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Abstract

Background: There remains an unmet need to identify molecular biomarkers in Ewing sarcoma (ES). We sought to assess 
the influence of the O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation on response and progres-
sion-free survival (PFS) following initiation of irinotecan and temozolomide (IT), PFS following initiation of vincristine, doxo-
rubicin, and cyclophosphamide alternating with ifosfamide and etoposide (VDC-IE), and overall survival (OS).  

Materials and methods: Data of advanced ES patients, treated with IT were retrospectively collected. Patients were required 
to have progression after prior VDC-IE. MGMT promoter methylation was assessed on non-decalcified Formalin-fixed paraffin 
embedded (FFPE) tissue using methylation sensitive restriction enzyme-quantitative PCR (MSRE-qPCR). Survival was estimat-
ed by the Kaplan-Meier method. 

Results: A total of 20 ES patients underwent MGMT promoter methylation testing, and were eligible for analysis. Five patients 
(25%) had methylated MGMT, whereas the remaining (15; 75%) had unmethylated promoter. Five (25%) had objective re-
sponse to IT, with no observed difference by promoter methylation (p = 0.76). Median PFS from initiation of IT for methylated 
vs. unmethylated MGMT patients was 4.9 and 1.2 months, respectively, p = 0.69. Median PFS from date of initiation of VDC-IE 
was significantly superior in the methylated group; 27.8 vs. 8.6 months, p = 0.034. Median OS was superior but not statistically 
significant in the methylated group. 

Conclusion: MGMT- promoter methylation did not correlate with clinical activity or outcomes following the IT regimen for 
advanced ES. However, methylated MGMT predicted significantly superior PFS following initiation of the standard VDC-IE 
protocol. 
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Introduction

Ewing sarcoma (ES) is a rare malignant bone neo-
plasm, and is the second most common bone ma-
lignancy in children and adolescents [1]. This neo-
plasm is characterized by a balanced translocation 
involving the EWSR1 gene on chromosome 22 with 
one of the members of the ETS family of transcrip-
tion factors [2]. Localized ES is treated with a mul-
timodal approach that integrates chemotherapy 
and local control with surgery or radiotherapy [1, 
3, 4]. Recent data has shown superiority of VDC-IE 
over VIDE as the primary chemotherapy regimen 
and is likely to become the most practiced regimen 
worldwide [5].

Optimal regimen at relapse remains undefined. 
Final analysis of the rEECur randomized trial that 
compares 4 regimens in relapsed ES is awaited [6]. 

In the first interim analysis of rEECur, gemcitabine 
and docetaxel were dropped off the 4 arms due to 
inferior outcomes [7]. Following the second in-
terim analysis, the irinotecan and temozolomide 
(IT) regimen was dropped off randomization due 
to inferior overall survival (OS); randomization 
remains ongoing between cyclophosphamide plus 
topotecan and high-dose ifosfamide [6]. Never-
theless, the IT remains a well-tolerated regimen 
that is associated with clinical activity for many 
patients. Overall response rate (ORR) of 25–63% 
has been reported [8–11]. There remains an un-
met need to identify subgroups that could bene-
fit most from the IT or other regimens. Molecular 
biomarkers might be the key to guide future ther-
apy selection. 

The O6-methylguanine-DNA methyltransfer-
ase (MGMT) gene codes for a repair enzyme that 
combats the genetic damage induced by alkylating 
agents including temozolomide [12–14]. Methyl-
ation of MGMT promoter causes gene silencing, 
making tumor cells more susceptible to the effect 
of alkylating agents [12–14]. Methylation status 
correlates with clinical outcomes of temozolo-
mide-treated glioblastoma multiforme (GBM) pa-
tients [12, 14]. Other data show that the MGMT sta-
tus correlates with response to alkylating agents in 
some other neoplasms [15]. Nevertheless, it is not 
clear if MGMT methylation status is predictive of 
outcomes following temozolomide-based regimens 
in relapsed ES. Recent data did not show associa-
tion between MGMT expression and clinical out-

comes of patients treated with IT [16]. Noteworthy, 
MGMT methylation in that study was assessed by 
immunohistochemistry expression and did not in-
volve molecular testing. In the current project we 
sought to assess the MGMT promoter methylation 
status utilizing Methylation Sensitive Restriction 
Enzyme-Quantitative PCR (MSRE-qPCR). In ad-
dition, we sought to assess if the methylation status 
is predictive of response and progression free sur-
vival (PFS) of patients with relapsed ES following 
the salvage IT regimen, PFS from time of initiation 
of the primary VDC-IE regimen, and OS from time 
of diagnosis. 

