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AbstrAct

background: The purpose of this study was to characterize pre-treatment non-contrast computed tomography (cT) and 
18F-fluorodeoxyglucose positron emission tomography (peT) based radiomics signatures predictive of pathological response 

and clinical outcomes in rectal cancer patients treated with neoadjuvant chemoradiotherapy (NacrT).

Materials and methods: an exploratory analysis was performed using pre-treatment non-contrast cT and peT imaging 

dataset. The association of tumor regression grade (TrG) and neoadjuvant rectal (Nar) score with pre-treatment cT and peT 

features was assessed using machine learning algorithms. Three separate predictive models were built for composite features 

from cT + peT.

results: The patterns of pathological response were TrG 0 (n = 13; 19.7%), 1 (n = 34; 51.5%), 2 (n = 16; 24.2%), and 3 

(n = 3; 4.5%). There were 20 (30.3%) patients with low, 22 (33.3%) with intermediate and 24 (36.4%) with high Nar scores. Three 

separate predictive models were built for composite features from cT + peT and analyzed separately for clinical endpoints. 

composite features with α = 0.2 resulted in the best predictive power using logistic regression. For pathological response 

prediction, the signature resulted in 88.1% accuracy in predicting TrG 0 vs. TrG 1–3; 91% accuracy in predicting TrG 0–1 vs. 

TrG 2–3. For the surrogate of DFs and Os, it resulted in 67.7% accuracy in predicting low vs. intermediate vs. high Nar scores.

conclusion: The pre-treatment composite radiomics signatures were highly predictive of pathological response in rectal 

cancer treated with NacrT. a larger cohort is warranted for further validation.
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Introduction

Neoadjuvant chemoradiation therapy (NACRT) 
in locally advanced rectal cancer (LARC) could im-
prove locoregional control and downgrade tumors 
to facilitate surgical resection. Organ preservation 

(“watchful waiting”) is increasingly considered as 
an alternative option in patients who achieve excel-
lent response to NACRT [1]. Accurately predicting 
response after NACRT remains a challenge in select-
ing patients feasible for organ preservation manage-
ment. There is an unmet need to develop non-inva-
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sive imaging biomarkers for prediction of treatment 
response, which could then be used for optimized 
patient selection and therapy personalization

Radiomics is a method for high throughput anal-
ysis of radiological images for automated extrac-
tion of clinically relevant information. Radiomics 
features include entire volumes texture, regional 
texture, focal voxel texture, and interactive proper-
ties of multiple voxels with spatial relationship such 
as skewness and kurtosis. It has been explored in 
multiple disease sites as an approach of “virtual 3D 
biopsy” to provide important complementary in-
formation in assessing treatment responses in vari-
ous cancers and guiding clinical decisions [2–6]. 
T2-weighted MRI based texture analysis in rectal 
cancer has shown the potential to be imaging bio-
markers predicting treatment response to NACRT 
[7, 8]. PET-derived radiomics features also have 
been found to be able to assess histopathologic re-
sponse and predict survival in rectal cancer [9, 10]

In this study, we aimed to assess if the combined 
radiomics features from staging PET and pre-treat-
ment simulation CT obtained for radiation therapy 
planning could predict the pattern of response and 
clinical outcomes in rectal cancer patients.

Materials and methods

study design
This study was approved by the institutional 

review board of Moffitt Cancer Center and the 
University of South Florida. We screened patients 
with locally advanced rectal cancer who under-
went pretreatment staging PET between January 
1st 2011 and February 20th 2018. Sixty-six patients 
treated with NACRT were identified and assessed 
for the tumor regression grade (TRG) (0 = pCR;  
1 = moderate response; 2 = partial response; 3 = poor  
response) by a gastrointestinal pathologist accord-
ing to College of American Pathologists criteria. 
Complete responders (TRG 0) vs. non-complete 
responders (TRG 1-3) and favorable responders 
(TRG 0-1) vs. unfavorable responders (TRG 2-3) 
were assessed with the radiomics algorithm. The 
clinical outcome surrogate — neoadjuvant rectal 
(NAR) score was assessed using the previously pub-
lished and clinically validated algorithm [11]. The 
NAR cutoff points for low, intermediate, and high 
NAR scores (NAR < 8 vs. NAR = 8–16 vs. NAR 
> 16) were adopted from the previously validated 

values using the NSABP R-04 trial dataset [11]. 
Clinical parameters including age, gender, staging, 
and treatment approaches were reviewed. 

