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Abstract
Morphine is metabolized into two main metabolites, morphine-3-glucuronide and morphine-6-glucuronide. Morphine-6-
-glucuronide is a potent analgesic that is responsible for up to 97% of the analgesic effect. Morphine-3-glucuronide 
does not bind to opioid receptors and is devoid of any analgesic effect. However, it activates the Toll-like 4 receptors 
initiating neurogenic inflammation in the central nervous system. This, in turn, is responsible for anti–analgesic and 
hyperalgesic effects. There are a number of strategies on how to inhibit this pronociceptive effect and finally improve 
morphine analgesia.
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Introduction

Morphine as a drug isolated from opium is known in 
medicine for more than 200 years [1]. It is one of the 
most important and efficacious drugs used in pain treat-
ment [2]. Slightly less well known is morphine’s effect on 
breathlessness and diarrhoea. Morphine experienced its 
renaissance at the end of the past century when it became 
evident that it is, despite its shortcomings, a cheap, good 
and powerful drug for the treatment of cancer-related pain 
[3]. Earlier morphine was considered to be unable to reach 
sufficient concentrations in blood because of the first pass 
metabolism in the liver [4]. Tolerance and opioid-induced 
hyperalgesia [5] belong to the most feared features of 
morphine. The fact that morphine is metabolized to glu-
curonides is known for several decades [6]. However, the 
exact role of these metabolites in the morphine analgesia 
is still a matter of debate and uncertainty. The role of me-
tabolites and strategies on how to influence their activity 
will be discussed in this paper.

Pharmacology

Morphine is a hydrophilic drug and it can be administe-
red orally, subcutaneously, intravenously, intramuscularly, 

intrathecally, epidurally, and rectally. Additionally, nebulized 
morphine can be used in the treatment of breathlessness 
[7]. After parenteral administration, it penetrates easily to 
the central compartment and especially to the well–per-
fused organs. It is eliminated from the central compart-
ment with the T½ of 1.4–3.4 hours. Similar elimination T½ 

is observed after oral, subcutaneous, intravenous, and 
intramuscular administration [8, 9].

After oral administration morphine is fully absor-
bed from the gut and transported to the liver, where it 
undergoes rapid metabolism to two main metabolites: 
morphine-3-glucuronide (M3G) and morphine-6-glucu-
ronide (M6G) [10]. The enzyme responsible for this, 
UGT2D7 metabolizes morphine in a constant proportion 
of M6G/M3G 1:9 [10]. Brain and other tissues may have 
variant enzymes, so we only assume that the proportion 
known from the liver metabolism is the same in all other 
tissues [11]. A small quantity of morphine is metabolised 
in the liver to normorphine by a CYP3A4 enzyme [12]. 
However, normorphine is a much weaker analgesic than 
morphine and does not appear to be toxic [13]. The overall 
bioavailability of morphine is variable and is approximately 
20–30% [14]. The drug with this profile would never be 
licensed to be used in the 21st century. The unpredicta-
bility of the bioavailability is reflected by the individual 

doses of morphine and the need of the dose titration 
until analgesia is achieved. Approximately 10% of the 
original dose is excreted unchanged with urine. The rest 
is excreted by the kidney as glucuronides and as other 
minor metabolites with the bile [15].

Diffusion of morphine 
and its metabolites through 
the blood-brain barrier

Morphine, as a hydrophilic drug, penetrates with dif-
ficulty through the blood-brain barrier in a paracellular 
mode [10]. This means, that the drug needs to accu-
mulate considerably at the blood side to create enough 
gradient. Once in, some of the drug is actively pumped 
out by a P-glycoprotein [16]. Inhibition of this enzyme by 
a number of drugs and naturally occurring substances 
may increase morphine toxicity [17]. More hydrophilic 
metabolites cross the blood-brain barrier with even grea-
ter difficulty. However, M6G is probably primarily actively 
transported into the brain by the endothelial Oatp2 protein 
[18, 19]. This may explain M6G analgesic potency when 
given parenterally in the treatment of postoperative pain 
which is comparable to morphine itself [20]. Anyway, in 
the liquor part of the M6G originates from liver metabo-
lism and part is synthesized de novo in the brain [21] 
Brain UGT2B7 glucuronidase appears in a number of 
variants [22] One of these variants occurs in the sickle 
cell disease and it causes decreased glucuronidation of 
morphine [23]. It explains why morphine is inefficacious 
in the pain crisis during this disease [24]. Naloxone, which 
crosses the blood-brain barrier abolishes fully morphine 
analgesia, while the naloxone derivatives which do not 
cross the blood-brain barrier show no effect. 

