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Introduction

The objective of radiotherapy is to achieve maxi-
mal tumor control probability (TCP) with minimal 
normal tissue complication probability (NTCP). 
The relation between TCP and NTCP constitutes  
a therapeutic window. Higher doses, higher radi-

ation volumes, and the addition of systemic treat-
ments result in increases in both values [1].

Several randomized clinical trials in locally ad-
vanced non–small cell lung cancer (NSCLC) have 
demonstrated that concurrent chemotherapy 
and radiotherapy result in better outcomes than ra-
diotherapy alone or sequential use of both modal-
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ities [2–6], but at the cost of a higher incidence of 
acute esophagitis (4% vs. 18%) [4]. In the Radiation 
Therapy Oncology Group (RTOG) 0617 studies, 
the incidence of grade 3 esophagitis with concur-
rent chemoradiation in the standard dose arm was 
substantially lower (7%) than previously described, 
likely because of recent technical improvements 
in radiotherapy [7]. However, esophagitis remains 
an essential issue because resulting radiotherapy 
breaks may negatively affect long-term survival 
[8], and subsequent esophageal strictures decrease 
quality of life [9]. 

One of the approaches to decreasing esophageal 
toxicity is the contralateral esophageal sparing tech-
nique (CEST) in which the esophageal wall contra-
lateral to gross disease is considered an avoidance 
structure [10]. The purpose of this modeling study 
was to explore whether this approach affects dosim-
etric parameters and esophageal NTCP in NSCLC 
patients administered definitive chemoradiation. 

Materials and methods

We retrospectively reviewed radiation plans for 
patients with locally advanced NSCLC who un-
derwent definitive chemoradiation. Radiotherapy 
plans were designed using four-dimensional (4D) 
computed tomography (CT) or breath-hold CT. 
For 4D-CT, the internal target volume (ITV) was 
defined as the gross tumor volume (GTV) plus 
the internal margin for respiratory tumor motion 
across the 10 phases of the breathing cycle. For 
the breath-hold technique, only GTV was con-
toured. The original clinical target volume was 
based on the automatic isotropic 5 mm margin 
around the ITV or GTV. The organs at risk (OARs) 
were defined according to the RTOG atlas and in-
cluded the right and left lungs, combined lung vol-
umes, spinal canal, entire esophagus, heart and, in 
selected cases, brachial plexus. Original plans were 
designed using the subvolume “esophagus — PTV”. 
In the CEST plans, the contralateral esophagus 
(CE) was contoured as a separate avoidance struc-
ture 5 mm from the PTV edge, allowing for an ad-
ditional margin to achieve steep dose fall-off across 
sections of the esophagus. Superior and inferior 
borders of CE were 2 cm around the PTV (Fig. 1). 
There was no lower limit of the CE size. 

The prescribed dose was 60–66 Gy in 30–33 frac-
tions delivered with 6 MV photons and the intensi-

ty-modulated radiation therapy (IMRT) technique. 
The alternative CEST plans were prepared without 
compromising target coverage and respecting dose 
constraints to OARs. Efforts were made to minimize 
the dose to CE. CEST plans were prepared using 
the same physical parameters — that is, the same 
radiation technique, the same number of beams, 
the same energy, and the same AAA 13.026 calcu-
lation model. For all patients, original and CEST 
plans were compared according to prescribed dosi-
metric parameters. The Dmean, V40, V60, and maxi-
mal dose (Dmax) to the esophagus, as well as the V95, 
V98, V107, and Dmax for PTV, were extracted from 
the histograms prepared in the treatment plan-
ning system (Eclipse, Aria 13.0, Varian Medical 
Systems). The NTCP analyses for the esophagus 
and TCP for the PTV were performed for original 
and CEST plans using an equivalent uniform dose 
(EUD)-based mathematical model provided by 
MATLAB modules [11]. This model can be used 
for both tumors and normal tissues according to 
the Niemierko formula [12, 13]:
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In this formula, {vi, Di} are bins of a histogram 
and a is a tissue-specific parameter. This parameter 
is negative for tumors and positive for normal struc-
tures. Parameter i is unitless and describes the i-th 
partial volume receiving the dose Di in Gray (Gy). 
The choice of parameter a determines the behavior 
of the EUD-based model. The EUD-based NTCP 
was calculated using the logistic function [13]:

Figure 1. Example of contralateral esophagus delineation. 
Structures displayed are: planning treatment volume (red), 
esophagus (blue), and contralateral esophagus (yellow)
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The tolerance dose 50 (TD50) is the 50% com-
plication rate at a specific time interval, and γ50 is 
the normalized dose response gradient. The γ50 ex-
pressed as %/% is the increment in response in per-
centage points for a 1% increase in dose, defined at 
the 50% response level. To calculate TCP, the EUD 
was substituted in the following equation:
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The TCD50 is the dose to control 50% of the ho-
mogeneously irradiated tumor. Parameters for TCP 
and NTCP (Tab. 1) were selected based on the pro-
posal of Emami et al. Esophageal toxicity in this re-
port included severe complications such as critical 
stricture and perforation [14].

