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ABSTRACT

Background: Attainment of a complete histopathological response following neoadjuvant therapy has been associated with 
favorable long-term survival outcomes in esophageal cancer patients. We investigated the ability of 18F-fluorodeoxyglucose 
positron emission tomography/computed tomography (FDG PET/CT) radiomic features to predict the pathological response 
to neoadjuvant treatment in patients with esophageal cancer.

Materials and methods: A retrospective review of medical records of patients with locally advanced resectable esophageal or 
esophagogastric junctional cancers. Included patients had a baseline FDG PET/CT scan and underwent Chemoradiotherapy 
for Oesophageal Cancer Followed by Surgery Study (CROSS) protocol followed by surgery. Four demographic variables 
and 107 PET radiomic features were extracted and analyzed using univariate and multivariate analyses to predict response 
to neoadjuvant therapy.

Results: Overall, 53 FDG-avid primary esophageal cancer lesions were segmented and radiomic features were extracted. 
Seventeen radiomic features and 2 non-radiomics variables were found to exhibit significant differences between neoad-
juvant therapy responders and non-responders. An unsupervised hierarchical clustering analysis using these 19 variables 
classified patients in a manner significantly associated with response to neoadjuvant treatment (p < 0.01).

Conclusion: Our findings highlight the potential of FDG PET/CT radiomic features as a predictor for the response to neoad-
juvant therapy in esophageal cancer patients. The combination of these radiomic features with select non-radiomic variables 
provides a model for stratifying patients based on their likelihood to respond to neoadjuvant treatment.
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Introduction

Esophageal cancer is an aggressive disease with 
a low survival rate of 15–20% [1]. Since the mid 
1990s there has been a shift from a predominance 
of squamous cell carcinoma (SCC), which had ac-
counted for 90–95% of all esophageal cancer [2] to 
adenocarcinoma which now accounts for 50-80% of 
esophageal cancer cases in Western countries [3, 4].

The outcomes of esophageal cancer have 
been improved by neoadjuvant approaches [5]. 
Neoadjuvant radiochemotherapy has resulted in 
downstaging of esophageal cancer, an increased 
rate of resection of advanced esophageal SCC, 
prolonged survival and improved quality of life 
[6]. However, as the clinical and imaging evalua-
tion of esophageal cancer after neoadjuvant ther-
apy can be inaccurate [7], histopathologic evalu-
ation is performed using morphological criteria. 
Complete histopathologic response is a predictor 
of long-term survival in patients with esophageal 
cancer [8]. 

Esophageal cancer is currently staged using 
18F-fluorodeoxyglucose positron emission tomogra-
phy/computed tomography (FDG PET/CT), which 
provides additional important information beyond 
the standard staging methods (endoscopy, endo-lu-
minal ultrasound, multi-detector CT), mainly in 
the detection of distant metastases [9–11].

Radiomics represents an emerging field with-
in medical imaging that holds promise as a tool, 
impacting disease diagnosis and prognosis, par-
ticularly in oncology, facilitating the delivery of 
precision medicine. At its core, radiomics lies in 
its recognition of information embedded with-
in medical images, including tumor pathology 
and biology, which may not be apparent to the hu-
man eye during routine clinical interpretation. By 
systematically extracting features and identifying 
patterns from conventional images, radiomics 
unveils valuable insights that may otherwise re-
main undetected. This process entails a stepwise 
approach involving data selection, image acqui-
sition, segmentation, feature extraction, and data 
investigation and validation. In oncological con-
texts, radiomics finds application in classification 
tasks aimed at determining the probability of 
a sample belonging to a specific category (e.g., be-
nign versus malignant), and prediction of clinical 
outcomes [12, 13].

Radiomics using PET parameters is a relatively 
new technique for extracting quantitative variables 
[14]. In patients with cancer, first-order histogram 
variables, such as tumor shape, heterogeneity, 
uniformity and texture, as well as second-order 
variables, such as gray-level co-occurrence ma-
trix (GLCM) and gray-level dependence matrix 
(GLDM), can be used to characterize tumors 
[15–17] and have shown to be correlated with tu-
mor aggressiveness [18] and prognosis [19]. 

The aim of this study was to evaluate the feasi-
bility of utilizing radiomic features extracted from 
FDG PET/CT imaging to predict the pathological 
response of neoadjuvant therapy in esophageal 
cancer patients. 

Materials and methods

This retrospective study was approved by 
the institutional ethics committee (approval num-
ber 8069-21-SMC). The requirement for patient in-
formed consent was waived.

