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Introduction

Around 30% of patients with newly diagnosed 
breast cancer receive mastectomy and are general-
ly offered breast reconstruction to improve quality 

of life [1]. Even though post-mastectomy radiation 
therapy (PMRT), as part of a multi-modality ap-
proach, reduced the risk of loco-regional relapse 
and improved survival in locally advanced or early 
stage positive node disease [1, 2], it was linked to 
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a high rate of complications, particularly in cases 
with expander/implant reconstruction [3–7]. Com-
plications included severe capsular contracture, in-
fections, implant distortion or loss, pain and poor 
cosmetic outcome [1–5]. Acute complications can, 
furthermore, interrupt the scheduled treatment for 
some or even many days. If the break is longer than 
1 week it may be associated with less local disease 
control and, thus, impact upon survival [8]. 

Other concerns are related to expander irra-
diation which over half of breast cancer patients 
underwent before the permanent breast implant 
exchange [9]. In about 60% of cases, expanders 
in the sub-pectoral muscle have an internal port 
for saline solution injection to expand the over-
lying chest wall tissues [10]. The port contains 
a rare-earth magnet that produces an artifact in 
computerized tomography (CT) images which, in 
turn, affects dose distribution, increasing the risk 
of an overdose which could cause complications, 
or an under-dose which could reduce local disease 
control [11, 12]. 

Few ex vivo dosimetric analyses addressed the ef-
fect of the internal magnetic port on radiation dose 
attenuation by means of film and thermolumines-
cent dosimeters. Using a single beam, the dose re-
duction behind the port varied with beam orien-
tation and energy [12–14]. Although the dose was 
slightly increased at the edge of the magnet due to 
radiation backscatter, the increase may be of little 
clinical significance as it was restricted to the sili-
cone envelope [13, 14].

Monte Carlo simulation with 2 tangential beams 
to mimic the clinical setting provided conflicting 
results. Compared with irradiation without an ex-
pander, Chatzigiannis et al. [15] found the absorbed 
dose reduction in the port shadow ranged from 7% 
to 13% for 6 MV photons and was around 6% for 18 
MV photons. On the other hand, Trombetta et al. 
[16] did not find any significant changes with 2 op-
posed 6 MV photon beams, while a 7% under-dose 
was found with a single beam. 

Dosimetric evaluation of plans with and with-
out correction for the rare-earth magnet electron 
density showed that on corrected plans dose het-
erogeneity was increased and the dose to the clini-
cal target volume (CTV) was reduced, particularly 
around the magnet [17]. However, in in vivo do-
simetry studies, Gee et al. using 2 opposed 6 MV 
photon beams reported a 7% skin dose reduction 

in the port shadow in 15/16 patients [18], but Da-
mast et al. found the dose was reduced significantly 
in only 1/6 patients using tangential 15-MV photon 
beams [13]. 

Given these discrepancies, the present study 
compared dosimetry in real clinical plans (RP) 
without any corrections for 30 patients who were 
treated at our Radiation Oncology Unit and plans 
with port artifact correction (corrected plans, CP). 
Furthermore, RP and CP were made and results 
compared in an anthropomorphic phantom with 
an expander and then ex vivo dosimetry was carried 
out. Finally, in vivo dosimetry was performed in 3 
patients and results were compared with the corre-
sponding doses as achieved in the RP and CP. Fig-
ure 1 shows the study design. 

Materials and methods 

Thirty post-mastectomy breast cancer patients 
who underwent breast reconstruction with a tempo-
rary tissue expander received 3D conformal PMRT. 
Target volumes were the chest wall in all patients 
and the draining nodes in 27 of them. All had giv-
en their informed consent to their data being used 
in this study. Breast reconstruction was performed 
with Natrelle 133® (ALLERGAN, Santa Barbara, 
CA), a silicone elastomer expansion envelope with 
a textured surface and a MAGNA-SITE™ integrat-
ed injection site. It contains a rare-earth perma-
nent magnet disk (Nd2Fe14B; Neodymium mag-
net, nominal density = 7.4 g/cm3) which is 2.1 cm 
in diameter and 3.5 mm in thickness. The magnet 
is cased in a titanium shell (3.5 cm in diameter 
and 0.4 mm in thickness) with a nominal density of 
4.2 g/cm3. The MAGNA-FINDER™ external locat-
ing device indicates the MAGNA-SITE™ location.  

