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Introduction

In a conventional single-energy computed to-
mography (SECT) image, the pixel value represents 
the photon attenuation of the tissue. Materials with 
similar absorbance have the same CT numbers 
and are difficult to distinguish [1]. 

Dual-energy CT (DECT) uses two different 
energy levels, which can determine the ratio of 

the photoelectric effect components and Comp-
ton scattering [2]. It has been used to distinguish 
between tissues and characterize materials. DECT 
can obtain a variety of data, including an effective 
atomic number (Zeff) and iodine- and calcium-en-
hanced maps [3]. Revolution CT (GE Healthcare, 
Milwaukee, WI, USA) reconstructs 120 kVp equiv-
alent images and Zeff using the Gemstone Spectral 
Imaging (GSI) technique [4]. Zeff decomposition 
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Background: The effective atomic numbers obtained from dual-energy computed tomography (DECT) can aid in charac-
terization of materials. In this study, an effective atomic number image reconstructed from a DECT image was synthesized 
using an equivalent single-energy CT image with a deep convolutional neural network (CNN)-based generative adversarial 
network (GAN). 

Materials and methods: The image synthesis framework to obtain the effective atomic number images from a single-energy 
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analysis can aid in the characterization of materials. 
Mileto et al. used Zeff data to distinguish between 
non-enhancing renal cysts and enhancing masses 
[5]. Determining the electron density and effective 
atomic number is important to  better understand 
the interaction of radiation and to accurately es-
timate the absorbed dose. For proton and carbon 
treatment planning, CT values are commonly con-
verted into stopping power ratio (SPRw) values 
using a conversion table for dose calculation [6]. 
However, this approach is restricted to specific hu-
man tissue compositions. Zeff is useful for estimat-
ing the SPRw for human tissues in complex anat-
omy [7]. However, it increases the radiation dose, 
scan time, and cost. 

Convolutional neural networks (CNN) have 
been successfully applied to image processing 
and synthesis. Previous studies have developed 
a deep learning approach using a CNN to per-
form DECT imaging using standard SECT data. 
These studies have focused on noise reduction 
from scanned and synthesized DECT images [8, 9]. 
Generative adversarial networks (GANs) have two 
different networks: a generator network that syn-
thesizes images and a discriminator network that 
distinguishes between the reference and synthe-
sized images [10]. Kida et al. adapted CycleGAN 
to synthesize PlanCT-like images from CBCT im-
ages to improve the quality of CBCT images [11]. 
Charyyev et al. proposed image synthesis of DECT 
from SECT and reconstructed the SPR map [12]. 
The corresponding SPR maps synthesized from 
DECT reduced the artifacts and noise levels com-
pared with those from the original DECT. In our 
previous study, we proposed an image synthesis 
framework that uses single-energy CT images at 
120 kVp to obtain fat-water and bone-water im-
ages [13]. These studies demonstrated that an im-
age synthesis network with GAN could synthesize 
DECT images from SECT images.

Herein, we propose an image synthesis approach 
to obtain effective atomic number images recon-
structed from DECT based on GAN architectures.

Materials and methods

Data acquisition
A total of 18,862 images from 29 patients ap-

proved by the institutional review board were used 
for the analysis. The DECT images for each patient 

were acquired using a Revolution DECT scanner 
(GE Healthcare, Princeton, NJ, USA). DECT was 
performed at tube voltages of 80 and 140 kV and ex-
posure of 560 mA. The scanning parameters were 
rotation time of 1.0 s, slice thickness (ST) of 5 mm, 
and field of view of 360 mm. The Zeff and equiva-
lent SECT images were reconstructed using the GSI 
technique.