Patients
Consecutive records of adult patients (> 18 

years) with a diagnosis of esophageal or esoph-
agogastric junctional cancer who underwent FDG 
PET/CT scans for staging between 2015–2021 
were retrieved. Then, a case-by-case search was 
performed using the Carestream Vue picture ar-
chive and communication system (PACS) version 
12.1.5.1 (Carestream Health Inc., Rochester, NY, 
USA) to obtain cases showing FDG-avid esopha-
geal cancer. 

Information on neoadjuvant therapy, tumor 
location, type of surgery, and post-surgery his-
tology was obtained from the patients’ medical 
records and post-surgery pathological records. 
Only records of patients with esophageal ade-
nocarcinoma or SCC histology were included. 
Furthermore, only patients treated according to 
the Chemoradiotherapy for Oesophageal Cancer 
Followed by Surgery Study (CROSS) protocol were 
included, since it represents the standard of care for 
locally advanced resectable esophageal or esoph-
agogastric junctional cancers [20, 21]. 

The pathological response to neo-adjuvant ther-
apy was categorized as: 1) complete pathological 
response or 2) partial or negligible pathological re-
sponse based on the patients’ post-surgery patho-
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logical reports, which were categorized according 
to the American Joint Committee on Cancer/Union 
for International Cancer Control (AJCC/UICC) 
staging [22]. 

Patients with non-FDG-avid lesions, patients 
without available medical/pathological informa-
tion, patients diagnosed with non-esophageal can-
cer pathology, patients below 18 years of age, pa-
tients who did not receive neoadjuvant treatment, 
and patients who were not treated according to 
the CROSS protocol or did not complete surgery 
were excluded from the analysis.

FDG PET/CT acquisition
All PET/CT examinations were performed ac-

cording to our institute’s clinical scanning proto-
cols. Diagnostic CT examinations were performed 
on a 64-detector-row helical CT scanner (Philips 
Vereos, Philips Medical Systems, Amsterdam, 
Netherlands). The field of view and pixel size of 
the PET images that were reconstructed for fusion 
were 57.6 cm and 4 mm, respectively, with a matrix 
size of 144 × 144. The technical parameters used 
for CT imaging were as follows: pitch 0.83, gantry 
rotation speed 0.5 s/rot,120 kVp, modulated tube 
current 40–300 mA, and specific breath-holding 

instructions. If not contraindicated, the patients 
received an intravenous injection of 5.18 MBq/kg 
after fasting for 4-6 hours. About 60 min after trac-
er administration, CT images were obtained from 
the vertex to the mid-thigh or for the whole body. 
An emission PET scan followed in three-dimen-
sional (3D) acquisition mode for the same longi-
tudinal coverage, 1.5 minutes per bed position. CT 
images were fused with the PET data to generate 
a map for attenuation correction, eventually gen-
erating reconstructed images for review on a com-
puter workstation.

Image analysis
The images were analyzed using Carestream Vue 

PACS version 12.1.5.1 (Carestream Health Inc., 
Rochester, NY, USA). An experienced consultant 
radiologist and nuclear medicine specialist (L.D.) 
with a decade of experience in interpreting PET/CT 
scans assessed all scans. Utilizing the semi-auto-
matic segmentation tool within the PACS system, 
a volume of interest (VOI) was delineated for 
each FDG-avid esophageal cancer lesion identi-
fied on the PET images (Fig. 1). Manual correc-
tions were performed as needed to ensure accurate 
delineation.

Figure 1. Example of 18F-fluorodeoxyglucose (FDG)-avid esophageal cancer segmentation. A. A maximum intensity 
projection (MIP) image of the FDG positron emission tomography (PET) scan displays the lesion (indicated by the red arrow). 
The segmented lesion is indicated by the blue line on the axial (B), sagittal (C), and coronal (D) PET reconstructions

A B

C D
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Extraction of radiomic features
Before features were extracted, all images were 

normalized by standardization [centering to μ = 0, 
standard deviation (SD) = 1] to ensure data anal-
ysis on the same scale (23). In total, 107 known 
radiomic features based on the Image Biomarkers 
Standardization Initiative histogram analysis [24] 
using the PyRadiomics toolkit (V3) [25] were ex-
tracted from the PET scans for each lesion. Radiomic 
features were classified as first-order (18 features), 
Gray Level Co-occurrence Matrix (GLCM) (24 fea-
tures), Gray Level Dependence Matrix (GLDM) (14 
features), gray level run-length matrix (GLRLM) 
(16 features), gray level size zone (GLSZM) (16 
features), neighboring gray tone difference matrix 
(NGTDM) (5 features), and shape (14 features).

