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Abstract

Background: Widely used physical wedges in clinical radiotherapy lead to beam intensity attenuation as well as the beam 

hardening effect, which must be considered. Dynamic wedges devised to overcome the physical wedges (PWs) problems 

result in dosimetry complications due to jaw movement while the beam is on. 

This study was aimed to investigate the usability of physical wedge data instead of enhanced dynamic wedge due to the en-

hanced dynamic wedge (EDW) dosimetry measurement hardships of Varian 2100CD in inhomogeneous phantom by Monte 

Carlo code as a reliable method in radiation dosimetry. 

Materials and methods: A PW and EDW-equipped-linac head was simulated using BEAMnrc code. DOSXYZnrc was used for 

three-dimensional dosimetry calculation in the CIRS phantom. 

Results: Based on the isodose curves, EDW generated a less scattered as well as lower penumbra width compared to the 

PW. The depth dose variations of PWs and EDWs were more in soft tissue than the lung tissue. Beam profiles of PW and EDW 

indicated good coincidence in all points, except for the heel area. 

Conclusion: Results demonstrated that it is possible to apply PW data instead of EDW due to the dosimetry and commission-

ing hardships caused by EDW in inhomogeneous media. 
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Introduction

In conformal radiotherapy, physical wedges 
(PWs) made of high-density materials (e.g. steel 
or lead) are used to change isodose curves in order 
to achieve more complete target dose conformity 
while also preserving nearby normal tissues better. 

However, the main concern related to PWs is beam 
intensity attenuation, which results in the beam 
hardening effect across the beam path, and must be 
taken into account in treatment planning systems. 
This problem introduced the idea of using dynamic 
or virtual wedges [1–4]. Wedge-Shaped dose distri-
bution in dynamic wedges is created by sweeping 
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of an independent jaw within the treatment field 
during irradiation. This design includes consider-
able advantages compared to physical wedges, such 
as the absence of beam hardening, out-of-field dose 
reduction, shorter treatment time, and being auto-
matic and easy to handle [6–8]. 

The presented dynamic wedges by Varian could 
offer angles of 15°, 30°, 45°, and 60° for symmetrical 
field sizes of 4 to 20 cm. This limited accessibility to 
wedge angles and field sizes was overcome by de-
veloping enhanced dynamic wedges (EDWs) which 
produce more wedge angles and also asymmetric 
field sizes [6].

In the presence of EDWs, the dosimetry mea-
surements required for implementation in treat-
ment planning systems are complicated due to the 
jaw movement. Monte Carlo simulation as a reli-
able and accurate method can be used, which is 
acknowledged in radiotherapy dosimetry [9, 10].

Studies considering the difference between phys-
ical wedges and enhanced dynamic wedges were 
confined to homogeneous media, and few studies 
were conducted to investigate these differences in 
inhomogeneous media [4, 8–14, 15–19].

The goal of this study was to compare the dosi-
metric properties of PWs and EDWs to assess the 
possibility of applying physical wedge data instead 
of enhanced dynamic wedge due to the dosimetry 
and commissioning hardships caused by enhanced 
dynamic wedges. This study was conducted based 
on Monte Carlo studies in chest radiotherapy in 
breast cancer as a technique with the highest usage 
of wedges. 

Materials and methods

Open field, PW, and EDW-equipped-linac 
head simulation

Geometry and radiation transport simulation of 
the Varian 2100CD for a nominal 6MV photon 
beam was performed using the BEAMnrc code, the 
user code of EGSnrc. The EGSnrc is a developed 
version of the EGS4 code in which transport phys-
ics is greatly improved compared to EGS4 [22]. Pre-
made components called module presented by the 
BEAMnrc code for geometry simulation have made 
this code different from other simulation codes. For 
modeling linac head, modules of SLABS, CONS3R, 
FLATFILT, CHAMBER, MIROR, and JAWS were 
used to model target, primary collimator, flattening 

filter, ion chamber, mirror, and secondary collima-
tor, respectively. PW and EDW with wedge angles 
(15°, 30°, 45°, and 60°) and (10°, 15°, 20°, 25°, 30°, 
45°, and 60°) were simulated by PYRAMIDS and 
DJAWS, respectively. To simulate EDW, AUTO-
JAWS, a MATLAB-based program written by Ka-
kakhel [23] was used. A Gaussian electron pencil 
beam with 6.1 MeV energy and 2.8 cm FWHM as 
the best match was selected [13, 24, 25]. Photon and 
electron cut-off energies were set to 0.01 and 0.7 
MeV, respectively. Moreover, 5 × 108 initial photons 
were simulated to achieve statistical uncertainties 
< 1%. To improve uncertainty and enhance simu-
lation speed, directional bremsstrahlung splitting 
(DBS), a bremsstrahlung splitting technique, was 
employed as a variance reduction technique [26]. 