Pre-treatment simulation CT from radiation 
treatment planning and staging PET of patients 
were retrospectively reviewed. The volume of In-
terest (VOI) incorporated the primary tumor as 
delineated on CT and PET by a radiation oncologist 
who specialized in gastrointestinal cancer (Fig. 1A). 
Air in the delineated VOI was subtracted manually 
for feature extraction.

radiomics features
Radiomics features were extracted from the seg-

mented primary disease individually from PET 
and readily available RT planning non-contrast 
CT images using an in-house algorithm, including 
intensity, shape, gray-level co-occurrence matrix 
(GLCM), gray-level run-length matrix (GLRLM), 
gray-level size-zone matrix (GLSZM), neighbor-
hood gray-tone difference matrix (NGTDM), LoG, 
wavelet, Laws and Fractal dimension (FD). A com-
posite feature as described in our previous study 
[13], α*PETf + (1-α)*CTf, 0 ≤ α ≤ 1, was constructed 
for each corresponding CT and PET dataset. In this 
study, three α values (0.2, 0.5, and 0.8) were ap-
plied for analysis with α of 0.2 generating the best 
performance. For each case, a total of 929 radiomic 
features were extracted from CT and PET images. 
The same number of composite features was further 
obtained for each case with individual α value.

statistics
Machine learning models were built using Weka-

based algorithms (Weka, version 3.6.15, Hamilton, 
New Zealand). Radiomic features predictive of 
TRG or NAR were selected by the logistic regres-
sion model with a dependent response variable. 
The subset selection with correlation-based feature 
was performed according to the value of a subset of 
attributes by considering the individual predictive 
ability of each feature along with the degree of re-
dundancy between them. Highly correlated features 
were removed based on the order of area under the 
curve (AUC) of receiver operating characteristics 
curve (ROC) versus the TRG groupings [16]. Fea-
tures with the Pearson correlation coefficient being 
less than 0.65 were used to build each predictive 
model. The features were then selected as input 
variables to build predictive models using ma-
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chine learning algorithms with logistic regression, 
random forest (RF) and support vector machine 
(SVM) methods. Validation was performed utiliz-
ing the leave-one-out cross validation (LOOCV) 
approach. LOOCV is a well-established approach 
to validate a model for small size of cohort, which 

allows to build models based on N-1 cases and the 
model is validated with the one left out in the model 
building process. With LOOCV approach, the fi-
nal model is built and validated for N times. The 
feature reduction and model building/validation 
was performed for every different α value (Fig. 1B). 

a

B

Figure 1. The radiomic process in patient with rectal cancere, treated with NacrT. cT and 18-F FDG-peT images were used 
for tumor delineation (segmentation) creating a volume of interest (VOI). shape-based and quantitative features are then 
extracted from the VOI, which were combined to generate the predictive model for clinical outcome. A. Gross tumor volumes 
(GTV) were contoured with cT and peT imaging in rectal cancer cases. b. radiomic features from cT and peT imaging were 
extracted. prediction models were built using logistic regression, random forest (rF) and support vector machine (sVM) 
methods, and leave-one-out validation (LOOV) was performed
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A confusion matrix was determined to utilize the 
assignments from response patterns in correlation 
with TRG and NAR. The accuracy, sensitivity and 
specificity were derived from the confusion matrix 
for the leave-one-out cross-validation.

results

Sixty-six patients with rectal cancer treated with 
NACRT were reviewed retrospectively. The patient 
and tumor characteristics are summarized in Table 1. 
Median follow-up from the end of NACRT was 27.9 
months. The median age of patients was 56 (range: 
29-80) and the majority were white (n = 61; 92.4%). 
Patients most commonly presented with clinical 
T3 (cT3, n = 57; 86.4%) and node-positive disease  
(n = 42; 63.7%). Patients received concurrent Fluoro-
uracil or Capecitabine-based CRT. RT was delivered 

to a median prescribed dose of 45 Gy to the pelvis 
and 50.4 Gy to the primary disease. 