Univariate analyses
Although radiomics provides a means of ana-

lytically characterizing tumor phenotypes by ex-
tracting multiple quantitative image features, high 
dimensionality may degrade prediction and clas-
sification performance [26]. The process of fea-
ture selection aims to contend with the problem 
of high dimensionality by selecting the relevant 
features and removing the irrelevant and redun-
dant ones [27]. Here we applied univariate analy-
ses as a means for feature selection. For this pur-
pose, 107 radiomic features and 4 non-radiomics 
variables (age, gender, tumor location, and reac-
tive lymph node status) were compared between 
responders to neoadjuvant therapy and non-re-
sponders using two-sample t-tests for continuous 
variables and chi-squared tests for categorical vari-
ables. Variables showing p < 0.1 (one-sided, uncor-
rected) were included in further analyses. All anal-
yses were performed using the R software (version 
3.6.0, Boston, MA).

Hierarchical clustering
Unsupervised hierarchical clustering (UHC) 

analysis was performed to identify subgroups 
of patients with high radiomics similarity with-
in each subgroup and a distinct radiomics pro-
file between subgroups based on the similarity of 
the radiomic features calculated by Canberra dis-
tance. The UHC-derived patient dendrogram was 
split on the second level resulting in two clusters. 
Response to chemotherapy tumor type and gender 
were compared between UHC-derived groups by 

chi-squared test. UHC analysis was conducted us-
ing the “dendextend” R package.

Results

Patients
Of 245 cases of patients retrieved from the da-

tabase, 192 were excluded due to treatments other 
than the CROSS protocol (n = 99), non-neoad-
juvant therapy (n = 14), incomplete information 
(n = 54), and non-esophageal cancer (n = 25). 
The final cohort included 53 patients (66% males) 
with a mean age of 65 ± 9 years (range 40-78 
years). Adenocarcinomas accounted for 64.1% of 
all lesions. Tumor locations included esophago-
gastric junctional cancer (39.6%), distal esophagus 
(37.7%), middle esophagus (20.7%), and upper 
esophageal cancer (2%). Notably, 39.6% of patients 
exhibited a complete pathological response after 
surgery (Tab. 1).

Univariate analyses
Of the 107 radiomic features and 4 non-ra-

diomics variables (age, gender, tumor location, 
and reactive lymph node status) that were com-
pared between responders and non-responders to 
neoadjuvant therapy, 19 variables showed p < 0.1 
(one sided, uncorrected, Tab. 2). Additionally, tu-
mor type was found to be significantly associated 
with response to neoadjuvant therapy, with patients 
with SCC showing greater response compared to 
those with adenocarcinoma [63% (12/19) vs. 26% 
(9/34), p = 0.02, by chi-squared test]. Overall, 

Table 1. Patient demographics

Variable Study population 
(n = 53)

Age, years, mean ± SD (range) 65 ± 9 (40–78)

Sex, n (%)

Male 35 (66%)

Female 18 (34%)

Histology, n (%)

Adenocarcinoma 34 (64.1%)

Squamous cell carcinoma 19 (35.9%)

Pathological response, n (%)

Complete pathological response 21 (39.6%)

Partial/no pathological response 32 (60.4%)

SD — standard deviation
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smaller, more homogeneous lesions with finer tex-
ture, were associated with a complete response. 

Hierarchical clustering
To explore the association between radiom-

ic features and clinical outcomes, we performed 
a UHC analysis using the 19 variables that showed 
p < 0.1 (one sided, uncorrected, Tab. 2). As shown 
in Figure 2, two clusters were obtained: group A: 
27/53 patients (50.9%) and group B: 26/53 patients 
(49.1%). 

A significantly higher proportion of patients in 
group A achieved a response to neoadjuvant ther-
apy compared to those in group B [59.3% (16/27) 
vs. 19.3% (5/26), p = 0.007). However, UHC seg-
mentation was not significantly related to the tu-
mor type [the percent of adenocarcinoma in group 
A vs. group B was 59.3% (16/27) vs. 69.2% (18/26), 
p = 0.63].

