncture and sheath placement in the aorta during attempted transseptal puncture. Europace. 2017; 19(3): 447–457.
  59. Katritsis GD, Siontis GCM, Giazitzoglou E, et al. Complications of transseptal catheterization for different cardiac procedures. Int J Cardiol. 2013; 168(6): 5352–5354.
  60. Rillig A, Meyerfeldt U, Birkemeyer R, et al. Persistent iatrogenic atrial septal defect after pulmonary vein isolation : incidence and clinical implications. J Interv Card Electrophysiol. 2008; 22(3): 177–181.
  61. Linhart M, Werner JT, Stöckigt F, et al. High rate of persistent iatrogenic atrial septal defect after single transseptal puncture for cryoballoon pulmonary vein isolation. J Interv Card Electrophysiol. 2018; 52(2): 141–148.
  62. McGinty PM, Smith TW, Rogers JH. Transseptal left heart catheterization and the incidence of persistent iatrogenic atrial septal defects. J Interv Cardiol. 2011; 24(3): 254–263.
  63. Ratajczak J, Sukiennik A, Woźnicki M, et al. Percutaneous closure of the iatrogenic atrial septal defect following the transcatheter edge-to-edge mitral valve repair with MitraClip system led to instant improvement of hypoxemia — case report. Med Res J. 2022; 7(4): 350–354.
  64. Streb W, Fiszer R, Podolecki T, et al. Uzasadnienie zamknięcia jatrogennego ubytku przegrody międzyprzedsionkowej podczas zabiegu MitraClip. Folia Cardiologica. 2022; 17(3): 157–162.
  65. Watanabe T, Miyazaki S, Kajiyama T, et al. Persistence of an iatrogenic atrial septal defect after a second-generation cryoballoon ablation of atrial fibrillation. Heart Vessels. 2018; 33(9): 1060–1067.
  66. Alachkar MN, Alnaimi A, Reith S, et al. Incidence and clinical relevance of persistent iatrogenic atrial septal defect after percutaneous mitral valve repair. Sci Rep. 2021; 11(1): 12700.
  67. Nelles D, Vij V, Al-Kassou B, et al. Incidence, persistence, and clinical relevance of iatrogenic atrial septal defects after percutaneous left atrial appendage occlusion. Echocardiography. 2022; 39(1): 65–73.
  68. Blazek S, Unterhuber M, Rommel KP, et al. Closure of Iatrogenic Atrial Septal Defect After Transcatheter Mitral Valve Repair: The Randomized MITHRAS Trial. Circulation. 2021; 143(3): 292–294.
  69. Hoffmann R, Altiok E, Reith S, et al. Functional effect of new atrial septal defect after percutaneous mitral valve repair using the MitraClip device. Am J Cardiol. 2014; 113(7): 1228–1233.
  70. Shah S, Borlaug B, Chung E, et al. Atrial shunt device for heart failure with preserved and mildly reduced ejection fraction (REDUCE LAP-HF II): a randomised, multicentre, blinded, sham-controlled trial. The Lancet. 2022; 399(10330): 1130–1140.
  71. Kogan EV, Sciria CT, Liu CF, et al. Early stroke and mortality after percutaneous left atrial appendage occlusion in patients with atrial fibrillation. Stroke. 2023; 54(4): 947–954.
  72. Wiebe J, Franke J, Lubos E, et al. German Transcatheter Mitral Valve Interventions (TRAMI) Investigators. Percutaneous mitral valve repair with the MitraClip system according to the predicted risk by the logistic EuroSCORE: preliminary results from the German Transcatheter Mitral Valve Interventions (TRAMI) Registry. Catheter Cardiovasc Interv. 2014; 84(4): 591–598.
  73. Winkle RA, Mead RH, Engel G, et al. The use of a radiofrequency needle improves the safety and efficacy of transseptal puncture for atrial fibrillation ablation. Heart Rhythm. 2011; 8(9): 1411–1415.
  74. Jauvert G, Grimard C, Lazarus A, et al. Comparison of a radiofrequency powered flexible needle with a classic rigid Brockenbrough needle for transseptal punctures in terms of safety and efficacy. Heart Lung Circ. 2015; 24(2): 173–178.
  75. Andrade JG, Macle L, Bennett MT, et al. Randomized trial of conventional versus radiofrequency needle transseptal puncture for cryoballoon ablation: the CRYO-LATS trial. J Interv Card Electrophysiol. 2022; 65(2): 481–489.
  76. Wieczorek M, Hoeltgen R, Akin E, et al. Use of a novel needle wire in patients undergoing transseptal puncture associated with severe septal tenting. J Interv Card Electrophysiol. 2010; 27(1): 9–13.
  77. Zucchetti M, Casella M, DelloRusso A, et al. Difficult case of a trans-septal puncture: Use of a "SafeSept" guidewire. World J Cardiol. 2015; 7(8): 499–503.
  78. Dewland TA, Gerstenfeld EP, Moss JD, et al. Randomized comparison of a Radiofrequency wire versus a Radiofrequency needle system for Transseptal puncture. JACC Clin Electrophysiol. 2023; 9(5): 611–619.
  79. Inohara T, Gilhofer T, Luong C, et al. VersaCross radiofrequency system reduces time to left atrial access versus conventional mechanical needle. J Interv Card Electrophysiol. 2022; 63(1): 9–12.