Deep learning model
An overview of the comparison between 

the synthesized and reference Zeff images is shown 
in Figure 1. The Zeff image was synthesized using 
a GAN. The GAN framework is illustrated in Fig-
ure 2. The 16-bit DICOM image was converted into 
an 8-bit RGB portable network graphics (PNG) im-
age. The output 8-bit RGB PNG images synthesized 
from the two-dimensional (2D) CNN model were 
also converted into 16-bit DICOM images [14]. 
The range of pixel numbers in the effective atomic 
number images was 0–255. Thus, the unused pixel 
values (255–65,356) were eliminated in the 16-bit 
(0–65,536) images and converted into 8-bit images. 
The SECT and DECT images were rescaled using 
RescaleIntercept and RescaleSlope from the DI-
COM header as follows:
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The proposed 2D CNN model with GAN in-
cludes a generator to estimate the Zeff image 
and a discriminator to distinguish between the ref-
erence and synthesized Zeff images. These generator 
and discriminator networks were trained simul-
taneously by evaluating . The generator consists 
of an encoder and a decoder. The encoding maps 
used eight convolutional layers each, followed by 
batch normalization and leaky-ReLU activation 
functions. The number of convolutional and de-
convolution filters is shown in Figure 2. The stride 
was 2 and the kernel size was 4 × 4. The discrimi-
nator used seven convolution layers to extract fea-
tures from the input image and produce the out-
put image. The input images (x) to generator G 
were SECT images, and the target images (y) were 
the corresponding Zeff images. Discriminator D was 
trained to return the loss to which the given image 
was synthesized. The loss was calculated as follows:
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where G is the generator network and  is the ex-
pected value dependent on both the SECT imag-
es (x) and target images (y). Moreover, it includes 
an additional loss, based on the absolute difference 

between the input and synthesized images (L1 norm 
loss). The L1 norm loss is calculated as follows:

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐼 (𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼) × 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 
+ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅  𝑅𝑅𝑅𝑅𝑅

 
 ℒ���(G, D) = 𝔼𝔼�[logD( y)] 
+ 𝔼𝔼�,�[log(1 − D(G(x))] 

 
 ℒ��(G)  =  𝔼𝔼�,�(|y − G(x)|�) 

 
 θ�,�  = arg𝑚𝑚𝑚𝑚𝑚𝑚�

�
𝑚𝑚𝑚𝑚𝑚𝑚�
�

( ℒ��(G) +  ℒ���(G, D)) 
 

𝑀𝑀𝑀𝑀𝑀𝑀 𝑀 1
𝑛𝑛�𝑛𝑛� � |𝑟𝑟(𝑖𝑖𝑖 𝑖𝑖) − 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 |

����

�,�
 

 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑀 1
𝑛𝑛�𝑛𝑛� � |𝑟𝑟(𝑖𝑖𝑖 𝑖𝑖) − 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 |

𝑟𝑟(𝑖𝑖𝑖 𝑖𝑖)

����

�,�
 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅  � 1
𝑛𝑛�𝑛𝑛� � (𝑟𝑟(𝑖𝑖𝑖 𝑖𝑖) − 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 )

����

�,�

�

 

 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, 𝑦⃗𝑦) = ��𝜇𝜇�𝜇𝜇� + 𝐶𝐶����𝜎𝜎�� + 𝐶𝐶��

(𝜇𝜇�� + 𝜇𝜇�� + 𝐶𝐶�)�𝜎𝜎�� + 𝜎𝜎�� + 𝐶𝐶��
 

 
𝐶𝐶� = (𝑘𝑘�𝑄𝑄)�,  𝑘𝑘� =0 .01 

 
𝐶𝐶� = (𝑘𝑘�𝑄𝑄)�,  𝑘𝑘� =0 .03 

 

𝜎𝜎� 𝐼 � 1
𝑁𝑁 𝑁𝑁 �(𝑥𝑥� − 𝜇𝜇�)�

�

���
�
���

 

 

𝜎𝜎�� =
1

𝑁𝑁 𝑁𝑁 �(𝑥𝑥� − 𝜇𝜇�)�𝑦𝑦� − 𝜇𝜇��
�

���
 

 