Results

We analyzed the treatment plans of 13 patients 
with locally advanced nonmetastatic NSCLC 
(12 primary tumors and 1 mediastinal relapse) 
and gross tumor within 1 cm of the esophagus, 
who underwent definitive sequential or concur-
rent chemoradiation (Tab. 2). The CEST planning 
showed no deterioration in parameters for PTV 
(Tab. 3). The mean esophageal dose with CEST 
was lower in all patients, with a mean reduction 
of 3.8 Gy (range, 0.7 to 8.7 Gy). The mean reduc-
tion of V40 and V60 to the esophagus was 6.4 Gy 
(range, 2.1 to 17.2 Gy) and 1.9 Gy (range, –3,4 to 
+10.0 Gy), respectively (Fig. 2). However, in no 
case was substantial reduction of the maximal 
dose to the esophagus achieved (Tab. 4). The del-
ta parameter, defined as the percentage differ-

Table 1. Radiobiological parameters used in modeling 
of normal tissue control probability (NTCP) and tumor 
control probability (TCP)

  NTCP TCP

Parameter a 19 –12

Parameter γ50 4 2

TD50 (Gy)/TCD50(Gy) 68 60

α/β (Gy) 3 10

NTCP — normal tissue complication probability; TCP — tumor control 
probability

Table 2. Patient characteristics

Patient Histology cTNM Stage Type 
of chemoradiation

Chemotherapy 
regimen

Total radiation dose 
[Gy] (dose levels)

1 Squamous cell 
carcinoma cT4N2 IIIB Concurrent 2 × CP/EP 66

2 Adenocarcinoma cT1N2 IIIA Concurrent 2 × CP/EP 66

3 Adenocarcinoma cT2N2 IIIA Concurrent 2 × CP/EP 66/60

4 Adenocarcinoma cT3N2 IIIA Sequential 3 × CP/GEM 60

5 Squamous cell 
carcinoma cT3N2 IIIA Sequential 4 × CP/VB 66

6 Adenocarcinoma Mediastinal 
relapse Radiotherapy alone 60

7 Squamous cell 
carcinoma cT3N1 IIIA Concurrent 1 × CP/EP 66

8 Squamous cell 
carcinoma cT3N2 IIIA Concurrent 2 × CP/EP 60

9 Squamous cell 
carcinoma cT2N2 IIIA Concurrent 2 × CP/EP 66/54

10 Adenocarcinoma cT3N2 IIIA Sequential 3 × CP/GEM 66

11 Squamous cell 
carcinoma cT4N2 IIIB Sequential 4 × CP/VB 62

12 Adenocarcinoma cT4N2 IIIB Concurrent 2 × CP/PEM 60

13 NSCLC-NOS cT4N2 IIIB Concurrent 3 × CBDCA/PCL 60

CP — cisplatin; CBDCA —carboplatin, PEM, pemetrexed; VB — vinorelbine; EP — etoposide; GEM — gemcitabine; PCL — paclitaxel; NOS — not otherwise 
specified
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ence between the maximum dose in the CEST 
and original plan, varied from –1.5% (reduction) 
to +2.5% (increase).

The differences in the mean heart dose, mean 
lung dose, and maximal spinal cord dose were 
negligible for all patients (Tab. 5). Figure 3 shows 
an example of the dose-volume histogram of 
original and CEST plans for a single patient. For 
the CEST plan, the mean heart dose and the mean 
lung dose were comparable with the original plans. 
The reduction of NTCP was reached in all patients 
(range, 5%–73%), and the TCP was not affected 
(–1.8% to +6.7%; Fig. 4 and 5).

Discussion

Acute esophagitis accompanying combined 
chemoradiotherapy for lung cancer remains a sig-
nificant clinical problem. Pharmacologic preven-
tion of esophagitis has proved unsuccessful [15]. 
Crucial elements of reducing the risk of esophagitis 
include the thorough definition of target volumes 
and dosimetric parameters and improvements in 
the planning technique and dose delivery.

