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Abstract

Background: Hyperbaric oxygen therapy (HBOT) is useful in the treatment of complications due to radiotherapy in 

patients with neoplasm. Its effects on bone metabolism are unclear. In our study, we analyzed the effects of HBOT on bone 

remodeling in oncological patients with radiotherapy.

Materials and methods: Prospective clinical study in 23 patients with neoplasms undergoing treatment with HBOT due 

to complications of radiotherapy (hemorrhagic cystitis, proctitis or radionecrosis) and 25 patients with chronic anal fissure. 

The average number of HBOT sessions was 20 ± 5 (100% oxygen, 2.3 atmospheres and 90 min per day). Serum levels of ami-

noterminal propeptide of type I collagen (P1NP), C terminal telopeptide of type I collagen (CTX), alkaline phosphatase (AP), 

25hydroxyvitamin D (25-OHD), parathyroid hormone (PTH), were measured at 3 time points: T0 (before beginning HBOT), T1 

(at the end of HBOT) and T2 (6 months after HBOT).

Results: At baseline, the patients with neoplasm have higher bone turnover than those with anal fissure. These differences 

were 41% in CTX (0.238 ± 0.202 ng/mL in neoplasm and 0.141 ± 0.116 ng/mL in fissure; p = 0.04), 30% for PTH (46 ± 36 pg/mL 

in neoplasm and 32 ± 17 pg/mL in fissure; p = 0.04) and 15% for alkaline phosphatase (80 ± 24 U/L in neoplasm and 68 ± 16 

U/L in fissure; p = 0.04). In the group with neoplasm, the values of P1NP decreased 6% after HBOT (T0: 49 ± 31 ng/mL, T2: 46 

± 12 ng/mL; p = 0.03). Also, there were non-significant decreases in PTH (–34%) and CTX (–30%).

Conclusions: Patients with neoplasm and complications with radiotherapy have an increase in bone remodeling that may 

be diminished after HBOT.
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Introduction

Oxygen is critical for maintaining bone cellular 
functions and changes in partial pressure of oxygen 
directly impact bone cell function [1]. Hypoxia is 
associated with excessive bone resorption, decreas-
ing formation and mineralization [2, 3]. However, 

hyperoxia could have opposite effects, regulating 
the expression of the hypoxia-inducible factor 1α 
(HIF-1a) [4], increasing formation and decreasing 
bone resorption [5–8]. The change of bone turn-
over rate could affect the bone quality. Hyperbaric 
oxygen therapy (HBOT) has shown to be useful 
for the treatment of patients with neoplasms and 
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secondary complications from radiotherapy [9–11] 
due to its anti-inflammatory and antioxidant effects 
[12–16]. However, the actions of HBOT on bone 
metabolism in these patients are unknown.

In our study we aimed to analyze the effects of 
HBOT on bone remodeling in oncological patients 
that had been treated with radiotherapy.

Materials and methods

Prospective study (October 2018–October 2019) 
in 23 patients with neoplasms undergoing treat-
ment with HBOT and 25 patients with chronic anal 
fissure (control group) who will also receive HBOT. 
The mean age of all patients was 60 ± 14 yrs. (range 
30–87 yrs.; 60% males). In all cases, the indication 
to receive treatment with HBOT was made by their 
specialist doctor (radiation oncologist, oncologist, 
general surgeon and gastroenterologist). 23 patients 
had neoplasm history but, without bone metasta-
ses (9 adenocarcinomas of the rectum or colon, 5 
carcinomas of the head and neck, 3 carcinomas of 
the prostate, 3 gynecological adenocarcinomas, 2 
cutaneous carcinomas and 1 ductal carcinoma of 
the breast), all with complications due to radio-
therapy (cystitis 30%, proctitis 30% and radione-
crosis 40%). The patients with chronic anal fissure 
received HBOT after not improving with conven-
tional treatment.

The average total radiotherapy dose was 50.7 Gy 
in all patients with tumors. In pelvic tumors it was 
44–50.4 Gy (1.8–2 Gy/fraction) to the pelvis (tu-

mor/tumor bed and lymphatic areas), one patient 
received also 15 Gy/fraction with high dose rate 
brachytherapy as boost. In head and neck cancer it 
was 70 Gy (2 Gy/fraction) to the tumor and patho-
logical nodes and 63–45 Gy (1.8–2 Gy/fraction) to 
the latero-cervical chains and supraclavicular fossa. 
In others tumors, the dose was 35 Gy (7 Gy/frac-
tion).

We excluded pregnant women and patients 
with previous HBOT. The patients were exposed 
to HBOT inside a hyperbaric chamber (Galeazzi, 
Italy; 100% oxygen; 2.4 atmospheres absolute for 90 
min. Fig. 1) while breathing through an oral-nasal 
mask 5 times a week. All subjects were evaluated 
prospectively. At baseline, clinical data were collect-
ed on standardized data forms. The determinations 
in both groups were obtained at three time points: 
T0 (before beginning HBOT), T1 (at the end of 
HBOT) and T2 (6 months after HBOT). The aver-
age number of HBOT sessions in all patients was 
20 ± 5 (range 8–31), similar in both groups (21 ± 4 
in neoplasm and 19 ± 4 in anal fissure).