M6G administered systemically in humans has an an-
algesic potency roughly equal to those of morphine [20]. 
However, the same drug administered intracerebrally in rats 
is 100 times more potent than morphine [25]. In the first 
hours, systemically administered morphine is more potent 
compared to systemically administered M6G. This is pro-
bably due to slow diffusion through the blood–brain barrier. 
The cycle morphine-diffusion-metabolism in the brain to 
M6G is faster than the diffusion of M6G. It is estimated that 
91–97% of the analgesic effect of morphine is due to M6G 
[26] and morphine can be seen as a pro–drug. However, 
in the case of renal insufficiency M6G will accumulate and 
can be toxic or even lethal [27, 28]. Renal function declines 
with age and at the age of 90 years, it is only half of the 
original value in children [29]. This is also the reason why 
children and adolescents need higher morphine doses in 
comparison to the geriatric population. 

The role of morphine-3-glucuronide 
in pain treatment

M3G does not bind to any opioid receptor and is devoid 
of any analgesic effect [30]. In a very high dose, 30 mg 
IV, administered to healthy subjects it did not show any 
pharmacological effect [31]. It does not cross the blood-
-brain barrier.10 Plasma concentrations of M3G increase 
in renal insufficiency [32]. And yet, M3G for many years has 
been suspected to act antagonistically to morphine, and to 
induce opioid-induced hyperalgesia [33, 34]. A long search 
revealed its binding to the Toll-Like 4 receptors (TLR4) on 
the microglial cells and on macrophages [35–37]. TLR4 is 
one of many Toll-like receptors that organize an innate 
immune response reacting to foreign and endogenous 
harmful impulses, most often bacterial lipopolysaccharides 
(LPS) [38]. TLR4 is the key factor for all processes that for 
many years were collectively named neurogenic inflamma-
tion [39, 40]. These receptors bind a wide range of drugs 
and are not stereoselective [41]. Recently, TLR4 were con-
sidered to be crucial for understanding the emergence of 
many diseases, such as neurodegenerative, autoimmune, 
infectious and/or neoplastic diseases [42–44], as well as 
chronic pain [45]. M3G activates TLR4 as comparably to the 
bacterial-derived lipopolysaccharides (LPS) [46] Activation 
of TLR4 increases production of inflammatory cytokines: 
TNF-a, IL-1b, IL-6 and IFN-g45 and prostaglandins [47]. 
TLR4 explain different phenomena such as tolerance, 
hyperalgesia, pruritus, and cough [47, 48].

Strategies to overcome Toll-like 4 receptors 
activation

TLR4 inhibition with normally inactive on the opioid 
receptors (+)-naloxone, results in the abolition of morphine 
tolerance [47]. Moreover, treatment with (+)-naloxone gre-
atly improved morphine analgesia in a rat nerve constriction 
model [49, 50]. It is not surprising that TLR4 has become 
an important target for new drugs [51]. Glucocorticoids 
have been shown to block certain genes involved in the 
activation of TLR4 [52]. Tricyclic antidepressants and 
selective serotonin reuptake inhibitors (SSRI) are known 
for their role in inhibition of Toll-like receptors and may be 
used to improve analgesic effects of opioids [53].

Summary

Morphine metabolism to two main metabolites M3G 
and M6G has been known for decades. The implications of 
this metabolism for pain treatment became apparent only 
recently. Morphine, in fact, is a pro–drug which needs to be 
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glucuronidated to M6G and act in the spinal cord and brain. 
Part of this process starts already in the liver, during the first 
pass metabolism. Morphine crosses the blood-brain barrier 
easier than M6G but M6G can be actively transported by 
Oatp2 and by de novo synthesis of M6G from morphine in 
the brain. Those mechanisms together make it possible 
that M6G is the main analgesic, responsible for up to 97% 
of morphine analgesic effect.

The second metabolite, M3G usually seen as inactive 
and less important is the agonist to the TLR4 responsible 
for neurogenic inflammation in the brain. As such this 
process is antagonizing M6G analgesia and is involved 
in such phenomena as opioid-induced hyperalgesia, and 
opioid tolerance. There is a number of drugs that inhibit 
activation of TLR4 and pro–nociceptive effects of M3G. 
Among them are corticosteroids, tricyclic antidepressants 
and SSRI. Some of them are used for this purpose already 
for decades. However, it is conceivable that soon a series 
of new drugs specifically designed to antagonize TLR4 but 
not binding to opioid receptors may become available.
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