In 1991, Emami et al. published normal tissue 
constraints for use in radiotherapy practice [14]. 
With a particular emphasis on partial volume ef-

Table 3. Dosimetric planning target volume (PTV) parameters for original and contralateral esophageal sparing technique 
(CEST) plans

Patient Plan
PTV

V95 (%) Δ (%) Dmax (%) Δ (%)

1
Original 95.2

–0.1%
108.3

0.3%
CEST 95.1 108.6

2
Original 98.3

0.1%
105.7

0.0%
CEST 98.5 105.7

3
Original 79.8

0.7%
110.0

–0.9%
CEST 80.3 109.0

4
Original 98.7

–0.7%
107.3

2.5%
CEST 98.0 110.0

5
Original 98.6

–2.0%
106.9

2.0%
CEST 96.7 109.0

6
Original 99.6

0,0%
105.0

0.5%
CEST 99.6 105.5

7
Original 99.3

–0.8%
106.7

0.3%
CEST 98.5 107.0

8
Original 98.5

–0.2%
107.5

0.3%
CEST 98.2 107.8

9
Original 94.5

–0.5%
107.0

0.0%
CEST 94.0 107.0

10
Original 97.3

–0.3%
105.9

0.1%
CEST 97.0 106.0

11
Original 97.4

1.2%
106.3

–1.5%
CEST 98.6 104.7

12
Original 96.6

–1.1%
105.5

2.4%
CEST 95.6 108.0

13
Original 100.0

–0.2%
105.0

1.0%
CEST 99.8 106.0

SD   0.8%   1.2 %

Δ — absolute percentage difference between values in CEST and the original plan; V95 — volume receiving the 95% prescribed dose; Dmax — maximal dose; 
SD — standard deviation
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Figure 2. Comparison of esophageal parameters for original (ORG) and contralateral esophageal sparing technique (CEST) 
plans
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Table 4. Dosimetric parameters for esophagus for original and contralateral esophageal sparing technique (CEST) plans

Patient  Plan
Esophagus

Dmean Δ [Gy] Dmax Δ [Gy]

1
Original 30.5

–4.55
67.5

0.64
CEST 25.9 68.1

2
Original 23.5

–8.65
66.5

0.68
CEST 14.8 67.2

3
Original 26.0

–2.82
72.2

0.23
CEST 23.2 72.5

4
Original 29.1

–3.21
60.4

0.54
CEST 25.9 61

5
Original 31.4

–2.34
68.6

0.14
CEST 29.0 68.7

6
Original 28.9

–3.02
56.3

0.28
CEST 25.9 56.6

7
Original 24.7

–4.06
68

0.43
CEST 20.7 68.4

8
Original 27.9

–5.88
59.6

0.05
CEST 22.1 59.7
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Table 4. Dosimetric parameters for esophagus for original and contralateral esophageal sparing technique (CEST) plans

Patient  Plan
Esophagus

Dmean Δ [Gy] Dmax Δ [Gy]

9
Original 17.6

–0.66
68.6

–0.06
CEST 17.0 68.6

10
Original 30.6

–4.07
64.8

0.58
CEST 26.5 65.3

11
Original 26.1

–2.43
63.9

0.98
CEST 23.7 64.9

12
Original 35.2

–5.10
63

–0.15
CEST 30.1 62.8

13
Original 33.0

–2.26
65.3

–0.8
CEST 30.7 64.5

SD 2.01 0.46

Δ — absolute percentage difference between values in CEST and the original plan; Dmean — mean dose; Dmax — maximal dose; SD — standard deviation

Table 5. Dosimetric parameters for selected organs at risk for original and contralateral esophageal sparing technique (CEST) 
plans

Patient  Plan
Heart Lungs Spinal cord

Dmean [Gy] Δ [Gy] Dmean Δ [Gy] Dmax Δ [Gy]

1
Original 12.7

–0.59
20.1

0.27
45.4

1.33
CEST 12.2 20.4 46.7

2
Original 7.0

–0.41
18.3

–0.21
50.1

0.12
CEST 6.5 18.1 50.2

3
Original 3.8

0.04
17.4

–
48.4

0.70
CEST 3.9 17.4 49.1

4
Original 17.9

0.7
18.8

–0.14
44.7

0.42
CEST 18.6 18.7 45.2

5
Original 3.5

1.18
17.6

–0.13
47.7

0.07
CEST 4.6 17.4 47.7

6
Original 17.1

–0.09
16.7

–0.15
45.3

0.57
CEST 17.0 16.6 45.8

7
Original 3.2

0.33
15.6

0.05
47.1

1.55
CEST 3.5 15.7 48.6

8
Original 11.6

–0.09
19.1

–0.1
45

2.39
CEST 11.5 19.0 47.4

9
Original 6.3

–
14.7

–0.05
37.3

–0.20
CEST 6.3 14.6 37.1

10
Original 13.0

0.15
19.1

–0.07
48.1

0.23
CEST 13.1 19.0 48.3

11
Original 38.0

0.98
12.9

–0.14
45.6

–0.45
CEST 39.0 12.8 45.2

12
Original 13.8

1.20
18.9

–
40.5

2.40
CEST 15.0 18.9 42.9
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fects, tolerance doses were proposed for irradiation 
of one-third, two-thirds, or whole organs. Further 

studies involving large patient populations and us-
ing three-dimensional dosimetry was the basis of 