DOSXYZnrc, another EGSnrc user code, was 
implemented for three-dimensional (3D) dose cal-
culations [27]. To that end, a voxel-based water 
phantom with voxel sizes of 0.5 cm and 0.2 cm in 
the penumbra region was simulated to obtain PDD 
and beam profiles. The phase space file produced 
by BEAMnrc execution was used as a source in the 
DOSXYZnrc code. To achieve statistical errors < 
1%, 109 histories were allocated. Afterwards, PDD 
curves and beam profiles at the 1.6, 3.5, and 10 cm 
depths, for field sizes of 10 × 10 and 15 × 15 cm2, 
were calculated through the STATDOSE program 
by reading the “.3ddose” file for all three simulated 
modes of wedge free (i.e. open field), PW, and EDW 
fields.

Measurement
To obtain PDD curves and beam profiles for 

open and physical wedged fields with wedge angles 
of 15°, 30°, 45°, and 60°, a 0.6 cc Farmer ionization 
chamber and a 50 × 50 × 50cm3 water phantom 
were used. PDD and beam profile measurements 
were performed at SSD = 100 cm and 1.6, 3.5, and 
10 cm depths, for field sizes of 10 × 10 and 15 
× 15 cm2. For enhanced dynamic wedged fields, 
calibrated EBT3 films inserted vertically between 
Perspex phantom layers were used for PDD curve 
measurement for seven wedge angles, SSD = 100 
cm and 10 × 10 cm2 field size. Beam profile mea-
surements were performed using the calibrated 
SUN NUCLEAR PROFILER2 profiler at depths of 
1.6 and 10 cm in a Perspex phantom, SSD = 100 cm, 
and field sizes of 10 × 10 and 15 × 15 cm2. Finally, 
all simulated and measured PDD curves and beam 
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profiles were compared to validate the Monte Carlo 
simulation model. 

Then, the CIRS Model 002LFC IMRT Thorax 
phantom was employed to investigate dose distri-
bution in lung heterogeneity. The 002LFC has an 
elliptical shape to simulate an average human torso 
phantom with dimensions of 30 × 30 × 20 cm3. 

CT scanned slices of the Thorax phantom were 
inserted into the Coreplan treatment planning sys-
tem and, then, a treatment plan with tangential 
beams (medial and lateral) of 6 MV was designed 
to prescribe a daily dose of 200 cGy to the central 
point (in the lung tissue) (Fig. 1).

PW and EDW simulations  
in the inhomogeneous medium

For dose calculation in the inhomogeneous me-
dium, the CT-based phantom through CTCREATE 
program was made from CT images of CIRS phan-
tom. The phase space file, created by the BEAMnrc 
code, was used as a source in DOSXYZnrc code. 
Moreover, to apply the treatment plan to the CT 
data in the code and draw isodose curves (Fig. 2), 
the DOCTP program based on MATLAB program 
by Dr. Chow was used [28].

Results

Validation 
To validate the Monte Carlo simulation process, 

simulated depth dose curves and beam profiles of 
open, physical, and dynamic wedged fields were 
compared to those of the measurements. The agree-
ment between simulated and measured profiles of 
open field was 2% and 2 mm for 6.1MeV energy 
and 2.8 cm FWHM. Moreover, the differences be-
tween simulated and measured profiles and depth 
dose curves of PW and EDW were within 2% and 
2 mm for low- and high-gradient dose regions, re-
spectively.

Figure 1. Dose distribution of CIRS inhomogeneous 
phantom treatment planning

Figure 2. Isodose curves on a CT cut in DOCTP program
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Dosimetric features comparison  
of PW and EDW in the inhomogeneous 

medium 
Simulated isodose curves, depth dose curves, 

and beam profiles parallel and perpendicular to the 
tangential beams were adopted for the quantitative 
and qualitative comparison of PW and EDW in the 
inhomogeneous phantom.

Isodose curve
Figure 3 illustrates the simulated isodose curves 

for PW and EDW in the inhomogeneous breast 
phantom. Evidently, isodose curves become curved 
out at the lung entrance owing to the lateral elec-
tron equilibrium loss.

Depth dose
Depth dose curves parallel to the tangential 

beam in the inhomogeneous phantom for PW and 
EDW are presented in Figure. 4. Table 1 shows the 
mean and maximum discrepancies of two curves 
within the soft tissue (in the initial 11 cm, left of the 
arrow) and in the lung tissue (the next 9 cm, right 
of the arrow).

Beam profile
The beam profile perpendicular to the tangential 

beam in the inhomogeneous phantom for PW and 
EDW is depicted in Figure. 5. Two curves differ-
ences within various central, toe, and heel areas are 
presented in Table 2.