Materials and methods

Patients
Included patients were required to have a patho-

logically confirmed diagnosis of ES. Patients 
should have received the IT regimen (second-line 
or beyond) after progression following prior 
VDC-IE chemotherapy. To be eligible, patients 
were required to have FFPE non-decalcified tissue 
blocks that are sufficient (≥ 40% tumor abundance) 
for MGMT promoter methylation testing. 

IT chemotherapy was given in one of two pro-
tocols:
•	 Protocol #1: irinotecan 40 mg/m2 D1–D5 and te-

mozolomide 100 mg/m2 D1–D5; cycles repeated 
every 21 days;

•	 Protocol #2: irinotecan 20 mg/m2 D1–D5 
and D8–D12 and temozolomide 100 mg/m2 
D1–D5; cycles repeated every 21 days.
IT chemotherapy was delivered with a planned 

number of 6 cycles, or until disease progression 
(PD) or intolerable toxicity; whichever comes first. 

Radiologic responses to IT were assessed by re-
sponse evaluation criteria in solid tumors (RECIST 
v. 1.1) by an experienced radiologist. Progression 
free survival (PFS) following IT was defined as 
the time from initiation of the first cycle of IT che-
motherapy until the first radiologic evidence of PD 
or death. We defined PFS following initiation of 
the VDC-IE as the time from initiation of the first 
cycles of the VDC-IE protocol until the first evi-
dence of PD or death. OS was counted from time of 
diagnosis until the date of last follow up or death. 
This study was initiated following acquisition of in-
stitutional review board approval at the King Hus-
sein Cancer Center. 
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MGMT methylation testing
Genomic DNA (gDNA) Extraction: tumor 

gDNA was isolated from 5 unstained 5 μm-thick 
precut non-decalcified FFPE tumor sections ide-
ally with at least 40% tumor abundance using 
the QIAamp DNA Mini Kit (QIAGEN, Hilden, 
Germany) according to manufacturer’s instruc-
tions. Similarly, gDNA was extracted from normal 
tissue to define the technical methylation cutoff in 
our cohort. Upon extraction, gDNA was quantified 
using the Qubit 3 Fluorometer (Invitrogen, OR, 
USA) according to instructions and then diluted to 
4 ng/µL with low-EDTA TE buffer (10 mM Tris, 
0.1 mM EDTA; pH 8.0). 

Primer Design: We used Primer3 tool to design 
a pair of primers targeting the clinically relevant 
CpG-rich methylation-specific site (MSP) –476 
to –368 bp upstream from the transcription start 
site (TSS) of the MGMT gene [17, 18]. We tested 
the specificity of the designed primers in silico us-
ing the UCSC In-Silico PCR tool and hg19 genome 
assembly. The designed primers specifically gener-
ated the anticipated 155 bp MGMT promotor target 
[19]. Primer sequences are available upon request.

Methylation Sensitive Restriction Enzyme-Quan-
titative PCR (MSRE-qPCR): is a semi-quantita-
tive method for methylation profiling [20]. The One-
Step qMethyl™ Kit (Zymo Research Corp., CA, USA) 
was implemented to assess the MGMT promot-
er methylation status. Five microliters of the prepared 
gDNA (4 ng/µL) were used in the kit according to 
instructions. Enzymatic digestion, PCR, and detec-
tion steps were conducted using the CFX96 Touch 
Real-Time PCR Detection System (Bio-Rad Labora-
tories, Inc., CA, USA). Briefly, the OneStep qMethyl™ 
Kit detects methylation via discriminatory amplifi-
cation of methylated and unmethylated CpG-rich 
targets. The gDNA sample was split into two dupli-
cated reaction sets: a “test reaction” set and a “refer-
ence reaction” set. The test reaction set was digested 
using a cocktail of methylation sensitive restriction 
enzymes (MSRE’s) that cut at specific unmethylated 
restriction loci, while the reference set was not ex-
posed to MSRE digestion. In contrast, methylated 
cytocines were protected from MSRE digestion leav-
ing the gDNA target intact. Both reaction sets were 
then PCR amplified and fluorescence was detected 
in the presence of SYTO® 9 fluorescent dye to deter-
mine cycle thresholds (Ct’s). The test and reference 
reaction sets would have different Ct’s influenced 

by the methylation status, with unmethylated DNA 
samples having considerable Ct differences. After 
generating Ct values for both test and reference sets, 
the methylation percentage for each sample was cal-
culated using the equation: 100 × 2-ΔCt where ΔCt is 
the test average minus the reference average of du-
plicate Ct’s. 