The study protocol was approved by the Insti-
tutional Review Board and all patients gave their 
written informed consent.

Blood samples were obtained in a fasting state 
between 08:30 and 12:00 am. Routine chemistries 
were analyzed the same day. Other parameters were 
analyzed in serum aliquots stored at −80°C. Se-
rum total calcium, creatinine, alkaline phosphatase 
(AP), phosphorus and albumin were determined 
by standard automated methods in an ADVIA 2400 

Figure 1. Hyperbaric oxygen therapy
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Chemistry System (Siemens Medical Solutions Di-
agnostics, Los Angeles, CA USA). Serum concen-
trations of 25hydroxyvitamin D (25-OHD), para-
thyroid hormone (PTH), aminoterminal propep-
tide of type I collagen (P1NP), and C terminal telo-
peptide of type I collagen (CTX) were determined 
by a chemiluminescent immunoassay in an iSYS 
(IDS-iSYS Multi-Discipline Automated Analyzer, 
Pouilly-en Auxois, France). The detection limit of 
serum 25OHD was 5 ng/mL, its intra-assay coef-
ficient of variation (CV) was < 10, and its inter-as-
say CV was < 15. The detection limit of PTH was 
6 pg/mL, intra-assay and inter-assay CV were 2.6 
and 5.8%, respectively. The P1NP limit of detection 
was 0.14 ng/mL with an intra-assay and inter-assay 
CV of 2.9 and 4.7%, respectively. The intra-assay 
and inter-assay CV of β-CTX were 3.2 and 6.2%. 
The glomerular filtration rate was estimated using 
the new CKD-EPI equation from serum creatinine 
concentration..

Statistical analysis
The results were expressed as mean ± SD for 

quantitative variables and percentage for qualita-
tive variables. We used the Kolmogorov-Smirnov 
test to check for normal distribution. Quantitative 
variables were analyzed by Student t- test if the vari-
ables had a normal distribution, or the nonpara-
metric Mann-Whitney U test were used to compare 
between-group differences. The Paired-Samples 
T Test or Wilcoxon tests were used to compare 
within-subject changes. The value of p < 0.05 was 
considered statistically significant.

Results

Patients with neoplasm have at baseline (T0) 
higher bone turnover than those with anal fissure. 
These differences in T0 were 15% for alkaline phos-
phatase (80 ± 24 U/L in neoplasm and 68 ± 16 U/L 
in fissure; p = 0.04), 41% in CTX (0.238 ± 0.202 
ng/mL in neoplasm and 0.141 ± 0.116 ng/mL in 
fissure; p = 0.04), and 30% for PTH (46 ± 36 pg/mL 
in neoplasm and 32 ± 17 pg/mL in fissure; p = 0.04) 
(Fig. 2). The levels of P1NP (49 ± 31 ng/mL in 
neoplasm and 43 ± 24 ng/mL in fissure; p = 0.44) 
and 25-OHD (20 ± 12 ng/mL in neoplasm and 
19 ± 11 ng/mL in fissure; p = 0.72) were similar. 
After HBOT (T1 and T2) the differences in CTX 
and PTH between both groups largely disappeared 

and were only maintained in alkaline phosphatase 
(Fig. 2).

In the neoplasm group there were no early chang-
es (T1) after HBOT in values of bone turnover with 
respect to baseline, but there was a significant de-
crease in the bone formation marker (P1NP) after 6 
months (T0:49 ± 31 ng/mL and T2:46 ± 12 ng/mL; 
p = 0.03). Also, we observed a non-significant de-
crease in PTH (34%; T0: 46 ± 36 pg/mL, T2: 30 ± 14 
pg/mL; p = 0.62) and CTX (30%; T0: 0.238 ± 0.202 
ng/mL, T2:0.165 ± 0.134 ng/mL; p = 0.95) after 6 
months of HBOT in these patients (Tab. 1).

In the group of chronic anal fissure, the values 
were similar through the whole study period and 
we saw no influence of HBOT (Tab. 2).

All patients included in the study presented 
a clinical improvement (85% in cancer patients and 
90% in patients with chronic anal fissures) with 
a decrease in pain and bleeding mainly.

Discussion

Bone turnover markers have an important role 
in bone metabolism. Measurement of P1NP ap-
pears to be a more sensitive marker of the bone 
formation rate and CTX of the bone resorption 
rate. The change of the bone turnover rate could 
affect the bone quality. Patients with neoplasms, 
with or without metastases, have an increase in 
bone remodeling; in bone resorption as well as in 
bone formation [18, 19]. In our study baseline we 
found an increase in bone remodeling in patients 
with tumors who have not developed metastases. 
Radiotherapy may contribute to deregulating bone 
remodeling via different mechanisms [20, 21]. Ra-
diation-induced bone loss is a potential health con-
cern for cancer patients undergoing radiotherapy 
[22]. In our study, the oncology patients are treated 
with radiotherapy despite the absence of metastases 
and all of them received treatment with HBOT due 
to complications of radiotherapy (cystitis, proctitis 
or radionecrosis).

