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Introduction

Radiotherapy (RT), either as a single modality or 
in combination with surgery and chemotherapy, has 
become a major component of head and neck cancer 
(HNC) treatment. It provides excellent disease con-
trol and is associated with improved survival rate 
[1–3]. In the era of advanced RT techniques, inten-
sity-modulated radiation therapy (IMRT) has been 
introduced as a way to decrease radiation-induced 

toxicity in HNC patients [4]. The thyroid gland is 
one of the largest pure endocrine glands in the body. 
It produces thyroid hormones that are essential for 
a healthy metabolism, as well as normal growth 
and development [5]. Any deficiency in these hor-
mones can lead to various clinical symptoms [5, 
6]. Radiation painting of the neck region can often 
affect the thyroid gland. The most commonly oc-
curring radiation-induced thyroid dysfunction is 
primary hypothyroidism (HT), either subclinical or 
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overt HT, for which the approximate incidence rate 
ranges from 20% to 40% [5, 7–9]. However, a defi-
nite mechanism of this dysfunction has remained 
unclear. Some of the possible explanations may be 
that it is caused by radiation-induced small thyroid 
vessel injuries, fibrosis, or immune-mediated dam-
age [8, 10]. The onset of HT occurred anywhere 
from four weeks to 20 years after neck RT, with 
peak incidence at 1–3 years [8, 9]. Since recent im-
provement in novel systemic therapies have resulted 
in prolonged survival rates in HNC patients [11], 
complications that arise after RT should now be 
an even greater concern. Therefore, the improved 
ability to predict and detect HT could lead to further 
progress in developing effective prevention mea-
sures and in the development of more accurately 
selected specific treatment for patients. This im-
portant issue is now drawing increased amounts of 
attention from researchers. Correlations between 
radiation dose to the thyroid glands and incidences 
of thyroid dysfunction have been heterogeneously 
reported [12, 13]. Other possible factors for this out-
come included younger age, female gender, and ad-
ditional courses of chemotherapy [5, 9, 14, 15]. In 
contrast, many studies have reported no impact of 
these factors on primary HT [7, 8, 10, 12, 13]. Ab-
normal functions of the pituitary gland after RT can 
also affect the thyroid hormone, which has been 
diagnosed as secondary (central) HT. Hypothalam-
ic–pituitary–thyroid axis deficiency has previously 
diagnosed after patients received intensive irradia-
tion dose of over 50 Gy to the pituitary gland [16, 
17]. An analysis of the correlation between radiation 
dosimetry to the pituitary gland and fatigue-related 
symptoms has indicated a cutoff value of 54 Gy 
[6, 17, 18]. A systematic review of Normal Tissue 
Complication Probability (NTCP) has also recom-
mended limited radiation dose to the pituitary gland 
that were not greater than 40 Gy in nasopharyngeal 
cancer patients. This was recommended in order to 
reduce risk associated with radiation-induced HT 
[19]. However, the analysis in a study conducted by 
Sommat et al. revealed a non-statistically significant 
association between the pituitary dose and incidenc-
es of HT in nasopharyngeal cancer patients [12].

Notably, a consensus on the predictive factors of 
thyroid dysfunction following RT has remained in-
conclusive. The Quantitative Analyses of Normal Tis-
sue Effects in the Clinic (QUANTEC) does not refer 
to a standard set of guidelines for radiation dose con-

straint to the thyroid gland [20]. A systemic review of 
the NTCP model after QUANTEC reported no con-
sensus on the dosimetric parameters that could re-
duce the risk of HT caused by RT [19]. The National 
Comprehensive Cancer Network (NCCN) panel has 
suggested evaluating thyroid function by monitoring 
the serum thyroid stimulating hormone (TSH) every 
6–12 months after neck irradiation. However, in our 
center, a thyroid function test (TFT) was not routine-
ly administered to patients after head and neck RT. 
This study was a cross-sectional retrospective analysis 
that aimed to detect the incidence of primary HT 
and any correlation between the dosimetric parame-
ters and thyroid dysfunctions. 