MGMT promoter methylation status was classified 
into two subgroups:  unmethylated 0-39%, and meth-
ylated ≥ 40%. This was defined through comparison 
of the methylation status in neoplastic to normal tis-
sue. In addition, the impact on patient outcome was 
evaluated using different methylation cutoffs: 30% 
and 40% [21]. A statistically significant clinical im-
pact was only observed when implementing the 40% 
MGMT promoter methylation as cut-off. 

Statistical analysis
Descriptive statistics were utilized to de-

scribe the study sample utilizing means, medians, 
and standard deviations. The chi-square test was 
utilized to compare the proportion of responders 
by MGMT methylation status (methylated vs. un-
methylated). The Kaplan-Meier method was used 
to estimate PFS, and OS.  We planned to compare 
PFS from time of initiation of the IT protocol be-
tween the groups of methylated and unmethylated 
MGMT. In addition, we planned to compare PFS 
from time of initiation of the VDC-IE chemothera-
py protocol and OS from time of diagnosis between 
the two groups. Survival comparisons were carried 
out by the log-rank test. All statistical analyses were 
performed by the SPSS software, version 17 (SPSS 
Inc., Chicago, IL). 

Results

Patients characteristics
A total of the 21 ES patients underwent meth-

ylation testing. One patient had an invalid MGMT 
result and insufficient remaining tissue for retest-
ing and was excluded. Thus, a total of 20 patients 
remained eligible for analysis. Patients were of 
a median age of 18 years (range: 5-34 years). All 
patients had documented unresectable PD after 
standard VDC-IE chemotherapy. Patients received 
palliative IT chemotherapy in a second (n = 15) or 
third-line setting (n = 5). Clinical characteristics 
of eligible patients were summarized (Tab. 1). Five 
patients (25%) had methylated MGMT promoters, 
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whereas the remaining ones had unmethylated (15; 
75%) promoters. 

IT chemotherapy
Sixteen patients (80%) received protocol #1 

and 4 (20%) received protocol #2. A total of 70 cy-
cles of IT were delivered; median = 3.5, standard 
deviation (SD) = 2.1 (range: 1–6 cycles). 

Thirteen patients (65%) had hematologic toxici-
ties following any of the IT cycles. Nine (45%) had 
grade ≥ 3 hematologic toxicities. Nevertheless, only 
one patient (5%) had febrile neutropenia, although 
none of the patients had received primary growth 
factors prophylaxis. Five patients (25%) had diar-
rhea of any grade as an adverse event. 

Response to IT chemotherapy by MGMT 
methylation status

Five patients (25%) had partial response as 
the best observed response, 9 (45%) had primary 

progressive disease (PD), and 6 (30%) had stable 
disease (SD). IT was discontinued due to progres-
sion in 11 patients (55%), both toxicity and pro-
gression in 1 patients (5%), because patients com-
pleted the planned number of cycles in 7 patients 
(35%), and treatment of one patient (5%) was still 
ongoing at time of this analysis.

Partial response was observed in one patient 
(20%) with a methylated MGMT promoter com-
pared to 4 (27%) with unmethylated MGMT; 
p = 0.76. Primary progression on IT chemotherapy 
occurred in one patient (20 %) with a methylated 
MGMT promoter compared to 8 (53 %) of patients 
in the unmethylated group; p = 0.18 (Tab. 2). 

Survival outcomes following IT
The median PFS following IT chemotherapy 

was 2.2 months. PFS by MGMT promoter meth-
ylation status was 4.9 months for the methylated 
group and 1.2 months for the unmethylated group; 

Table 1. Patients’ characteristics

Age Gender Location of primary 
tumor

Sites of progression after 
initiating IT chemotherapy

Line of IT 
chemotherapy

MGMT methylation 
status

Patient #1 34 F Pelvic bones lungs Second-line methylated

Patient #2 27 M Kidney Liver Third-line Unmethylated

Patient #3 7 F scapula Unresectable local progression Second-line Unmethylated

Patient #4 10 M Femur Lung and local Second-line Unmethylated

Patient #5 23 M Pelvic bones Local and bone Third-line Unmethylated 

Patient #6 18 F Pelvic bones Unresectable local progression Second-line Methylated

Patient #7 12 M Tibia Unresectable local progression Third-line methylated

Patient #8 18 F Pelvic bones Lung and local progression Second-line Unmethylated

Patient #9 18 M Femur Bone metastasis Second-line Methylated

Patient #10 17 M Femur Bone metastasis and local 
progression Second-line Unmethylated