Discussion

In this study, dosimetric characteristics of PW 
and EDW fields were investigated using Monte 
Carlo simulation in an inhomogeneous CIRS 
phantom for the first time. Isodose curves become 
curved out at the lung entrance because of the 
lateral electron equilibrium loss due to lower lung 
density which increases the secondary electron 
range and scattered photons. As shown in Figure 
3, the curvature of the PW isodose lines near the 
beam edge is more than the EDW. In other words, 
the PW penumbra widening is higher compared 
to the EDW. This can be attributed to the big-
ger hardening effect produced by PW resulting in 
increased secondary electron range, which is in 
accordance with previous studies [21]. On the oth-
er hand, EDWs generate less scattered radiation 
in comparison with PWs which is also reported 

Table 1. The mean and maximum differences of the physical 
wedge (PW) and the enhanced dynamic wedge (EDW) 
depth dose (DD) curves in soft and lung tissue

DD ± STD (%) Max DD (%)

Within the soft tissue 
(central area)

–4.27 ± 0.25 7.92

Within the lung tissue 2.03 ± 0.17 2.65

STD — standard deviation

Figure 4. Depth dose variations along the radiation beams 
passing through the physical wedge (PW) and the enhanced 
dynamic wedge (EDW) in the inhomogeneous phantom; 
the arrow indicates the soft tissue-lung interface

Figure 3. The physical wedge (PW) (A) and the enhanced 
dynamic wedge (EDW) (B) isodose curves in the 
inhomogeneous phantom

A

B
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by Akram et al. [20]. Thus, penumbra widening 
mainly resulting from scattered photons and sec-
ondary electrons is lower for EDW fields. This 
feature is in agreement with that reported in other 
studies [15, 29].

The 80 and 90% isodose lines curvature is ob-
served towards the denser tissue due to the di-
minished backscattered photons arising from the 
lung tissue. This curvature was observed more 
prominently for the EDW than the PW. This 
can be justified by the fact that, with more beam 
hardening produced by PW, scattered photons 
are more forward as a result of enhanced energy. 
Therefore, a greater curvature of the EDW iso-
dose lines was observed resulting from the more 
lateral scattering. 

According to the Figure 4 and Table 1, depth 
dose variations along the tangential beams, the 
central axis of the PW and EDW fields is higher 
in the homogeneous soft tissue compared to the 
inhomogeneous lung tissue, since the beam cen-
tral axis passes near the soft tissue-lung interface 
which leads to increased lateral scattering. De-
creased scattering angle of the hardened beam 
produced by the PW is responsible for less re-

ceived dose compared to the EDW. Where the 
central axis passes through the lung tissue, the role 
of lateral scattered dose and two curves variations 
is diminished due to the increased distance from 
the tissues border. 

The physical wedge and EDW beam profiles 
show good adaption in all points (Fig. 5). The varia-
tions in the heel area are a little higher than the 
central and toe areas (Tab. 2), which is consistent 
with the previous studies [21]. 

The blue arrow in Figure 5 represented the air-
soft tissue interface. This part corresponds to the 
wedge heel in the negative area of the X-axis. Due 
to the electron equilibrium loss in the air and soft 
tissue intersection, dose reduction is observed. At 
the entrance to the soft tissue, the EDW absorbed 
dose is slightly higher than that of PW, because the 
higher importance of the beam hardening effect in 
the PW heel area results in more forward scattering 
of the radiation passing the PW. Thus, less scattered 
radiation is involved in the absorbed dose. In con-
trast, the increased scattering angle of enhanced dy-
namic wedged-beam increases the scattered photon 
contribution in the absorbed dose near the tissue 
interfaces.

In the positive area of the X-axis correspond-
ing to the wedge toe and inside the lung tis-
sue, two curves are perfectly matched because 
of the lower beam hardening effect in the wedge 
toe. Furthermore, this part of the tissue is placed 
farther away from the border, so the absorbed 
dose is chiefly arising from the primary radia-
tion. Despite all the differences between PW and 
EDW profiles, the two curve discrepancies are 
negligible. Thus, the PW profiles can be used 
instead of the EDW. In general, according to the 
comparisons, it is possible to apply PW dosim-
etry parameters instead of EDW in the heteroge-
neous medium.

Conclusion

In this study, the PW and EDW isodose, depth 
dose, and profile were compared by Monte Carlo 
studies in a heterogeneous medium. Quantitative 
comparison of PW and EDW characteristics in the 
inhomogeneous medium demonstrated the pos-
sibility of applying profiles data of PW instead of 
EDW.

Table 2. DD and DTA comparative values of PW and EDW 
profile comparison in the inhomogeneous medium

Toe area

DTA ± STD [mm]

Heel area

DTA ± STD [mm]

Central area

DTA ± STD [mm]

1.24 ± 0.14 1.95 ± 0.32 0.1 ± 0.00

Figure 5. Beam profile variations perpendicular 
to the radiation beams passing through the physical 
wedge (PW) and the enhanced dynamic wedge (EDW) 
in the inhomogeneous phantom; blue and red arrows 
indicate the air-soft tissue and soft tissue-lung interface, 
respectively
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