Materials and methods

Patient selection
Patients who have been diagnosed with HNC 

and received RT in our center from 2013 to 2019 
were retrospectively reviewed. Those who had un-
dergone neck irradiation for a period of at least 
12 months and could back up the relevant radiation 
dosimetric information were enrolled. All eligible 
patients were further administered serum TFT to 
evaluate thyroid function. 

Other inclusion criteria included the following; 
age 18–75 years old at the time of diagnosis, RT in-
tended to cure a disease, and no distant metastasis. 
The implementation of combined chemotherapy 
was also allowed. Furthermore, we included post-
operative RT unless the operation involved the thy-
roid gland. The form of radiation technique em-
ployed in this study was intensity-modulated radio-
therapy/image-guided radiotherapy (IMRT/IGRT), 
either conventional fractionation or simultaneous 
integrated boost (SIB). 

The exclusion criteria were comprised of any 
conditions that might interfere with thyroid hor-
mone abnormality as follows: 1 — disease extended 
into intracranial, 2 — radiation field involved pi-
tuitary fossa, 3 — pre-existing thyroid or pituitary 
disease, 4 — abnormal thyroid detected by comput-
ed tomography (CT) before RT, 5 — previous thy-
roid surgery, 6 — previous cranial or lower neck RT, 
and 7 — previous iodine radioisotope treatment. 

Radiation planning
The RT process was initiated with CT simula-

tion from the vertex to the mid-thoracic region 
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using 2–5 mm slice thickness. Subjects were im-
mobilized with the use of a thermoplastic mask. All 
CT images were registered to the Oncentra master 
plan (Elekta, Sweden) contouring system. The tar-
get volume (gross tumor volume — GTV, clinical 
target volume — CTV, planning treatment volume 
— PTV) and critical structures (organs at risk, 
OARs) were contoured upon the primary head 
and neck tumors. GTV values included gross tu-
mors and involved lymph nodes. High-risk CTV 
involved 5-mm expansion from the GTV or surgi-
cal bed in a postoperative setting with a prescribed 
dose ranging from 66 to 70 Gy. Intermediate-risk 
CTVs were composed of high-risk CTV and at-risk 
lymphatic drainage in the node-positive region with 
a prescribed dose within a range of 59.4 to 60 Gy. 
Low-risk CTV included low-risk lymphatic areas 
treated with a dose of 50–54 Gy. For the SIB proto-
col, RT was delivered in 33 daily fractions, the dose 
prescriptions were 66 to 70 Gy for high-risk CTV, 
59.4 Gy for intermediate-risk CTV, and 54 Gy 
for low-risk CTV. The PTVs were established as 
3–5 mm isotropic expansion from CTVs to account 
for any technical errors.

Thyroid glands, including both thyroid lobes 
and the isthmus, were re-delineated on each CT 
slice by the principal investigator. The accuracy of 
the delineation was then confirmed by a radiologist. 

Dosimetric analysis
Radiation dosages delivered to the thyroid 

glands were re-evaluated and recorded. The mean 
dose (Dmean) and the percentage of thyroid volume 
receiving doses of 30, 40, 45 and 50 Gy [V30Gy, 
V40Gy, V45Gy and V50Gy (%), respectively] were cal-
culated from the dose-volume histograms (DVHs). 
The absolute volume (cm3) of the thyroid gland 
spared from dose levels of 45, 50, and 60 Gy [VS-
45Gy, VS50Gy and VS60Gy (cm3), respectively] were 
also collected. Because of our planning program 
limitations [helical tomotherapy (TomoTherapy, 
Accuray) and volumetric modulated arc therapy 
(VMAT, Monaco, Elekta)], a new region of interest 
(ROI) could not be added to the previously es-
tablished plans that were delivered to the patients 
(actual delivered plan). Our study analyzed the ra-
diation dosages to the thyroid glands by applying 
the Computational Environment for Radiotherapy 
Research (CERR) program (Fig. 1) [21]. The ac-
curacy of the CERR program was compared with 

the actual delivered plan by analyzing the dosi-
metric parameters of high-risk PTVs, which in-
cluded Dmean, dose coverage 95% of PTV (D95%), 
median dose (D50%), near-minimum dose (D98%), 
and near-maximum dose (D2%). Once the radiation 
plan obtained from the CERR program revealed 
certain non-statistical differences compared to 
the actual delivered plan, the radiation dosages de-
livered to the thyroid gland were further recorded. 

