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Introduction

In patients with recurrent and/or metastatic 
urothelial carcinoma of the ureter, combination 
chemotherapy yields high response rates but the 
prognosis is poor [1]. Patients with a prior history 
of bladder cancer have been shown to have even 
worse disease-free survival rates [2]. Stereotactic 
ablative radiation therapy (SABR) has been sug-
gested to improve the prognosis of patients with 
oligometastases defined by both number (typically, 
less than 5) and location [3, 4]. When SABR is ap-
plied to liver metastasis, it is necessary to set a large 
margin because liver metastasis moves greatly by 
breathing. MRI-guided radiation therapy can track 

the movement of the tumor and surrounding nor-
mal tissues, which allows a higher dose of radiation 
to be administered to the tumor while minimizing 
the amount of radiation delivered to the normal 
tissues [5, 6]. One of the drawbacks of MRI-guided 
radiation therapy is the poor visibility of a liver 
tumor during irradiation. Since the contrast en-
hancement by extracellular gadolinium-based con-
trast agents (GBCAs) is transient, sustained tumor 
visualization is not possible. Gadoxetate disodium, 
a hepatocyte-specific linear GBCA, may allow for 
sustained tumor visualization, but linear GBCAs 
result in more retention and retention for a longer 
time than macrocyclic GBCAs. Therefore, gadox-
etate cannot be used in patients with poor renal 
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function due to the risk of nephrogenic systemic 
fibrosis (NSF). To overcome these limitations, we 
used liver-specific superparamagnetic iron oxide 
(SPIO), and performed MRI-guided SABR for 
a solitary liver metastasis from the ureteral carci-
noma. As far as we know, this is the first report of 
MRI-guided SABR for liver metastasis using SPIO.

Case presentation

A 74-year-old man with a solitary liver metastasis 
from urothelial carcinoma of the ureter was referred 
to our hospital for radiation therapy. He had under-
gone a nephroureterectomy with bladder cuff exci-
sion for localized ureteral cancer (Stage II, urothelial 
carcinoma, Grade 1) four and a half years ago. He 
also had a history of early-stage bladder cancer 13 
years previously, but it was cured by transurethral 

resection. The patient had no subjective symptoms 
at the time of referral, but whole-body CT showed 
a solitary liver metastasis. The patient was initially 
recommended for combination chemotherapy but 
refused, so he was treated with MRI-guided SABR 
after the protocol was approved by the institutional 
review board and the written informed consent was 
obtained from the patient.

SPIO-induced signal changes at 0.35T
Prior to the radiotherapy treatment planning, 

anatomical shape and cancer cell viability of the 
tumor were evaluated by multiparametric MRI 
at 3T (MAGNETOM Skyra, Siemens Healthcare, 
Erlangen, Germany). The liver metastasis was hy-
perintense relative to adjacent liver parenchyma 
on breath-hold half-Fourier-acquired single-shot 
turbo spin echo (HASTE) imaging (Fig. 1A), and 

Figure 1. Multiparametric MRI at 3T before and 3 months after treatment. The liver metastasis (arrow) was hyperintense 
relative to adjacent liver parenchyma on HASTE imaging (TR/TE/FA = 1100 ms/95 ms/160 degree) (A); T1 times of the tumor 
(arrow) were shorter than those of adjacent liver parenchyma on quantitative T1 mapping (B); Three months after MRI-guided 
SABR, the tumor volume reduced significantly on HASTE imaging (arrow) (C); Quantitative T1 map imaging (arrow) (D). 
HASTE — half-flourier-acquired single-shot turbo spin echo; TR — repetition time; TE — echo time; FA — flip angle;  
SABR — stereotactic ablative radiation therapy
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T1 times of the tumor were substantially shorter 
than those of adjacent liver parenchyma on quan-
titative T1 mapping (qT1) reflecting cancer cell vi-
ability (Fig. 1B). Then, the patient underwent MRI 
simulation on 0.35T MRI-guided radiotherapy sys-
tem (MRIdian® System, ViewRayTM Inc, Oakwood 
Village, Ohio, USA) with surface coils on the abdo-
men using true fast imaging with steady-state free 
precession (true FISP) images (3.33 ms TR, 1.43 ms 
TE, 60 flip angle, 3 mm slice thickness, 40 cm × 40 
cm × 43 cm field of view) (Fig. 2A–C). Patients were 
simulated at shallow breathing. At MRI simulation, 
tumor motion was evaluated using real-time cine 
MRI in the sagittal plane and the patient’s ability 
to breath-hold evaluated for reproducibility and 
tolerance. But the tumor could not be clearly visu-
alized by true FISP imaging with a 0.35T MRI unit 
that would be imaged during irradiation. Since the 
image contrast with True FISP is determined by 
T2/T1 or T2*/T1 properties, a hepatocyte-specif-
ic contrast agent, ferucarbotran (Resovist, Bayer 

Healthcare) was injected intravenously. Ferucar-
botran is the clinically approved SPIO which causes 
marked shortening in T2 relaxation time resulting 
in a loss of signal in the liver. One hour after the 
administration of ferucarbotran, the lesion of liver 
metastasis was clearly visualized on true FISP im-
age (Fig. 2D–F).