  80. Rizzi S, Pannone L, Monaco C, et al. First experience with a transseptal puncture using a novel transseptal crossing device with integrated dilator and needle. J Interv Card Electrophysiol. 2022; 65(3): 731–737.
  81. Perrin N, McAlister C, Tsang M, et al. Procedural simplification of left atrial appendage occlusion using the VersaCross connect system: First in-human experience. Catheter Cardiovasc Interv. 2023; 101(1): 227–230.
  82. Yap SC, Bhagwandien RE, Szili-Torok T. Use of a novel integrated dilator-needle system in cryoballoon procedures: a zero-exchange approach. J Interv Card Electrophysiol. 2022; 65(2): 527–534.
  83. Kueffer T, Madaffari A, Thalmann G, et al. Eliminating transseptal sheath exchange for pulsed field ablation procedures using a direct over-the-needle transseptal access with the Faradrive sheath. Europace. 2023; 25(4): 1500–1502.
  84. Denysiuk P, Szczasny M, Głowniak A, et al. Zero‑exchange approach using a steerable FlexCath Advance sheath for direct transseptal access in cryoballoon ablation for pulmonary vein isolation – case study. In a good rythm. 2022; 2(63): 26–29.
  85. Ströker E, De Greef Y, Schwagten B, et al. Over-the-needle trans-septal access using the cryoballoon delivery sheath and dilator in atrial fibrillation ablation. Pacing Clin Electrophysiol. 2019; 42(7): 868–873.
  86. Tomaiko E, Ahmad Z, Su W. ELIMINATING TRANSSEPTAL CATHETER EXCHANGE DURING CRYOBALLOON ABLATION WITH THE SAFESEPT TRANSSEPTAL GUIDEWIRE IN FLEXCATH SHEATH. J Am Coll Cardiol. 2019; 73(9): 429.
  87. Kaplan RM, Wasserlauf J, Knight BP. Transseptal access: A review of contemporary tools. J Cardiovasc Electrophysiol. 2022; 33(8): 1927–1931.
  88. Liang JJ, Mohanty S, Fahed J, et al. Bailout atrial balloon septoplasty to overcome challenging left atrial transseptal access for catheter ablation of atrial fibrillation. JACC Clin Electrophysiol. 2018; 4(8): 1011–1019.
  89. Li X, Wissner E, Kamioka M, et al. Safety and feasibility of transseptal puncture for atrial fibrillation ablation in patients with atrial septal defect closure devices. Heart Rhythm. 2014; 11(2): 330–335.
  90. Fitzpatrick N, Keaney J, Keelan E, et al. Picking the locked door: experiences and techniques in transseptal puncture post-atrial septal defect occlusion. JACC Case Rep. 2023; 14: 101827.
  91. Chokesuwattanaskul R, Ananwattanasuk T, Hughey AB, et al. Three-dimensional-guided and ICE-guided transseptal puncture for cardiac ablations: A propensity score match study. J Cardiovasc Electrophysiol. 2023; 34(2): 382–388.
  92. Guarguagli S, Cazzoli I, Kempny A, et al. Initial experience using the radiofrequency needle visualization on the electroanatomical mapping system for transseptal puncture. Cardiol Res Pract. 2020; 2020: 5420909.
  93. Yu R, Liu N, Lu J, et al. 3-Dimensional transseptal puncture based on electrographic characteristics of fossa ovalis: a fluoroscopy-free and echocardiography-free method. JACC Cardiovasc Interv. 2020; 13(10): 1223–1232.
  94. Li D, Ze F, Yuan CZ, et al. The safety and efficiency of fluoroless site-specific transseptal puncture guided by three-dimensional intracardiac echocardiography. J Interv Card Electrophysiol. 2022; 65(3): 643–649.
  95. Liu J, Al'Aref SJ, Singh G, et al. An augmented reality system for image guidance of transcatheter procedures for structural heart disease. PLoS One. 2019; 14(7): e0219174.
  96. Jung C, Wolff G, Wernly B, et al. Virtual and augmented reality in cardiovascular care: state-of-the-art and future perspectives. JACC Cardiovasc Imaging. 2022; 15(3): 519–532.
  97. James RC, Monsky WL, Jorgensen NW, et al. Virtual-Reality guided versus fluoroscopy-guided transseptal puncture in a cardiac phantom. J Invasive Cardiol. 2020; 32: 76–81.
  98. Saliba W, Cummings JE, Oh S, et al. Novel robotic catheter remote control system: feasibility and safety of transseptal puncture and endocardial catheter navigation. J Cardiovasc Electrophysiol. 2006; 17(10): 1102–1105.
  99. Li Z, Collins J, Kim YH, et al. ZERO-FLUOROSCOPY TRANSSEPTAL PUNCTURE GUIDED BY INTELLIGENT INTRACARDIAC ECHOCARDIOGRAPHY ROBOTICS. J Am Coll Cardiol. 2021; 77(18): 970.
  100. Michiels K, Heffinck E, Astudillo P, et al. Automated MSCT Analysis for Planning Left Atrial Appendage Occlusion Using Artificial Intelligence. J Interv Cardiol. 2022; 2022: 5797431.