On the other hand, HBOT has shown to be use-
ful in the treatment of radiotherapy complications 
like hemorrhagic cystitis, secondary proctitis [9] 
or radiation-induced skin necrosis [23, 24] due to 
its anti-inflammatory, antioxidant and immuno-
modulatory effects [25]. In our study, we observed 
a significant decrease of P1NP, as a bone formation 
marker, as well as a tendency to decrease the bone 
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Table 1. Bone metabolism in patients with neoplasm

T0 T1 T2

Glomerular filtrate 74 (20)
77 (19)

p = 0.04

81 (14)

p = 0.14

Albumin [g/dL] 4.2 (0.3)
4.2 (0.3)

p = 0.90

4.3 (0.5)

p = 0.55

Total calcium [mg/dL] 9.1 (0.4)
9.1 (0.2)

p = 0.38

9.1 (0.4)

p = 0.90

Phosphorus [mg/dL] 3.3 (0.4)
3.2 (0.4)

p = 0.39

3.0 (0.3)

p = 0.77

25OHD [ng/mL] 20 (12)
20 (12)

p = 0.64

18 (9)

p = 0.62

Alkaline phosphatase [U/L] 80 (24)
85 (36)

p = 0.58

96 (59)

p = 0.08
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Figure 2. Bone metabolism in neoplasm and fissure; T0: before beginning HBOT, T1: at the end of HBOT, T2: 6 months after 
HBOT
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resorption marker, in oncological patients after 
HBOT. The reduction of the inflammation in these 
complications (proctitis, cystitis and radionecrosis) 
after HBOT could be accompanied by a decrease in 
the remodeling in our patients, in this way estab-
lishing a relationship between inflammation and 
bone [26]. The fact that we found no changes in 

bone turnover after HBOT in patients with anal fis-
sure, caused by internal anal sphincter hypertonia 
[27], may support this hypothesis.

Our study has several limitations because of the 
small sample size and we do not know if these 
results were generalized to other conditions and 
HBOT schedules. Nevertheless, to the best of our 

Table 2. Bone metabolism in patients with anal fissure

T0 T1 T2

Glomerular filtrate 87 (7)
87 (8)

p = 0.37

86 (11)

p = 0.11

Albumin [g/dL] 4.3 (0.3)
4.3 (0.3)

p = 0.60

4.3 (0.2)

p = 0.49

Total calcium [mg/dL] 9.1 (0.2)
9.0 (0.2)

p = 0.22

9.0 (0.2)

p = 0.42

Phosphorus [mg/dL] 3.3 (0.5)
3.3 (0.5)

p = 0.85

3.2 (0.4)

p = 0.73

25OHD [ng/mL] 19 (11)
18 (10)

p = 0.33

26 (13)

p = 0.13

Alkaline phosphatase [U/L] 68 (16)
66 (16)

p = 0.35

61 (17)

*p = 0.06

–10%

P1NP [ng/mL] 43 (24)
41 (23)

p = 0.41

37 (13)

p = 0.19

–14%

PTH [pg/mL] 32 (17)
34 (16)

p = 0.75

35 (21)

p = 0.85

9%

CTX [ng/mL] 0.141 (0.116)
0.138 (0.092)

p = 0.64

0.123 (0.084)

p = 0.46

–12%

Mean (SD). T0: before beginning HBOT, T1: at the end of HBOT, T2: 6 months after HBOT; p value: corresponds to a statistically significant difference between T0 
and T1; p* value: corresponds to a statistically significant difference between T0 and T2; % — percentage of change

Table 1. Bone metabolism in patients with neoplasm

T0 T1 T2

P1NP [ng/mL] 49 (31)
53 (34)

p = 0.19

46 (12)

*p = 0.03

–6%

PTH [pg/mL] 46 (36)
41 (33)

p = 0.06

30 (14)

p = 0.62

–34%

CTX [ng/mL] 0.238 (0.202)
0.211 (0.144)

p = 0.34

0.165 (0.134)

p = 0.95

–30%

Mean (SD). T0: before beginning HBOT, T1: at the end of HBOT, T2: 6 months after HBOT; p value: corresponds to a statistically significant difference between  
T0 and T1; *p value: corresponds to a statistically significant difference between T0 and T2; % — percentage of change
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knowledge, this represents the first study that ana-
lyzes the effects of HBOT on bone turnover mark-
ers in patients.

In conclusion, patients with neoplasms and com-
plications of RT have an increased bone remodel-
ing. HBOT, in these patients, could have certain 
effects on bone homeostasis, but more studies are 
needed to elucidate the true effect of treatment with 
HBOT on bone metabolism and its long-term con-
sequences.
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