𝜇𝜇� =
1
𝑁𝑁�𝑚𝑚�

�

���
 

 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�� =10  × 𝑙𝑙𝑙𝑙𝑙𝑙�� �

(𝑀𝑀𝑀𝑀𝑀𝑀)�
𝑀𝑀𝑀𝑀𝑀𝑀 �𝐼

 
𝐼𝐼(𝑅𝑅� 𝐼𝐼) 𝐼 � �𝑅𝑅(𝑚𝑚𝑚𝑚𝑚 )𝑅𝑅𝑅𝑅𝐼𝐼 � 𝑝𝑝(𝑚𝑚𝑚𝑚𝑚 )

𝑝𝑝(𝑚𝑚)𝑝𝑝(𝑛𝑛)���������
 

     (3)

Figure 1. Comparison of synthesized and reference Zeff images; the Zeff image was synthesized from single-energy computed 
tomography (SECT) obtained from dual-energy computed tomography (DECT) with deep learning. The reference Zeff image 
was obtained from the DECT; GAN — generative adversarial network

Figure 2. Generative adversarial network (GAN) architecture for the image synthesis of Zeff images from single-energy 
computed tomography (SECT) images; for gradient conversion, 16-bit DICOM images were converted to 8-bit PNG images
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Adversarial loss is calculated using the binary 
cross-entropy cost function. The final cost function 
is calculated as follows:

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐼 (𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼) × 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 
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The proposed image synthesis model was im-
plemented using TensorFlow packages (V1.7.0, 
Python 2.7, CUDA 10.0) on an Ubuntu 16.04 LTS 
system. The number of epochs was 300. The data-
set consisted of 18,826 DECT images scanned from 
the chest to the pelvis of 29 patients. The data were 
split into two sets: 16,726 images (21 patients) for 
training the models and 2100 images (8 patients) 
for testing.

Evaluation
The prediction accuracy of the model for the ref-

erence and synthesized Zeff images was evaluated 
based on six metrics. The relative mean absolute 
error (MAE) and mean absolute percentage error 
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where  and  are the values of pixels  in the refer-
ence Zeff and target Zeff images, respectively, and  is 
the total number of pixels. The relative root mean 
square error (RMSE) is defined as
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The structural similarity index (SSIM) considers 
luminance, structure, and contrast between two 
images. The SSIM between two images  and  can be 
computed as
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The peak signal-to-noise ratio (PSNR) is calcu-
lated as
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The mutual information (MI) [16] is calculated as 
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where m and n are the intensities in the refer-
ence Ir and synthesized Zeff images, and the pre-
dicted It and Zeff image, respectively. p(m) and p(n) 
are the marginal densities, and p(m, n) is the joint 
probability density of Ir and It. Moreover, the dif-
ference between the reference and synthesized Zeff 
images in the region of interest (ROI) was evaluat-
ed for several slices in the images from the chest to 
pelvis, as shown in Figure 3.

Results

The losses of the generator, discriminator, and L1 
norm are shown in Figure 4. The training time was 
approximately 154.8 ± 3.2 h. The times to synthe-
size the Zeff images using the trained models were 
approximately 7.8–8.2 images/s.

Figures 5 and 6 show samples of the synthet-
ic Zeff images at the pelvic and chest levels. A dif-
ference between the reference and synthetic Zeff 
images was found on the body surface and at 
the edge of the heart. Table 1 presents the numer-
ical and percentage differences in the Zeff values 
between the synthetic and reference Zeff imag-
es. The numerical and percentage differences of 
the Zeff value were within 0.86 and 9.5%, respec-
tively, in all ROIs. Table 2 lists the average MAE, 
MSE, RMSE, PSNR, and MI computed over mul-
tiple slices from the pelvis to the chest slices. 
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Figure 3. Measurement region in the evaluation of the Zeff value from pelvis to chest slices; the average and standard 
deviation values of Zeff were measured by creating a circular region of interest (ROI) of 2 cm in diameter

Figure 4. Average training losses in the discriminator, generator, and L1 norm for the training model

Figure 5. Samples of cross-modality Zeff image generation results at pelvic level: input, output, and reference are 
the equivalent SECT image at 120 kVp, synthetic Zeff images, and reference Zeff images, respectively. The absolute error was 
calculated using the synthetic and reference Zeff images

Figure 6. Samples of cross-modality Zeff image generation results at chest level: input, output, and reference are 
the equivalent single-energy computed tomography (SECT) image at 120 kVp, synthetic Zeff images, and reference Zeff images, 
respectively. The absolute error was the calculated using the synthetic and reference Zeff images
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The standard deviation (SD) from the pelvis to 
the chest slices was significantly smaller for all 
evaluation items.