All patients underwent CT simulation with 
3 mm slice thickness for PMRT planning. The tar-
get volumes were contoured on every slice accord-
ing to the guidelines of the Italian Association of 
Radiotherapy and Clinical Oncology (Associazi-
one Italiana di Radioterapia ed Oncologia Clinica; 
AIRO) [19]. RP were generated in the Pinnacle 
treatment planning system (TPS) V9.8 (Philips 
Radiation Oncology Systems, Fitchburg, WI, 
United States). The prescribed dose was 50 Gy in 
25 fractions, with standard fractionation. No skin 
bolus was used for any patient. Doses were mod-
ulated using two opposite tangential co-planar 
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beams with the field-in-field technique. Virtual 
wedges were used. In order to speed up the op-
timization task a dose grid of 4 × 4 × 4 mm3 was 
first used in combination with the Adaptive Con-
volve dose engine for manual plan optimization. 
Then a 2x2x2 mm3 dose grid resolution was com-
bined with the Collapsed Cone Convolution dose 
engine (the most accurate dose algorithm used by 
Pinnacle) to calculate the final dose. No correc-
tions for port heterogeneity were performed on 
RP. International Commission on Radiation Units 
and Measurements (ICRU) 62 recommendations 
[20] were used for dose goals to the planning tar-
get volumes (PTV) and QUANTEC recommen-
dations [21] for dose constraints to organs at risk 
(OARs). All treatments were delivered using a 6 
MV linear accelerator. 

CP were calculated for all patients in order to 
correct the port artifact effect on dose distribution. 
The port was identified by setting a “bone-like” 
window width and level from 1000 to 2000 (raw 
units) in the TPS, including also some of the image 
artifacts. The chest wall PTV was created without 
the port (PTV-port), by subtracting the port vol-
ume from target volume, and its density was cor-
rected to 1 g/cm3 (saline solution). A non extended 
CT-density table, with a maximum density of 3.5 
g/cm-3, was used. The port structure was assigned 
the default density converted from the number 
read by the CT dataset.

Dosimetry was compared in the 30 RP and CP, 
considering the medium, minimum and maximum 
doses to the PTV and PTV-port, as reported in 
the TPS.

We then performed ex vivo and in vivo dosime-
try at selected points chosen on the CT scan to as-
sess port-related dose variations at skin level. They 
were compared with calculated doses in the corre-
sponding RP and CP on TPS. For ex vivo dosimetry 
a Natrelle133 tissue expander covered by a 0.5 cm 
bolus simulating human skin was mounted on 
the Alderson Rando anthropomorphic phantom. 
As for any real patient, a CT scan was acquired, 
target contouring was performed by a radiation 
oncologist, RP and CP were calculated and dosi-
metric outcomes were compared. One radiother-
apy fraction of RP was delivered to the phantom. 
To measure the delivered dose, 6 rectangular strips 
of radiochromic film EBT3 measuring approx-
imately 2.5 cm × 2 cm (for easy handling) were 
positioned on the expander. After the port had 
been located by MAGNA-FINDER™, 3 films were 
put on the transversal line crossing the port while 
the other 3 were placed on the transversal line 
crossing radio-opaque marker alignment so as to 
easily identify their positions in the TPS plans. Ac-
cording to EBT3 usage recommendation, 24 hours 
lapsed between RT administration and the film 
scans, which was performed using an Epson scan-
ner (version 3.49A). The scanning parameters 
were: 48-bit color and 72 dpi resolution. The Film 
Analyzer program (TomoTherapy Hi-ART Soft-
ware) converted film responses into dose using 
the appropriate calibration curve. A central region 
of interest (ROI) of about 2 mm × 2 mm was used 
to obtain the medium dose and its standard devia-
tion at each center strip. All doses were compared 
with the RP and CP. 