Radiation therapy planning  
using SPIO-enhanced MRI

Fusion images of post-contrast true FISP imag-
ing at 0.35T and multiparametric MRI at 3T were 
generated using Monaco 5.0 treatment planning 
software (Elekta AB, Stockholm, Sweden), and 
gross tumor volume (GTV) was defined by one 
radiologist and one radiation oncologist. Planning 
target volume (PTV) was defined as a 1 mm mar-
gin expansion from GTV. The prescribed dose to 
the D95% of the PTV (the dose covering 95% of 
the PTV) was 40 Gy in 5 fractions over 5 days 
(Fig.  3A–C). Treatment plan was carried out us-
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Figure 2. Plain and SPIO-enhanced true FISP images at 0.35T. Liver metastasis is barely visible on non-contrast enhanced true 
FISP images consisting of axial (A), coronal (B) and sagittal (C) planes. After SPIO administration, liver metastasis (arrows) is 
clearly visualized on true FISP images consisting of axial (D), coronal (E) and sagittal (F) planes; SPIO — superparamagnetic 
iron oxide; FISP — fast imaging with steady-state free precession
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ing intensity-modulated radiation therapy (IMRT) 
and the maximum dose within PTV was not con-
strained. The daily treatment MRI was aligned to 
the simulation MRI to ensure appropriate tumor 
position. During treatment delivery, a sagittal True 
FISP sequence (2.1 ms TR, 0.91 ms TE, 60 flip 
angle, 7 mm slice thickness, 35 cm × 35 cm field of 
view, 4 frames per second) was acquired.

Results

MRI-guided SABR was performed on the 
MRI-guided radiation therapy unit using a 0.35T 
magnet, Co-60 delivery, and real-time MRI ac-
quisition. Since the contrast effect of SPIO was 
sustained during the treatment period, no ad-
ditional ferucarbotran was given. There were no 
radiation-induced adverse events during treatment 
and three months of follow-up. Three months later, 
the tumor volume reduced significantly on both 
HASTE and qT1 images.

Discussion

MRI-guided radiotherapy can monitor the 
movement of the tumor and the surrounding or-
gans at risk in real time and reduce radiation-in-
duced adverse effects by reducing the amount of 
radiation exposure to surrounding normal tissues. 
In order to monitor the tumor movement in real 
time, it is necessary to use a fast repeating imaging 
pulse sequence. The true FISP sequence is a fast 
imaging technique with a high signal-to-noise ra-
tio (SNR), and for most true FISP imaging a bright 
T2/T1 signal is desired. Since the lesion was hy-
perintense on HASTE imaging taken with a 3T 

MRI unit and the image contrast with true FISP 
is determined by T2/T1 or T2*/T1 properties, we 
hypothesized that the T2 shortening effect of SPIO 
would reduce the signal intensity of the surround-
ing liver parenchyma and keep the tumor signal 
hyperintense.

There has been a case report that the liver tumor 
was visualized using gadoxetate during real-time 
MRI-guided radiation therapy of the liver [6]. How-
ever, we thought it was more appropriate for this 
patient to be administered ferucarbotran instead 
of gadoxetate for the following three reasons. First, 
the patient’s left kidney was resected and his renal 
function was poor. Given the risk of linear GBCAs 
including gadoxetate, we thought that there was no 
rational basis to administer gadoxetate [7, 8]. On 
the other hand, there are reports with 0.026% side 
effect while using gadoxetate as a contrast agent, 
with no increased incidence of side effects noted in 
impaired renal or hepatic function. Furthermore, 
due to dual renal and hepatic excretion, there are no 
reported cases of nephrogenic toxic fibrosis in some 
series [9, 10]. Further research is needed to deter-
mine which one is the more suitable contrast agent. 
Second, since the tissue contrast of true FISP im-
ages is determined by the T2/T1 or T2*/T1 proper-
ties, T2 shortening effects or spin-spin interactions 
caused by SPIO have a greater impact on signal 
intensity than gadoxetate. Third, since the contrast 
enhancement of ferucarbotran persists for about 4 
days after administration [11], it is not necessary 
to additionally administer ferucarbotran at every 
treatment session.

The limitation of this study is that the pulse se-
quence used in MRI-guided radiotherapy is not 
optimized. R1, R2 and R2* relaxation rates of liver 

Figure 3. MRI-guided SABR isodose line distribution. Isodose lines are displayed on axial (A), coronal (B), and sagittal (C) true 
FISP images. Isodose lines with corresponding actual radiation dose were given over 5 fractions. SABR — stereotactic ablative 
radiation therapy; FISP — fast imaging with steady-state free precession
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parenchyma and tumor should have been measured 
before and after SPIO administration using 0.35T 
MRI unit. Furthermore, since the spin-spin interac-
tion at 1.5T is larger than that at 0.35T, the contrast 
between the tumor and the liver might be greater 
using a high-field 1.5T MRI unit. Third, gadoxetate 
is the standard contrast agent used for imaging liver 
metastasis or primary liver tumors. On the other 
hand, SPIO is available in limited countries, and its 
worldwide use is not established [12].

Conclusions

A single case study cannot be generalized to oth-
ers without further scientific verifications; however, 
if liver tumors are not visualized by plain MRI, 
administration of SPIO may be a solution for 
MRI-guided radiation therapy.
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