Discussion

In this study, an image synthesis model for Zeff 
images from SECT images using a deep learning 
approach was proposed. The numerical difference 
between the Zeff values of synthesized and refer-

ence Zeff images was within 9.95% in some regions, 
from the pelvis to chest slice. Mitchell et al. evalu-
ated the Zeff values obtained from DECT by com-
paring them with theoretical Zeff values. The Cat-
phan phantom (The Phantom Laboratory, Salem, 
NY, USA) had a Zeff value accuracy of 15% when 
no lung inserts were used [17]. This suggests that 
the synthesized Zeff image was in good agreement 
with the reference image within the uncertainty of 
the Zeff image obtained from DECT.

The SD of the Zeff values in the lung region of 
the Zeff images was larger than that of other re-
gions. This is because the lungs have a non-uni-
form structure. A previous study also showed that 
the measured Zeff values of the inhaled lung insert 
in the CIRS 062M phantom were significantly dif-
ferent from the theoretical Zeff values [18]. Thus, 
an accurate Zeff image reconstructed from DECT is 
an essential input for deep learning. Further stud-
ies are needed to synthesize Zeff values in the lung 
region using high-quality DECT images. 

Schaeffer evaluated the accuracy of the Zeff be-
tween the theoretical and measurement Zeff from 
DECT. The MAPE was 6.3% for the body phan-
tom and 3.2% for the head phantom [19]. The cur-
rent study showed that the MAPE of the Zeff was 
1.16% ± 0.14 % with the GAN method. Moreover, 
Garcia et al. proposed a method of the extraction 
the Zeff for the DECT image based on an Kar-
hunen-Loeve expansion of the atomic cross section 
per electron [20]. The MAPE between the theoret-
ical and calculated value was 4.1% ± 0.3%. Schaef-
fer et al. evaluated the accuracy of Zeff from 
DECT. It suggests that the synthesized Zeff image 
showed a good agreement within the uncertainty 
of the Zeff image obtained from DECT and the ac-
curacy of the estimation for the Zeff was superior 
to the conventional method. Although the other 
evaluation metrics were used in the image synthe-
sis study, it has never been used for the Zeff image 
synthesis. These results of the evaluation metrics 

Table 1. Numerical (Δ) and percentage differences 
of the Zeff value between synthetic and reference Zeff images. 
The numerical and percentage differences of the Zeff value 
were within 0.86 and 9.5% in all ROIs from the chest to pelvis

Measurement region Δ %

1 0.69 8.77 

2 0.72 9.19 

3 0.41 5.98 

4 0.21 2.74 

5 0.19 2.47 

6 0.53 6.41 

7 -0.11 -1.47 

8 0.73 8.89 

9 0.77 9.58 

10 0.79 9.42 

11 0.79 9.75 

12 0.76 9.46 

13 -0.06 –0.73 

14 0.29 8.04 

15 0.12 7.90 

16 0.76 8.13 

17 0.82 9.54 

18 0.84 9.95 

19 0.86 9.84 

20 0.02 –0.26 

21 –0.01 8.12 

22 0.06 0.70

23 –0.08 –0.80 

Table 2. Evaluation metrics of Zeff image synthesis from pelvis to chest slice

MAE MAPE MSE RMSE PSNR SSIM MI

Avg SD Avg SD Avg SD Avg SD Avg SD Avg SD Avg SD

0.09 0.01 1.16 0.14 0.21 4.2E–
03 0.45 4.6E–

03 54.97 0.09 0.89 0.01 1.03 0.12

MAE — mean absolute error; MAPE — mean absolute percentage error; MSE — relative mean square error; RMSE — relative root mean square error; 
PSNR — peak signal-to-noise ratio; SSIM — structural similarity index; MI — mutual information; Avg — average; SD — standard deviation
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would be important in the image synthesis or con-
version to the Zeff from the DECT image in further 
studies.