Figure 1. Study design. TPS — treatment planning system; RP — real plan; CP — corrected plan

30 patients
Dosimetric comparison of TPS plans without (RP)

and with (CP) port artifact correction

3 patients in vivo dosimetry RP Phantom ex vivo dosimetry RP

RP Film doses, RP TPS doses and CP TPS doses
comparison

RP Film doses, RP TPS doses and CP TPS doses
comparison

Phantom
Dosimetric comparison of TPS plans without (RP)

and with (CP) port artifact correction



Reports of Practical Oncology and Radiotherapy 2023, vol. 28, no. 1

https://journals.viamedica.pl/rpor4

In vivo dosimetry was performed in 3 patients. 
Doses were measured during a treatment session us-
ing 6 radiochromic film EBT3 strips of 2.5 cm × 2 cm, 
as described above in ex vivo dosimetry. Three films 
were put on the transversal line crossing the port, as 
indicated by MAGNA-FINDER™ and another 3 were 
placed on the transversal line crossing the tattoo 
alignment on the reconstructed breast. Film doses 
were compared with the RP and CP calculated dos-
es. Study design is shown in Figure 1.

Statistical analyses 
The non parametric Wilcoxon signed rank test 

for paired data compared the calculated doses in 
the RP and PP for 30 patients and the ex vivo and in 
vivo dosimetry. The significance threshold was set 
at p ≤ 0.05. All calculations were performed by us-
ing IBM-SPSS rel. 23.0, 2015.

Reproducibility, the degree to which differ-
ent measurements provide similar results, was as-
sessed in the three patients in whom in vivo do-
simetry was performed. Measures of agreement 
and reliability quantified reproducibility. 

Inter-observer agreement was quantified by 
calculating the mean difference between the mea-
sure modality pairs and the relative standard devi-
ation (SD). Subsequently, the 95% limits of agree-
ment were calculated according to the method of 
Bland and Altman [22], defined as the mean dif-
ference between the measure modalities ± 1.96*SD. 

Reliability: the intra-class correlation coefficient 
(ICC) was derived from a random-effects two-way 
analysis of variance (ANOVA). The ICC was de-
fined as the ratio of the variance between patients 
over the total variance [23]. ICC is scaled as fol-
lows: 0–0.2 indicates poor agreement: 0.3–0.4 fair 
agreement; 0.5–0.6 moderate agreement; 0.7–0.8 
strong agreement; and > 0.8 almost perfect agree-
ment [24].

Results

The port structure volume including some of 
the image artifacts was in the range of 2.6–2.85 cm3.  

Minimum, medium and maximum PTV doses in 
the RP and CP were: 3.90 Gy (range 1.08–41.00 Gy) 
and 4.00 Gy (range 1.06–41.00 Gy), p = 0.094, for min-
imum doses; 48.35 Gy (range 44.39–50.17 Gy) 
and 48.44 Gy (range 44.92–50.40 Gy), p = 0.057, 
for medium doses; 55.49 Gy (range 52.80–61.59 Gy) 

and 56.27 Gy (range 52.80–61.64Gy), p = 0.280, 
for maximum doses. No significant differences 
emerged between RPs and CPs doses. 

For results of ex vivo dosimetry and the RP 
and CP calculated doses on the phantom, dos-
es measured with films were slightly higher at all 
points, except one. There, it was 8 cGy lower. Re-
sults of ex vivo dosimetry and the RP and CP calcu-
lated doses are shown in Supplementary File — Ta-
ble S1.	

Results of in vivo dosimetries and of the calculat-
ed RP and CP doses in the 3 patients are shown in 
Table 1. An excellent agreement emerged between 
film doses and calculated RP and CP TPS doses. 
Agreement between CP doses and film doses was 
better than that between RP doses and film doses 
(Tab. 2).

Discussion

Two-stage expander-implant breast reconstruc-
tion after mastectomy is widely used in clinical 
practice nowadays because it is a relatively easy 
procedure with low complications and is a more 
attractive option for patients and surgeons than au-
tologous tissue procedures [25].

In the past, concerns about the safety and tox-
icity of PMRT after breast reconstruction were of-
ten expressed, particularly with expander-implant 
procedures [3–5, 26, 27]. More recent studies have 
reported good long-term outcomes and local con-
trol with no dose increase to the lung and heart 
[28, 29]. Concerns, however, persist about local 
disease control and toxicity because of potential 
dose perturbation, that could be caused by the ra-
re-earth material in the internal port of the expand-
er, as reported in dosimetric studies and in vivo 
evaluations [12–15, 17, 18].