In this cohort, thirteen patients (19.7%) achieved 
a pathologic complete response (pCR, TRG 0), 
thirty-four with TRG 1 (51.5%), sixteen with TRG 
2 (24.2%), and three with TRG 3 (4.5%). There 
were twenty patients (30.3%) with low, twenty-two 
(33.3%) with intermediate and twenty-four (36.4%) 
with high NAR scores. Lower NAR score would 
represent a better overall survival as previously de-
scribed [11]. According to historic data, TNM stag-
ing was prognostic for clinical outcome. However, 
it could not predict pathological response. This 
study utilized the advantage of radiomics analysis 
to predict pathological response by dissecting the 
detailed radiomics features.

Three separate predictive models were built for 
composite features from CT+PET and analyzed 
separately for clinical endpoints (TRG and NAR). 
Composite features with α = 0.2 resulted in the best 
predictive power using logistic regression compared 
with RF and SVM. We found that a 4-feature model 

table 1. patient, tumor and treatment characteristics 
of rectal cancer patients

Variables Number %

No. of patients 66  

Follow-up (months)

Median 25.5

range 2.5–90.5  

Age

Median 56

range 29–80  

Gender

Male 38 57.6

Female 28 42.4

race

White 61 92.4

Other 5 7.6

clinical t stage

cT1 1 1.5

cT2 3 4.5

cT3 57 86.4

cT4 5 7.6

clinical nodal stage

cN0 24 36.4

cN1 37 56.1

cN2 5 7.6

Distant metastasis

cM0 66 100.0

cM1 0 0.0

table 1. patient, tumor and treatment characteristics 
of rectal cancer patients

Variables Number %

Pathological t stage

ypT0 13 19.7

ypT1 5 7.6

ypT2 13 19.7

ypT3 31 47.0

ypT4 2 3.0

ypTis 2 3.0

Pathological nodal stage

ypN0 40 60.6

ypN1 21 31.8

ypN2 5 7.6

concurrent chemotherapy

5-FU 47 71.2

capecitabine 19 28.8

pelvic rT dose (Gy) 45.0  

rt dose to primary disease (Gy)

Median 50.4

range 45–56  

Interval from end of crt to surgery

Median 59

range 36–103  

5-FU — 5-fluorouracil; rT — radiotherapy; crT — chemoradiotherapy
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resulted in 88.1% accuracy (sensitivity of 77.8%, 
specificity of 89.7%, ROC 0.858) in predicting TRG 
0 vs. TRG 1-3 (Tab. 2). The four features included 
LoG.5norm entropy, LoG2.5min, lLLSenergy, and 
CoCCluster Shade. A 6-feature model resulted in 
91% accuracy (sensitivity of 93.8%, specificity of 
84.2%, ROC 0.951) in predicting TRG 0-1 vs. TRG 
2-3 (Tab. 2). The six features were LoG.5Skewness, 
LoG2CoeffVari, RL-HGRE, RL-LRHGE, SZ-LAE, 
and SZ-LIE. An 11-feature model resulted in 67.7% 
accuracy in predicting low vs. intermediate vs. high 
NAR scores with ROC 0.814 (Tab. 2). The eleven 
features were lLSSuniformity, CoCClusger Shade, 
wLHHhist entropy, wLHLentropy, RL-LRHGE, 
lELLnorm contrast, GTD-Coarseness, lSELpeak, 
wLLHnorm entropy, wHLHnorm entropy, and 
LoG.5Skewness. The other clinical features, such 
as tumor volume and length, were not predictive in 
the radiomic features analysis.

Discussion

In this study, we demonstrated that the com-
bination of radiomics features derived from the 
pretreatment CT and PET images were highly pre-
dictive of response patterns in rectal cancer treated 
with NACRT. These non-invasive and easily acces-
sible imaging biomarkers could provide a promis-
ing way to predict complete responders and select 
patients for nonoperative management. 