Assessment of thyroid function
Serum TFT was composted of TSH, free triiodo-

thyronine (FT3), and free thyroxine (FT4). Prima-
ry HT was defined as a TSH value greater than 
the upper normal limit of our institutional refer-
ence in combination with either normal FT3/FT4 
(subclinical hypothyroidism) or FT3/FT4 values 
less than the lower normal limits of our institution-
al reference (overt hypothyroidism). The normal 
range for TFT at our institution was as follows: 
TSH 0.270–4.200 μIU/mL, FT3 2.04–4.40 pg/mL, 
and FT4 0.93–1.71 ng/mL. Patients who had sec-
ondary HT (normal or low level of TSH in com-
bination with low FT4 level) were excluded from 
the analysis. 

All patients who developed subclinical or overt 
HT in this study were referred to an endocrinol-
ogist for further appropriate management and/or 
treatment.

Statistical analysis
The primary endpoint of this study was to iden-

tify incidence of primary HT after neck irradia-
tion. The secondary endpoint was to determine 
any correlation between primary HT and radiation 
painting to the thyroid gland. Descriptive statistical 
analyses were used to evaluate the characteristic 
data of the patients. 

The accuracy of the radiation dosage established 
by the CERR program was compared to the actual 
delivered plan by Man-Whitney U test.  The labora-
tory results of TFT were used to categorize patients 
into two groups; euthyroid and hypothyroid. Bi-
nary logistic regression analysis was used to detect 
any relationships between characteristic variables 
(age at diagnosis, gender, combined chemotherapy, 
and follow-up period) and incidence of primary 
HT. The correlations between dosimetric param-
eters and primary HT were analyzed by logistic 
regression analysis using backward variable selec-
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tion. The variance inflation factor (VIF) was deter-
mined in order to avoid any multicollinearity issue 
[22]. Factors that were associated with VIF values 
exceeding 2.5 indicated multicollinearity [23]. All 
dosimetric parameters that reported p-value of less 
than 0.25 on the univariable analysis and revealed 
VIF values lower than 2.5 were selected for multi-
variable analysis. In multivariable logistic regres-
sion analysis, a p-value of < 0.05 was defined as 
statistically significant. All statistical analyses were 
performed using IBM SPSS statistical software ver. 
23.0 (IBM, NY, USA).

Results

Patient characteristics
A total of 1,102 HNC patients were reviewed in 

this study. Accordingly, 64 patients with sufficient 
treatment plan information were determined to be 
eligible and enrolled in this study (Fig. 2). Patient 

characteristics are presented in Table 1. The prima-
ry tumor sites included nasopharynx, oral cavity, 
oropharynx, hypopharynx, larynx, and carcinoma 
of unknown primary origin. Most of the patients 
were treated as definitive RT/CCRT (85.9%). Con-
current chemoradiation was delivered to 90.6% of 
the patients.

Clinical characteristics and incidence 
of primary hypothyroidism

The median time interval between RT com-
pletion and laboratory test for thyroid func-
tion was 21 months [interquartile range (IQR) 
14–34 months], for which 26 patients (40.6%) 
had developed primary HT. Thirteen out of 26 pa-
tients (20.3% of the whole cohort) were first diag-
nosed with overt HT without clinical symptoms 
and were prescribed oral levothyroxine supplement 
by an endocrinologist. According to univariable 
logistic regression analysis, surgery and chemother-

Figure 1. Interface of the Computational Environment for Radiotherapy Research (CERR) program was used for dosimetric 
analysis. Planning target volumes (PTVs) (purple) were used as controls. Thyroid glands (light blue) were evaluated the dose 
by CERR-program-generating dose-volume histograms (DVHs) 



Bongkot Jia-Mahasap et al.  Radiotherapy, head and neck cancer, hypothyroidism

483https://journals.viamedica.pl/rpor

apy were indicative of a statistical correlation with 
an incidence of primary HT. However, none of them 
reached statistical significance in our multivariable 
logistic regression analysis. Radiation painting to 
the pituitary gland was not found to have an im-
pact on the incidence of HT. Results are shown in 
Table 2 and the incidence of patients who had de-
veloped hypothyroidism over time is demonstrated 
in Figure 3.