Figure 3. Example of dose-volume histogram for original (squares) and contralateral esophageal sparing technique (CEST) 
plan (triangle lines) for a single patient. Structures displayed are planning target volume (PTV) (red), esophagus (blue), lungs 
(violet), and heart (pink)

Table 5. Dosimetric parameters for selected organs at risk for original and contralateral esophageal sparing technique (CEST) 
plans

Patient  Plan
Heart Lungs Spinal cord

Dmean [Gy] Δ [Gy] Dmean Δ [Gy] Dmax Δ [Gy]

13
Original 22.5

–0.63
19.3

0.20
14.2

0.60
CEST 21.9 19.5 14.8

SD 0.63 0.14  0.91

Δ — the percentage difference between values in CEST and original plan; Dmean — mean dose; Dmax — maximal dose; SD — standard deviation

Figure 4. Normal tissue complication probability (NTCP) comparison for the original and contralateral esophageal sparing 
technique (CEST) plans
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subsequent Quantitative Analysis of Normal Tis-
sue Effects which defines volumetric parameters 
predictive for radiation esophagitis [16]. Recom-
mended dosimetric constraints included V35, V50, 
and V70 for grade ≥ 2 esophagitis and the median 
dose (MD) for grade ≥ 3 toxicity. The MD has been 
widely adopted as a parameter; however, its predic-
tive value for esophagitis in particular studies has 
been inconsistent [17–20]. 

The advent of IMRT allowed for the reduction 
of the esophagus dose while maintaining adequate 
target coverage. In addition, interfraction motion 
does not compromise the quality of treatment plans 
[21]. IMRT appears to be particularly beneficial in 
node-positive patients and in cases with target vol-
umes located close to the esophagus. While meet-
ing all normal-tissue constraints in node-positive 
patients, IMRT can deliver RT doses that are 25%–
30% greater compared with three-dimensional ra-
diotherapy [22].

The primary objective of the present study was to 
use NTCP and TCP modeling to evaluate whether 
CEST potentially allows for decreasing esophageal 
toxicity compared with conventional treatment. 

A prospective CEST trial showed promising re-
sults, with no incidence of grade ≥ 3 esophagitis 
[10]. The authors suggested the following CE dose 
constraints: maximum dose 60 Gy (to 0.03 cc),  
V55 < 0.5 cc, and V45 < 2.5 cc, with acceptable de-

viations being 63 Gy, 3 cc, and 7.5 cc, respectively. 
In another phase 1 nonrandomized clinical trial in-
cluding 27 participants, the CE-sparing technique 
was associated with reduced risk of esophagitis 
among patients treated uniformly with chemoradi-
ation (to 70 Gy) [23]. There was no grade 3 or higher 
esophagitis despite the tumor being located within 
1 cm of the esophagus. The 2-year progression-free 
survival and overall survival rates were 57% [95% 
confidence interval (CI): 33–75%] and 67% (95% 
CI: 45–82%), respectively.

In the 1980s, probabilistic radiobiology models 
introduced concepts of serial and parallel tissue 
organization and functional subunits [24]. Ac-
cording to this concept, the esophagus is an organ 
with functional subunits arranged in the longitu-
dinal axis and high-dose irradiation of the entire 
cross-section of the esophagus can result in whole 
organ dysfunction. The CEST concept suggests 
that avoiding high radiation doses to the entire 
cross-section of the esophagus may lead to more 
efficient regeneration of the esophageal mucosa. 
It has been also speculated that preserving the con-
tralateral esophageal wall converts this organ from 
a serial to parallel one [23]. 

In our study, there was no substantial reduction 
of the maximal esophageal dose. Evaluation of this 
aspect revealed that D max reduction would affect 
parameters of the PTV coverage with prescribed 

Figure 5. Tumor control probability (TCP) comparison for the original and contralateral esophageal sparing technique (CEST) 
plans
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dose, thus being unacceptable. On the other hand, 
the increase in the maximal dose was elevating 
the NTCP, regardless of the obtained improve-
ment in volumetric parameters such as mean 
dose, V40, V60. It can be explained by the nature 
of the assumptions used in the modeling formulas 
strictly related to paradigm of esophagus as a seri-
al organ [10, 25].

The limitations of our study are a relatively small 
number of radiation treatment plans, the short-
comings of the NTCP modeling and its assump-
tions, and lack of testing of internal and exter-
nal model validity. Nevertheless, our results show 
that CEST, with its additional margin (5 mm from 
PTV), allows for the reduction of selected dosim-
etric parameters to the esophagus in radiotherapy 
of NSCLC. The usefulness of CEST in reducing 
esophageal toxicity should be assessed in prospec-
tive clinical trials.
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