An equivalent SECT image was used in this 
study. Kamiya et al. compared equivalent and con-
ventional SECT images [21]. Although the radi-
ation dose was reduced for the equivalent SECT 
image, the image quality was equivalent in both 
the quantitative and qualitative evaluations. Thus, 
the proposed model can be applied to conventional 
SECT images.

Zhao et al. proposed an image synthesis meth-
od to map low-energy to high-energy images us-
ing a two-stage CNN [16]. Zhao et al. evaluated 
virtual non-contrast imaging using DECT from 
SECT [16]. This might contribute to the predic-
tion of perfusion imaging, urinary stone charac-
terization, cardiac imaging, and angiography from 
SECT images. Our model extends the possibility 
of predicting the DECT image from the SECT 
image and contributes to the material decom-
position with the predicted DECT image. Thus, 
the proposed image synthesis model can signifi-
cantly simplify the DECT system design and re-
duce scanning and imaging costs. For radiation 
diagnosis, the Zeff image should assist in lesion de-
tection. The current study showed the possibility 
of efficient image synthesis of Zeff images for ma-
terial decomposition from a simple analysis. Fur-
ther studies will be performed to evaluate the de-
tectability of the lesions.

Conclusion

In this study, an image synthesis framework us-
ing single-energy CT images to generate atomic 
number images scanned by DECT was proposed. 
This image synthesis framework can aid in de-
termining material decomposition without extra 
scans in DECT. 

Conflict of interest 
None declared.

Funding
None declared.

Ethnical approval
The current study does not involve any experimen-
tation on human participants or animals.

Informed consent
The current study does not involve any experimen-
tation on human participants or animals.

Acknowledgements
None declared.

References
1.	 Yoon W, Seo JJ, Kim JK, et al. Contrast enhancement 

and contrast extravasation on computed tomogra-
phy after intra-arterial thrombolysis in patients with 
acute ischemic stroke. Stroke. 2004; 35: 876–881, 
doi:  10.1161/01.STR.0000120726.69501.74, indexed in 
Pubmed: 14988575.

2.	 McCollough CH, Leng S, Yu L, et al. Dual- and Multi-En-
ergy CT: Principles, Technical Approaches, and Clinical 
Applications. Radiology. 2015; 276: 637–653, doi: 10.1148/
radiol.2015142631, indexed in Pubmed: 26302388.

3.	 Johnson TRC, Krauss B, Sedlmair M, et al. Material differ-
entiation by dual energy CT: initial experience. Eur Radiol. 
2007; 17(6): 1510–1517, doi: 10.1007/s00330-006-0517-6, 
indexed in Pubmed: 17151859.

4.	 Slavic S. Madhav P., Profio M. et al. Technology White 
Paper, GSI Xtream on RevolutionTM CT.  https://www.
gehealthcare.com/-/media/069734962cbf45c1a5a01d-
1cdde9a4cd.pdf.

5.	 Mileto A, Allen BC, Pietryga JA, et al. Characterization of 
Incidental Renal Mass With Dual-Energy CT: Diagnostic 
Accuracy of Effective Atomic Number Maps for Discrimi-
nating Nonenhancing Cysts From Enhancing Masses. AJR 
Am J Roentgenol. 2017; 209(4): W221–W230, doi: 10.2214/
AJR.16.17325, indexed in Pubmed: 28705069.

6.	 Wohlfahrt P, Möhler C, Hietschold V, et al. Clinical Im-
plementation of Dual-energy CT for Proton Treatment 
Planning on Pseudo-monoenergetic CT scans. Int J Radiat 
Oncol Biol Phys. 2017; 97(2): 427–434, doi:  10.1016/j.
ijrobp.2016.10.022, indexed in Pubmed: 28068248.