IMRT/IGRT planning and CERR program 
substitution

CERR program was used to evaluate radiation 
dosimetry of new ROIs (thyroid gland). Dosimet-
ric parameters of the thyroid gland obtained from 
the CERR program are shown in Table 3. An analy-
sis of high-risk PTVs established from Man-Whit-

ney U test revealed non-statistical difference be-
tween the data of the CERR program and the data 
of the actual delivered plan, as presented in Table 4. 
Therefore, all data achieved from the CERR pro-
gram were established as a surrogate in order to 
evaluate the dose to the thyroid gland.  

Correlation between dosimetric 
parameters and primary hypothyroidism

According to univariable logistic regression 
analysis, total thyroid volume, the mean dose 
to the thyroid, and doses of V40Gy, V45Gy, V50Gy, 
VS45Gy, VS50Gy, and VS60Gy were associated with 
primary HT. With regard to multicollinearity, 
the value of VIF showed a strong correlation be-
tween Dmean and various dosimetric parameters. 
Therefore, Dmean and doses of V40, V45, V50, 

1102 head and neck cancer patients treated 
with RT to neck region. Treatment completion 
was between December 2013 to October 2019

ź 104 palliative intent

ź 306 conventional RT (2D technique)

ź 19 incomplete radiotherapy courses

ź 108 age > 75 years old at diagnosis

Exclude:

ź 18 previous thyroid disease/abnormality 
of hypothalamus–pituitary–thyroid axis

Exclude:

ź 47 no available back-up planning data
ź 46 follow-up at other hospitals
ź 41 local recurrence/re-irradiation
ź 30 loss to follow-up

ź 63 distant metastasis

ź 227 intracranial extension or radiation 
field involved pituitary fossa

Exclude:
ź 28 Did not consent to trial
ź 1 Laboratory evidence of secondary 

hypothyroidism

547 patients were assessed for treatment planning 
data availability, recent status, and foliow-up appointment

93 patients were recruited to enroll to the trial

Total 64 patients were analyzed

Figure 2. Patient selection diagram. We reviewed 1,102 head and neck cancer patients that had received radiotherapy (RT) 
at our hospital. Accordingly, 64 patients were determined to be qualified and included in the analysis
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VS45, and VS60 were not included in the multivari-
able analysis. Only absolute thyroid volume spared 
from a dose of 50 Gy (VS50Gy) remained statistically 
significant (p = 0.047) according to multivariable 
logistic regression analysis as is presented in Ta-
ble 5. We also attempted to determine the cutoff 
value of VS50Gy by using binary logistic regression 
analysis as is shown in Table 6. The results revealed 
a trend to reduce an incidence of HT when VS50Gy 
was more than 5 cm3 (p = 0.052). 

Discussion

Radiation-induced primary 
hypothyroidism

The thyroid gland is an important endocrine 
gland that is frequently affected by RT during HNC 
treatment. According to the outcomes of our study, 
the incidence of primary HT was 40.6%, which is 
comparable to that of previous studies (approxi-
mately 20–50%) [7, 10, 12, 14, 24, 25]. The medi-
an time interval after complete RT and TFT was 
21 months (IQR, 14–34 months). The follow-up 
time was determined to be a similar period as that 
needed to detect thyroid dysfunction after irradi-
ation, as has been reported in many studies [19, 
24]. However, some published studies have report-
ed an increase in the cumulative incidence of HT 
after 2–3 years [26]. Therefore, a longer follow-up 

Table 1. Patient characteristics

Variables N (%)

Age (years)

Median 52

Range 29–74

Gender

Male 49 (76.6)

Female 15 (23.4)

Primary site

Nasopharynx 32 (50)

Oral cavity 8 (12.5)

Oropharynx 20 (31.3)

Hypopharynx/Larynx 3 (4.7)

Unknown primary 1 (1.5)

Chemotherapy

Induction/Adjuvant 38 (59.4)

Concomitant 58 (90.6)

Surgery

Yes 9 (14.1)

No 55 (85.9)

Time interval between RT completion and laboratory test 
[mo]

Median 21 

Interquartile range 14–34

Pituitary gland dose (Dmax)

< 50 Gy 51 (79.7)