Patient #11 29 M Kidney Liver Second-line Unmethylated

Patient #12 16 M Pelvic bones Unresectable local progression Second-line Unmethylated

Patient #13 27 M Chest wall Unresectable local progression Second-line Unmethylated

Patient #14 25 M Pelvic bones Lung Second-line Unmethylated

Patient #15 15 F Pelvic bones Bone metastasis and local 
progression Second-line Unmethylated

Patient #16 5 M Left leg soft tissue Lung and brain Second-line Methylated

Patient #17 32 F Pelvic bones Lungs and soft tissues of pelvis Second-line Unmethylated

Patient #18 14 M Pelvic bones Bone metastasis and local 
progression Second-line Unmethylated

Patient #19 22 M Gluteal muscles 
of pelvis Lungs Third-line Unmethylated

Patient #20 28 M Pelvic bones Bone metastasis Third-line Unmethylated

MGMT — O6-methylguanine-DNA methyltransferase; IT — irinotecan and temozolomide; F — female; M — male 
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p = 0.69 (Fig. 1). In a sub analysis for patients who 
received IT in a second-line setting, PFS was 4.9 
vs. 2.9 months for the methylated and unmeth-
ylated group, respectively, p = 0.81. The median 
OS following initiation of IT was 21.1 months for 
the methylated vs. 7.4 months for unmethylated 
group; p = 0.32. In an exploratory analysis to exam-
ine for any correlation between absolute methyla-
tion values for each patient with PFS outcome after 
IT chemotherapy, we did not observe a statistically 
significant correlation (Fig. 2).

Survival outcomes following VDC-IE 
by MGMT methylation status 

Patients had a median time to progression of 
10.8 months from starting prior VDC-IE chemo-
therapy. MGMT promoter methylation status sig-

Table 2. Response to irinotecan and temozolomide (IT) by MGMT promoter methylation

Partial response No response p-value 

Methylated 1 (20 %) 4 (80%) 0.76

Unmethylated 4 (27%) 11 (73%)

Disease progression No progression p-value 

Methylated 1 (20%) 4 (80%) 0.18

Unmethylated 8 (53%) 7 (47%)

Figure 1. Kaplan-Meier progression free survival estimation 
following irinotecan and temozolomide (IT) chemotherapy 
by MGMT methylation status
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Figure 2. Pearson correlation coefficient test of correlation between absolute methylation values and progression-free 
survival (PFS) after irinotecan and temozolomide (IT) chemotherapy
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nificantly correlated with PFS after initiation of 
the VDC-IE protocol; patients with methylated 
MGMT promoters had significantly superior PFS 
compared to patients with unmethylated MGMT 
promoters; 27.8 and 8.6 months, respectively; 
p = 0.034 (Fig. 3). 

The median OS from time of diagnosis was 
49.3 months for the entire cohort. Median OS for 
patients with methylated MGMT was 67.3 months 
and for those with unmethylated MGMT was 
35 months, respectively; p = 0.27. 

Discussion

According to our results, MGMT promot-
er methylation did not significantly correlate with 
response rate nor PFS with the IT regimen. Nev-
ertheless, we observed a significantly superior PFS 
following initiation of the VDC-IE protocol in pa-
tients with a methylated compared to unmethylated 
MGMT promoter. The magnitude of improvement 
of PFS following initiation of the primary VDC-IE 
protocol in the methylated group was both statisti-
cally significant and clinically meaningful. 

There was a reasonable rational for assessing on-
cologic outcomes following IT chemotherapy in this 
study. Firstly, methylation of the MGMT promoter 
causes gene silencing, thus making tumor cells more 
susceptible to the effect of alkylating agents [12–14]. 
Secondly, many studies and meta-analysis estab-
lished MGMT promoter methylation as a prognos-

tic biomarker in patients with glioblastoma multi-
forme treated with temozolomide [12, 14, 22]. Of 
note, some studies showed no association between 
MGMT promoter methylation and OS in GBM pa-
tients, likely due to small sample size or differences 
in methodology of MGMT testing [23]. The impact 
of the methylation status on outcomes has been 
shown to vary for other solid tumors [15, 24, 25].

Palmerini E, et al. [16] assessed efficacy of 
the IT regimen in 59 patients with advanced ES. 
Eight high-risk patients received the IT regimen 
upfront and 51 patients after relapse. Responses 
were observed in 50% of patients who received 
IT upfront and in 31% who received it at relapse. 
MGMT status was assessed in 30 patients, and did 
not correlate with outcomes. Important differenc-
es from our study include methodology of MGMT 
testing, study populations, and outcomes assessed. 
In the study reported by Palmerini, MGMT ex-
pression was assessed by immunohistochemistry. 
This expression did not significantly correlate with 
outcomes following the IT regimen. Further, sur-
vival times from the initiation of the primary che-
motherapy regimen were not compared by MGMT 
status [16]. 