7.	 Wohlfahrt P, Möhler C, Richter C, et al. Evaluation of 
Stopping-Power Prediction by Dual- and Single-Energy 
Computed Tomography in an Anthropomorphic Ground-
Truth Phantom. Int J Radiat Oncol Biol Phys. 2018; 100(1): 
244–253, doi:  10.1016/j.ijrobp.2017.09.025, indexed in 
Pubmed: 29079119.

8.	 Zhao W, Lv T, Lee R, et al. Obtaining dual-energy computed 
tomography (CT) information from a single-energy CT 
image for quantitative imaging analysis of living subjects 
by using deep learning. Pac Symp Biocomput. 2020; 25: 
139–148, indexed in Pubmed: 31797593.

9.	 Lyu T, Zhao W, Zhu Y, et al. Estimating dual-energy CT 
imaging from single-energy CT data with material de-
composition convolutional neural network. Med Image 
Anal. 2021; 70: 102001, doi: 10.1016/j.media.2021.102001, 
indexed in Pubmed: 33640721.

10.	 Goodfellow I, Pouget‐Abadie J, Mirza M. Generative adver-
sarial nets. In: Welling M. ed. Advances in neural informa-
tion processing systems. Neural Information Processing 
Systems Foundation, Inc., Montreal 2015: 2672–2680.

11.	 Kida S, Kaji S, Nawa K. Cone-beam CT to Planning CT 
synthesis using generative adversarial networks. arXiv: 
1901.05773v1.

http://dx.doi.org/10.1161/01.STR.0000120726.69501.74
https://www.ncbi.nlm.nih.gov/pubmed/14988575
http://dx.doi.org/10.1148/radiol.2015142631
http://dx.doi.org/10.1148/radiol.2015142631
https://www.ncbi.nlm.nih.gov/pubmed/26302388
http://dx.doi.org/10.1007/s00330-006-0517-6
https://www.ncbi.nlm.nih.gov/pubmed/17151859
https://www.gehealthcare.com/-/media/069734962cbf45c1a5a01d1cdde9a4cd.pdf
https://www.gehealthcare.com/-/media/069734962cbf45c1a5a01d1cdde9a4cd.pdf
https://www.gehealthcare.com/-/media/069734962cbf45c1a5a01d1cdde9a4cd.pdf
http://dx.doi.org/10.2214/AJR.16.17325
http://dx.doi.org/10.2214/AJR.16.17325
https://www.ncbi.nlm.nih.gov/pubmed/28705069
http://dx.doi.org/10.1016/j.ijrobp.2016.10.022
http://dx.doi.org/10.1016/j.ijrobp.2016.10.022
https://www.ncbi.nlm.nih.gov/pubmed/28068248
http://dx.doi.org/10.1016/j.ijrobp.2017.09.025
https://www.ncbi.nlm.nih.gov/pubmed/29079119
https://www.ncbi.nlm.nih.gov/pubmed/31797593
http://dx.doi.org/10.1016/j.media.2021.102001
https://www.ncbi.nlm.nih.gov/pubmed/33640721


Daisuke Kawahara et al.  Image synthesis of DECT using a SECT with CNN-based GAN

855https://journals.viamedica.pl/rpor

12.	 Charyyev S, Wang T, Lei Y, et al. Learning-based synthetic 
dual energy CT imaging from single energy CT for stop-
ping power ratio calculation in proton radiation therapy. 
Br J Radiol. 2022; 95(1129): 20210644, doi:  10.1259/
bjr.20210644, indexed in Pubmed: 34709948.

13.	 Kawahara D, Saito A, Ozawa S, et al. Image synthesis with 
deep convolutional generative adversarial networks 
for material decomposition in dual-energy CT from 
a kilovoltage CT. Comput Biol Med. 2021; 128: 104111, 
doi:  10.1016/j.compbiomed.2020.104111, indexed in 
Pubmed: 33279790.