Radiomics utilizes massive imaging data with 
machine learning algorithm to exploit potential 
clinical application to optimize patient selection 
and outcomes. Imaging texture analysis has been 
well studied in clinical oncology by analyzing the 
grey-level patterns and voxel intensity-spatial re-
lationship [14, 15]. Multiple studies have explored 
the capability of PET-based textural parameters 
of rectal cancer heterogeneity as a predictive and 
prognostic factor in evaluating treatment response 
[10, 12]. Bundschuh et al. reported that pre- and 

post-treatment PET-based coefficient of variation 
could predict early and late response in rectal can-
cer treated with NACRT [10]. Giannini et al. dem-
onstrated that the combination of PET and MRI 
radiomics features (5 from PET and 1 from T2W 
MRI) could distinguish between responders and 
nonresponders with an AUC of 0.86, sensitivity 
of 86% and specificity of 83% in a cohort of rectal 
cancer patients treated with NACRT (n = 52). 

Our study in a cohort of 91 rectal cancer pa-
tients showed that eight radiomics features from 
pre-treatment non-contrast CT could differentiate 
responders and non-responders with an accuracy 
of 84% [13]. In the current study, we found that 
the combination of pretreatment CT and PET ra-
diomics features could slightly improve the predic-
tive accuracy to 88.1% in differentiating respond-
ers and non-responders with only four features. 
This radiomics-based pretreatment risk stratifica-
tion would potentially enable physicians to pursue 
more tailored patient-specific treatment approach. 
These radiomics features could serve as a noninva-
sive biomarker for patient stratification and selec-
tion for nonoperative management. A larger study 
is needed to improve the power and reliability with 
the goal to personalize therapeutic approach and 
avoid unnecessary treatment.

There are some limitations to this study. First, 
this is a single institute retrospective study. The ra-
diomics features should be validated on a larger im-
aging dataset in a multicenter setting prospectively. 
Second, the machine learning algorithm should be 
assessed on images from different scanners. Third, 
despite the fact that rectal MRI has been widely ad-
opted to evaluate rectal cancers, the majority of the 
patients from this cohort did not have a pretreat-
ment MRI for radiomics analysis. Future studies in-
corporating MRI, CT, and PET texture parameters 
could potentially lead to an optimal discriminant 
performance in predicting treatment response in 
rectal cancer treated with NACRT. In addition, we 

table 2. computed tomography (cT) and positron-emission tomography (peT)-based radiomics predicting outcomes

Machine learning 
algorithm

No. of radiomics 
features

Predicting parameters Accuracy ROC σmax

composite features with 
α = 0.2 using logistic 
regression

4 TrG 0 vs. TrG 1–3 88.1% 0.858 0.097

6 TrG 0–1 vs. TrG 2–3 91.0% 0.951 0.050

11 Low vs. Intermediate vs. high 67.7% 0.814 0.123

TrG — tumor regression grade; rOc — receiver operating characteristics curve
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found that eleven radiomics features resulted in 
67.7% accuracy in predicting overall survival ac-
cording to the NAR score stratification. A larger 
dataset is needed to improve the power in the pre-
diction of clinical outcome. Currently, a multi-in-
stitute collaborative project is in the development 
to further validate the algorithm. As a proof of 
concept study, the methodology developed from 
this study will facilitate our future studies utilizing 
various radiomics features including MRI param-
eters. Currently, a cohort of patients with LARC are 
undergoing treatment with Viewray MRI-LINAC 
based adaptive planning at our institute. We are 
prospectively collecting the adaptive MRI param-
eters for future radiomics analysis. 

conclusion

The composite radiomics features from pre-
treatment non-contrast CT obtained for radiation 
planning and staging PET have a high accuracy 
in predicting responders and non-responders in 
rectal cancer treated with NACRT. It is promis-
ing that these easily accessible noninvasive imaging 
biomarkers could be introduced into daily practice 
for patient selection in a nonoperative approach.   
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