Data are partially conflicting. Image artifacts 
lead to difficulties in port localization and the ra-
re-earth material itself leads to inaccurate TPS 
dose calculation. Furthermore, dose accuracy es-
timations are linked to TPS features [13, 14, 30]. 
Data from a study using the Monte Carlo algo-
rithm [15] suggested the absorbed dose was re-
duced in the port shadow and the reduction was 
even larger when lower beam energy was used. On 
the contrary, other dosimetric and ex vivo analy-
ses did not report significant differences when 2 
opposed beams were used, as is routine in clinical 



Elisabetta Perrucci et al.  Effect of internal port on dose distribution in post-mastectomy radiotherapy

5https://journals.viamedica.pl/rpor

practice [11, 16]. In vivo dosimetry data were also 
divergent. Damast et al. [13] did not find dose 
decreases, while Gee et al. [18] observed a dose 
reduction in 15/16 patients in an average area 
of 1.07 cm2, thus affecting only a small volume 
around the magnet. Consequently, port impact 
on overall dose distribution was probably of little 
dosimetric and clinical significance when tangent 
irradiation was performed [12, 14, 16]. Neverthe-
less, measured dose reduction to the skin ranged 
from 4% to 10% [12, 14, 18]. In order to improve 
the dosimetric accuracy of treatment plans, 
a metallic port model was developed, validated 

and compared with 2 widely used clinical mod-
els which differed in the contouring modalities; 
the second one was very similar to the present 
one. Although the old clinical models overesti-
mated or underestimated, respectively, the dose 
attenuation from the metallic port, results showed 
that for all plans and models the metal port had 
an impact which was significant for the skin but 
not for the chest wall. This effect was mainly ob-
served for the 2 opposite field technique rather 
than for the VMAT and 4-field IMRT because of 
the higher number of beam angles with the latter 
techniques [31].

Table 1. Results of real clinical plans (RP) in vivo dosimetry on the 3 patients and RP treatment planning system (TPS) 
and corrected plan (CP) TPS doses 

Measure point Film dose [Gy] SD RP dose [Gy] CP dose

1 0.93 0.04 0.91 1.11

2 1.30 0.03 1.30 1.30

3 1.32 0.03 1.29 1.29

4 0.85 0.02 0.80 0.80

5 1.38 0.04 1.41 1.51

6 1.27 0.04 1.29 1.39

1 1.06 0.04 1.02 1.01

2 1.19 0.04 1.05 1.11

3 1.40 0.04 1.24 1.24

4 1.01 0.04 1.04 1.00

5 1.21 0.03 1.28 1.33

6 1.37 0.03 1.16 1.22

1 1.07 0.03 1.01 1.01

2 1.26 0.03 1.06 1.12

3 1.31 0.05 1.25 1.25

4 0.98 0.04 1.03 0.99

5 1.17 0.04 1.26 1.32

6 1.37 0.03 1.17 1.23

SD — standard deviation

Table 2. Statistical analysis of in vivo dosimetry and real clinical plan (RP) and corrected plan (CP) doses

Mean  ±  SD 
[Gy] Difference in means  ±  SD [Gy] Lower and upper limits 

of agreement ICC CV (%)

A 1.14 ± 0.16 A–B –0.04 ± 0.06 –0.15 to 0.08 0.968 3.9

B 1.18 ± 0.17 A–C –0.05 ± 0.10 –0.24 to 0.14 0.908 5.8

C 1.19 ± 0.17 B–C –0.01 ± 0.11 –0.23 to 0.20 0.887 6.6

A — doses calculated for the RP; B — doses calculated for the CP; C — doses detected by the films; SD — standard deviation; ICC — intraclass correlation 
coefficient; CV — coefficient of variation
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In the present dosimetric study on dose pertur-
bation effect due to the port, we assigned a saline 
solution density to the artefacts caused by the rare 
earth (high Z) magnet, without applying any densi-
ty override to the magnet itself. These choices were 
dictated by uncertainties as to the magnet’s real 
density and inner structure and difficulties in accu-
rately contouring it [30]. 