14.	 Zhou X, Takayama R, Wang S, et al. Deep learning of 
the sectional appearances of 3D CT images for anatomical 
structure segmentation based on an FCN voting method. 
Med Phys. 2017; 44: 5221–5233, doi: 10.1002/mp.12480, 
indexed in Pubmed: 28730602.

15.	 Wang Z, Bovik AC, Sheikh HR. Image quality assessment: 
from error visibility to structural similarity. IEEE Trans 
Image Process. 2004; 13(4): 600–612.

16.	 Zhao W, Lv T, Gao P, et al. Dual-energy CT imaging using 
a single-energy CT data is feasible via deep learning. ArXiv: 
2019; 1906.04874.

17.	 Mitchell MM, Christodoulou EG, Larson SL. Accuracies of 
the synthesized monochromatic CT numbers and effec-

tive atomic numbers obtained with a rapid kVp switching 
dual energy CT scanner. Med Phys. 2011; 38(4): 2222–32, 
doi: 10.1118/1.3567509, indexed in Pubmed: 21626956.

18.	 Kawahara D, Ozawa S, Yokomachi K, et al. Synthesized 
effective atomic numbers for commercially available 
dual-energy CT. Rep Pract Oncol Radiother. 2020; 25(4): 
692–697, doi:  10.1016/j.rpor.2020.02.007, indexed in 
Pubmed: 32684854.

19.	 Schaeffer CJ, Leon SM, Olguin CA, et al. Accuracy and re-
producibility of effective atomic number and electron 
density measurements from sequential dual energy CT. 
Med Phys. 2021; 48(7): 3525–3539, doi: 10.1002/mp.14916, 
indexed in Pubmed: 33932301.

20.	 Garcia LI, Azorin JF, Almansa JF. A new method to mea-
sure electron density and effective atomic number us-
ing dual-energy CT images. Phys Med Biol. 2016; 61(1): 
265–279, doi:  10.1088/0031-9155/61/1/265, indexed in 
Pubmed: 26649484.

21.	 Kamiya K, Kunimatsu A, Mori H, et al. Preliminary report 
on virtual monochromatic spectral imaging with fast kVp 
switching dual energy head CT: comparable image quality 
to that of 120-kVp CT without increasing the radiation 
dose. Jpn J Radiol. 2013; 31(4): 293–298, doi: 10.1007/
s11604-013-0185-9, indexed in Pubmed: 23408047.

http://dx.doi.org/10.1259/bjr.20210644
http://dx.doi.org/10.1259/bjr.20210644
https://www.ncbi.nlm.nih.gov/pubmed/34709948
http://dx.doi.org/10.1016/j.compbiomed.2020.104111
https://www.ncbi.nlm.nih.gov/pubmed/33279790
http://dx.doi.org/10.1002/mp.12480
https://www.ncbi.nlm.nih.gov/pubmed/28730602
http://dx.doi.org/10.1118/1.3567509
https://www.ncbi.nlm.nih.gov/pubmed/21626956
http://dx.doi.org/10.1016/j.rpor.2020.02.007
https://www.ncbi.nlm.nih.gov/pubmed/32684854
http://dx.doi.org/10.1002/mp.14916
https://www.ncbi.nlm.nih.gov/pubmed/33932301
http://dx.doi.org/10.1088/0031-9155/61/1/265
https://www.ncbi.nlm.nih.gov/pubmed/26649484
http://dx.doi.org/10.1007/s11604-013-0185-9
http://dx.doi.org/10.1007/s11604-013-0185-9
https://www.ncbi.nlm.nih.gov/pubmed/23408047

	_Hlk98488791
	_Hlk98424811
	_Hlk98425084
	_Hlk98424872
	_Hlk98425113
	_Hlk98425279
	_Hlk98425419
	_Hlk98425564
	_Hlk98425516
	_Hlk98427976
	_Hlk107929027
	_Hlk98439671
	_Hlk107488172