> 50 Gy 13 (20.3)

Table 2. Logistic regression for primary hypothyroidism and clinical characteristics

Clinical variables
Univariable Multivariable

Odds ratio (95% CI) p-value† Odd ratio (95% CI) p-value*

Age at diagnosis 0.996 (0.948–1.047) 0.871

Gender

Female (vs. Male)
0.667 (0.198–2.243) 0.513

Surgery

Yes (vs. No)
3.500 (0.788–15.543) 0.100† 2.123 (0.342–13.171 0.419

Induction/adjuvant 
chemotherapy

Yes (vs. No)
0.520 (0.188–1.442) 0.209† 0.919 (0.238–3.550) 0.902

Concurrent chemotherapy

Yes (vs. No)
0.114 (0.012–1.038) 0.054† 0.091 (0.007–1.128 0.062

Time interval from RT 
completion (months) 1.013 (0.982–1.046) 0.413

Pituitary gland dose (Dmax)

≤ 50 Gy vs. >50 Gy
0.509 (0.149–1.740) 0.282

†significant at p-value < 0.25; *significant at p-value of < 0.05; CI — confidence interval
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period might be required to better define an inci-
dence of HT.

Radiation combined with neck dissection was re-
ported as a significantly related factor to induce HT 
in pharyngeal cancer according to the outcomes of 
a study conducted in Japan [27]. From our anal-
ysis, an association between an incidence of HT 
and surgery was found to be statistically significant 
in the univariable logistic regression analysis. Un-
fortunately, we did not observe this correlation in 
our multivariable analysis. Notably, systemic che-
motherapy did not increase the incidence of HT in 
our study. More modern adjuvant immune check-
point inhibitors were also not found to be related 
to higher incidence of HT [28].   

The radiation dose constraint to the thyroid 
gland has been investigated over years, but defin-
itive data have not been well established yet. In 
the three-dimension conformal radiotherapy 
(3D-CRT) era, Emami et al. estimated an 8% in-
cidence of clinical HT at five years when the entire 

Figure 3. Kaplan-Maier curve showing a rate of hypothyroidism (HT) over time. The cumulative incidence (blue line), 
subclinical HT (green line), and overt HT (orange line) of patients after completion of radiotherapy (RT) are presented
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Table 3. Dosimetric parameters of the thyroid gland 
obtained by Computational Environment for Radiotherapy 
Research (CERR) program 

Dosimetric parameters 
of thyroid gland Median IQR

Thyroid volume [cm3] 14.9 (6.4) 11.8–18.2

Dmean thyroid dose [Gy] 53.9 (4.4) 51.3–55.8

V30Gy (%) 100 (0.1) 99.9–100.0

V40Gy (%) 99.9 (8.4) 91.6–100.0

V45Gy (%) 97.5 (14.7) 85.1–100.0

V50Gy (%) 90.4 (26.5) 72.7–99.6

VS45Gy [cm3] 0.4 (2.13) 0.0–2.2

VS50Gy [cm3] 1.6 (4.0) 0.1–4.1

VS60Gy [cm3] 12.9 (7.1) 10.1–17.4

IQR — interquartile range

Table 4. Man-Whitney U Test Statistics between intensity-modulated radiotherapy/image-guided radiotherapy (IMRT/IGRT) 
planning and Computational Environment for Radiotherapy Research (CERR) program. The high-risk planning target volumes 
(PTVs) of each individual plan were used as a control

Dosimetric variables
CERR Actual plan

p-value*
Median (IQR) Median (IQR)