Our study defined the port density using a sim-
pler method than Yoon et al. [31], but, because of 
it, over-estimated port volume as it comprised ar-
tifacts in our CP plans. We did not find any sig-
nificant dose differences between the RP (with no 
correction) and the CP (which had been corrected 
for port artefact). However, since borderline signif-
icance emerged for the medium dose (p = 0.057), 
we are unable to establish whether our sample size 
of 30 plans could have determined the lack of signif-
icance. In any case, dose differences in the medium 
dose were so small (23 cGy) as to have a negligible 
clinical impact. Dose differences in our study were 
lower than reported by Chen et al. [17], who per-
formed a dosimetric study with two different port 
density corrections. They found CTV coverage by 
the prescribed dose of 50 Gy was significantly low-
er in the CPs than in the plan without correction. 
Furthermore, the worst homogeneity and confor-
mal dose distribution indices and CTV coverage 
were all found in the CPs [17].

With the aim of investigating port-related per-
turbation to the dose delivered during a treatment 
session, the present study performed film dosim-
etry on the phantom and on 3 patients. Although 
in ex vivo dosimetry measured doses were slight-
ly higher than TPS calculated doses for both RP 
and PP, the dose differences at each point did not 
exceed 0.3 Gy for plans and films. Even in in vivo 
dosimetries the dose differences at each point did 
not exceed 0.3 Gy for plans and films.  

It is worth noting that skin doses in our study 
were lower than the prescribed single dose of 2 Gy 
at each point in both plans and films. To ensure 
the skin is not under-dosed, as it could constitute 
a target in chest wall irradiation as in pT4b,c,d tu-
mours, the use of bolus should be recommended, 
even after reconstruction [10]. Actually, in rou-
tine clinical practice, PMRT varies greatly with 
about half of radiation oncologists never using bo-
lus [10,32,33]. In accordance with our Radiother-
apy Centre, the bolus was never used in the pres-

ent study, as no disease stage and no other risk 
factors required higher skin dose. As previously 
reported, we observed good outcomes in terms 
of local control, survival and cosmesis in our pa-
tients [28]; in this group, acute toxicity was limited 
to mild-to-moderate skin toxicity which did not 
interrupt treatment.

PMRT guidelines after implant breast recon-
struction were published [34]. PMRT as delivered 
with intensity modulated RT techniques, can lower 
toxicity and improve target coverage [35]. In fact, 
compared with three different modalities of in-
tensity modulated irradiation, three-dimensional 
conformal radiation therapy (3D-CRT) provides 
the poorest coverage of complex shaped targets 
[35]. Moreover, the volumetric approach provides 
the additional benefit of excluding the implant/ex-
pander from the target, thus reducing the port ef-
fect on dose distribution. 

The strength of our study lay in comparing 30 
RP and 30 CP and in demonstrating there were no 
differences in dose distribution in plans that were 
uncorrected and corrected for the port. Film doses 
in ex vivo and in vivo dosimetries showed an excel-
lent correspondence with calculated doses in both 
sets plans. 

Despite the difficulty in assessing the superficial 
dose and the true internal port structure due to its 
artifacts, a good correlation emerged between TPS 
estimated doses and detected doses without any 
correction for the port. This result concurs with 
previous observations; using standard 3D irradia-
tion, the port was reported to affect dose distribu-
tion only within its immediate area inside the ex-
pander, thus exerting no clinical effect [14, 16, 17].

Our results are in agreement with those of a re-
cent study of Mayorov and Ali [36] where dosimet-
ric impact of the metal port of tissue expanders was 
considered, along with the effect of the inter-frac-
tional positional variations of the metal port itself, 
even if the strategy proposed to handle metallic 
port in planning is slightly different from that of 
the present study. Furthermore, daily positional 
variations of the metal port have small and not clin-
ically relevant effects on target coverage and OARs. 

Conclusions

In conclusion, present evidence reinforced pre-
vious findings [14, 16, 17] that the internal port, 
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due to its small size, does not significantly affect 
the dose distribution in the CTV when tangential 
opposed beams are used. In particular, any area 
that resulted as under-dosed area, was very small 
and clinically negligible. Moreover, the presence 
of the port in patients with expander breast recon-
struction who undergo PMRT does not translate 
into a detrimental effect on toxicity and clinical 
outcomes [28, 29]. 

The most interesting point to emerge from 
the present study was the correspondence between 
TPS calculated doses, without and with port-relat-
ed artefact correction, and the film doses detected 
during an irradiation session both in the phantom 
and in vivo. This correspondence was observed 
without correction for port density which is not 
easy to estimate. 
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