In regard to the method of MGMT assessment, 
Sahara et al. assessed the diagnostic accuracy of im-
munohistochemistry (IHC) in detecting the meth-
ylation status [26]. MGMT methylation status was 
investigated using the IHC and PCR techniques. 
Diagnostic value of IHC was analyzed, with PCR 
considered as the gold standard reference meth-
od. In their study, IHC detected MGMT meth-
ylation with sensitivity of 86.2%, specificity of 
63.0%, positive predictive value of 59.5%, negative 
predictive value of 87.9% and accuracy of 72.0%. 
The researchers concluded that IHC examination 
can be used to detect the MGMT methylation sta-
tus of glioma patients in limited resources setting, 
where the PCR technique is not available. Wang 
et al. reported a low concordance rate between IHC 
and methylation-specific PCR of 30.8%. Although 
sensitivity of the IHC in detecting the MGMT sta-
tus was 84.4%, the specificity was just 45.7% [27]. 
Similarly, Rodriguez et al. reported that there is no 
significant correlation between MGMT expression 
and methylation as detected by methylation-specif-
ic PCR in human glioblastoma [28].

In our study, we utilized MSRE-qPCR on 
non-decalcified FFPE tumor blocks to ensure ac-

Figure 3. Kaplan-Meier progression free survival estimation 
after starting vincristine, doxorubicin, and cyclophosphamide 
alternating with ifosfamide and etoposide (VDC-IE) protocol 
by MGMT methylation status
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curate assessment of methylation. Interestingly, we 
identified differential outcomes by MGMT methyl-
ation status from time of initiation of the standard 
primary chemotherapy regimen (VDC-IE proto-
col), where PFS difference in favor of the methyl-
ated group was both clinically and statistically sig-
nificant. In contrary, the methylation status was not 
predictive of outcomes following the IT regimen in 
our study. 

In the last decade, therapeutic options for re-
lapsed ES have expanded [25]. Many active 
and tolerable regimens are available including IT, 
cyclophosphamide and topotecan, etoposide with 
carboplatin or cisplatin, ifosfamide, and gemcit-
abine and docetaxel [8–11, 30–34]. There is also 
a growing body of evidence suggesting activi-
ty of small molecules tyrosine kinase inhibitors 
(VEGF-TKI), such as regorafenib, pazopanib, 
and cabozantinib [29, 35]. Many other phase 2 
studies assessing VEGF-TKI, such as regorafenib 
in ES, are currently ongoing (e.g. NCT02389244). 
The treatment paradigm for progressive ES is like-
ly to evolve dramatically following announcement 
of the final results of the rEECur and many other 
ongoing clinical trials. Nevertheless, with expan-
sion of therapeutic options, more studies should 
focus on assessing molecular biomarkers and their 
potential utility to inform the design of future per-
sonalized therapeutic trails.   

We acknowledge limitations for our study. Having 
patients with advanced disease treated with the IT 
regimen was a key eligibility criterion. As such, any 
possible prognostic value of MGMT methylation 
following primary therapy may not be representa-
tive for the entire population presenting with local-
ized disease. In fact, those with the best outcomes 
(who did not have relapse) were already excluded 
by our study design. In addition, the small sample 
size is an important limitation. Multicenter studies 
to recruit a large number of ES patients may be re-
quired to confirm our results. 

Another important limitation is the differences 
among the two utilized IT protocols in regard to 
chemotherapy dosing, schedule and differences in 
line of therapy, which might be the reasons why we 
failed to observe a significant survival difference 
from time of initiation of IT protocol by meth-
ylation status.  Finally, defining the appropriate 
MGMT methylation cutoff is another limitation 
that we acknowledge. In our study, we utilized 

a cutoff of MGMT methylation similar to what have 
been utilized in GBM. However, there is no data 
that identified a standard cutoff point for non GBM 
patients. For instance, a study in triple negative 
breast cancer has utilized a cutoff of >10% to de-
fine methylated MGMT [36], which is lower than 
the cutoff point utilized in GBM and in our study. 

Conclusion

In this study, MGMT-promoter methylation did 
not correlate with clinical activity or outcomes fol-
lowing the IT regimen for patients with advanced 
ES. However, the methylated MGMT-promoter 
status predicted significantly superior PFS follow-
ing initiation of the primary VDC-IE chemother-
apy protocol.  
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