Volume 166.3 (84.4–277.6) 162.8 (86.0–277.7) 0.780

Dmean 69.6 (69.4–70.3) 69.7 (69.5–70.2) 0.446

D98 66.7 (66.4–67.6) 66.9 (66.5–67.4) 0.207

D95 67.6 (67.2–68.2) 67.7 (67.4–68.3) 0.266

D50 69.7 (69.6–70.2) 69.8 (69.6–70.1) 0.248

D2 71.8 (71.3–72.8) 71.8 (71.4–72.9) 0.559

*Man-Whitney U test; *significant at p-value of < 0.05; IQR — interquartile range; Dmean — mean dose to target
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thyroid gland received a dose of 45 Gy, increased to 
13% with the radiation dose over 60 Gy [29]. Var-
ious dosimetric parameters have been reported as 
possible correlation factors with radiation-induced 
HT according to findings published in more mod-
ern studies. A possible dosimetric factor that is 
related to higher incidence of HT in nasopharyn-
geal cancer was a V40Gy value less than 85% [12]. 
A V45Gy over 50% was another possible parame-
ter for HT after head and neck irradiation as has 
been reported in a study conducted in Korea [10]. 
Published data on pharyngeal cancer would also 
indicate that a V45Gy over 67% was associated with 
a higher incidence of HT [27]. Furthermore, some 
published studies have identified V50Gy as a predic-
tive factor with a cutoff value at 50–60% [14, 25, 
30]. Thyroid mean dose was found to be another 
predictive parameter that was previously identified 

in oropharyngeal cancer patients [31]. However, 
the results of our study indicated a strong correla-
tion between Dmean and doses of V40Gy, V45Gy, 
and V50Gy in our univariable analysis which was not 
included into the multivariable analysis. These out-
comes reveal an indeterminate association between 
primary HT and percentage of thyroid volume re-
ceiving doses of 40, 45, and 50 Gy.

The absolute thyroid volume spared from each 
dose level (VSxxGy) has increasingly been reported 
as a correlative factor with primary HT. The re-
sults of a previous study on oropharyngeal cancer 
suggested that the VS45Gy value should be more 
than 3 cm3 [13]. The outcomes of a study con-
ducted in Hong Kong also recommended value of 
VS45Gy and VS60Gy over 5 cm3 and 10 cm3, respec-
tively [32]. These dosimetric values were associat-
ed with prolonged freedom from HT as follows; 

Table 5. Logistic regression for primary hypothyroidism and dosimetric parameters

Variables
Univariable Multivariable

Odds ratio (95% CI) p-value Odd ratio (95% CI) p-value

Volume [cc] 0.859 (0.757–0.976) 0.020† 0.892 (0.783–1.017) 0.089

Dmean [Gy] 1.096 (0.978–1.228) 0.113

V30 (%) 1.026 (0.976–1.078) 0.318

V40 (%) 1.044 (0.991–1.099) 0.106

V45 (%) 1.045 (0.998–1.093) 0.060

V50 (%) 1.038 (1.003–1.074) 0.032

VS45 [cc] 0.721 (0.527–0.988) 0.042

VS50 [cc] 0.734 (0.572–0.940) 0.014† 0.777 (0.606–0.997) 0.047*

VS60 [cc] 0.901 (0.818–0.993) 0.036
†only covariates found to be significant in the univariate analysis (p-value < 0.25) were analyzed in the multivariable analysis. Dmean, V40, V45, V50, VS45, 
and VS60 were not included in the multivariable analysis to avoid multicollinearity as the variance inflation factor (VIF) values exceeded 2.5; *significant 
at p-value of < 0.05; Dmean — mean radiation dose to the thyroid gland; Vxx (%) — percentage of volume receiving a dose of xx Gy to the thyroid gland; 
VSxx (cm3) = absolute volume (cm3) of thyroid glands spared from a dose level of xx Gy; CI — confidence interval

Table 6. Binary logistic regression analysis for VS50Gy cutoff

Thyroid volume spared from dose 
50 Gy [cm3] Number of patients (n = 64)* Odds ratio (95% CI) p-value

≤ 2 18/36 1
0.083

> 2 8/28 0.40 (0.14–1.14)

≤ 3 20/41 1
0.076

> 3 6/23 0.37 (0.12–1.13)

≤ 4 22/47 1
0.094

> 4 4/17 0.35 (0.10–1.23)

≤ 5 25/55 1
0.052

> 5 1/9 0.15 (0.02–1.28)

VS50Gy — absolute volume (cm3) of thyroid glands spared from a dose of 50 Gy; *Indicates the number of patients who developed hypothyroidism/the total 
number of patients who received VS50Gy at each specified volume; CI — confidence interval
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91.5 vs 75.9 months for VS45Gy ≥ 5 cm3, and 91.5 
vs. 73.3 months for VS60Gy ≥ 10 cm3. Similarly, 
the outcomes of a study conducted by Lertbut-
sayanukul et al. indicated a cutoff value of VS60Gy 
over 10 cm3 as an associated factor with prolonged 
freedom from HT at three years, 50.8% vs. 33.5% 
[33]. The results from our multivariable logistic 
regression analysis demonstrated that VS50Gy is 
a significant dosimetric parameter. Unfortunately, 
we could not identify an appropriate cutoff point 
value of VS50Gy. However, we did observe the trend 
of a decrease in the incidence of HT when VS50Gy 
was more than 5 cm3 in a binary logistic analysis 
(p = 0.052).

Individual thyroid volume was also reported to be 
an associated factor of radiation-induced HT. Pub-
lished data in oropharyngeal patients estimated that 
a thyroid volume ≥ 8 cm3 could be prolonged 3-year 
freedom from HT (48.5% vs. 25.0%) [13]. A study 
conducted in Croatia identified a total thyroid vol-
ume below 14 cm3 as a predicting factor of HT [30]. 
Moreover, thyroid volume over 20 cm3 was associ-
ated with a lower 2-year incidence of HT in some 
study of nasopharyngeal cancer [34]. Another re-
port originated from Poland in oropharyngeal can-
cer treated by IMRT also validated the NTCP model 
for thyroid volume as a predictor of HT [31, 35]. 
However, the analysis from this study did not reveal 
any correlation between thyroid volume and HT. 
Thyroid volume was determined to be statistically 
significant in univariable analysis but not in multi-
variable logistic regression analysis. 

Another predictor was pre-treatment TSH. 
Some published study has indicated that 
a pre-treatment TSH value less than 1.55 μIU/mL 
was associated with a longer 3-year freedom from 
HT (58.8% vs. 27.6%) [33]. Unfortunately, our 
center did not routinely evaluate TFT before RT. 
The relatively high incidence of HT reported in 
this current study should be of particular concern 
and applied in modifications to our further prac-
tice. Pre-treatment TFT, thyroid volume, and VS-
50Gy constraint of the thyroid gland should be reg-
ularly assessed for early detection and prevention 
of radiation-induced HT. 

Although the most common form of HT after ir-
radiation was subclinical HT, the result of this study 
indicated that 13 out of 26 patients (50%) with 
thyroid dysfunction had overt HT without clinical 
symptoms. The data reported by Lee et al. revealed 

that 24.2% of patients diagnosed with subclinical 
HT later developed overt HT [32]. The manage-
ment guidelines for subclinical HT recommend 
thyroid hormone replacement when TSH > 10 
μIU/mL [36, 37]. Remarkably, patients who had 
subclinical HT and TSH value less than 10 μIU/mL 
should be closely monitored for potential early de-
tection or treatment of overt HT. 

A major limitation of this study was its retro-
spective manner. We reviewed 1,102 patients who 
received RT in our center from 2013 to 2019. 
However, only 64 patients were enrolled. Most pa-
tients were excluded from the analysis according 
to the following conditions; 306 patients (28%) 
were treated by conventional RT technique, 227 
patients (20.6%) had intracranial extension or radi-
ation field involved pituitary fossa, and 104 patients 
(9.4%) were treated for palliative intent. Moreover, 
this study collected data during the COVID-19 
pandemic which restricted the patients’ ability to 
re-visit the hospital and fully participate in the trial. 
This situation led to a smaller number of enrolled 
patients being involved in our overall analysis. Fur-
thermore, our cross-sectional study also limited 
the dynamic change evaluation of thyroid function 
after neck irradiation.

Conclusion

The incidence of HT after neck RT in our insti-
tute was relatively high (40.6%). Notably, the radi-
ation dose constraint to the thyroid gland without 
compromising target coverage is of great impor-
tance. From our analysis, the thyroid volume spared 
from a dose of 50 Gy (VS50Gy) was identified as 
a significant factor of radiation-induced HT. Even 
though we could not suggest an appropriate cutoff 
point value of VS50Gy, a trend to reduce the risk 
of HT was observed when VS50Gy was more than 
5 cm3. Importantly, a smaller initial thyroid vol-
ume might be associated with an increased risk of 
HT as it was determined to be a significant factor in 
univariable analysis.
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