Discussion

Response to neoadjuvant radiochemotherapy is 
a strong predictor for long term survival in esoph-
ageal cancer (28, 29). Although esophageal cancer 
is currently staged using FDG PET/CT, the ability 

of this modality to predict treatment response is 
limited. Radiomics is a data analysis approach that 
is increasingly used to characterize tumor pheno-
types by extracting quantitative imaging features. 
This approach had potential to individualize treat-
ment strategies and optimize patient outcomes.

Here we set to use FDG PET/CT radiomic fea-
tures to predict the pathological response to neo-
adjuvant treatment in patients with esophageal 
cancer. We used an unsupervised machine learn-
ing approach to demonstrate a significant associ-
ation between response to neoadjuvant treatment 
and a radiomics-derived profile of patients.

Neoadjuvant radiochemotherapy is considered 
the gold standard for patients with loco-regional 
advanced esophageal cancer, with a 5-year overall 
survival of 36–47% compared to 23–34% in patients 
who had surgery alone [30]. However, only patients 
who achieved a major pathological response have 
shown improved survival [31]. The diversity in 
the effectiveness of neoadjuvant therapy might be 
explained, at least partly, by intratumor heteroge-
neity [32], which is well described in esophageal 
cancer [33]. Intratumor heterogeneity might be 
better analyzed using radiomics in which quanti-
tative image features are derived on a pixel/vox-

Table 2. Comparison between responders and non-responders to neoadjuvant therapy in esophageal cancer

Variable
Complete response Partial response p-value (complete 

vs. partial response)Mean ± SEM

original_shape_LeastAxisLength 4.25 ± 0.26 6.37 ± 0.28 0.06

original_shape_Maximum2DDiameterRow 8.32 ± 0.65 11.69 ± 0.6 0.09

original_shape_MeshVolume 170.77 ± 27.92 463.6 ± 41.89 0.08

original_glrlm_LongRunEmphasis 6.61 ± 0.46 16.4 ± 1.13 0.06

original_glrlm_LongRunLowGrayLevelEmphasis 6.11 ± 0.56 16.21 ± 1.17 0.05

original_glrlm_RunLengthNonUniformityNormalized 0.36 ± 0.02 0.21 ± 0.01 0.08

original_glrlm_RunPercentage 0.51 ± 0.02 0.32 ± 0.01 0.06

original_glrlm_RunVariance 1.29 ± 0.1 3.49 ± 0.25 0.06

original_glrlm_ShortRunEmphasis 0.49 ± 0.03 0.29 ± 0.02 0.1

original_gldm_DependenceNonUniformity 12.78 ± 1.62 35.82 ± 4.85 0.07

original_gldm_LargeDependenceEmphasis 221.53 ± 15.1 378.67 ± 12.3 0.06

original_gldm_LargeDependenceLowGrayLevelEmphasis 201.96 ± 18.82 373.33 ± 14.23 0.05

original_gldm_SmallDependenceEmphasis 0.01 ± 0.001 0.0049 ± 0.0003 0.08

original_gldm_SmallDependenceLowGrayLevelEmphasis 0.01 ± 0.001 0.0044 ± 0.0002 0.06

original_glszm_LargeAreaEmphasis 13311.74 ± 3174.96 125643.67 ± 19330.29 0.03

original_glszm_LargeAreaHighGrayLevelEmphasis 18981.89 ± 7305.05 128097.01 ± 19293.06 0.02

original_glszm_LargeAreaLowGrayLevelEmphasis 11894.84 ± 2325.45 125030.33 ± 19361.8 0.04

SEM — standard error of the mean
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el-based analysis. Indeed, in our sample, smaller, 
more homogeneous lesions with finer texture were 
associated with a complete response. Comparably, 
the value of radiomic features in the prediction of 
pathologic response to neoadjuvant therapy has 
been investigated in several studies. Tan et al. [34] 
have shown in 20 patients with esophageal cancer 
that a tumor with higher skewness on pre-therapy 
FDG PET/CT is more likely to respond. Skewness 
is an intensity feature that measures the distribu-
tion of standardized uptake value (SUV) in relation 
to the mean value. Tixier et al. [35] evaluated 38 
baseline PET features in 41 patients with esopha-

geal cancer and showed that non-responders could 
be identified according to local tumor homogene-
ity and entropy. Moreover, features reflecting re-
gional heterogeneity could differentiate partial re-
sponders from complete responders. Simony et al. 
[36] have shown that three radiomic features were 
correlated with major response to neoadjuvant 
chemoradiotherapy in 54 patients with esophageal 
cancer. 

Our findings corroborate those of a previous 
study which showed that neoadjuvant response 
was related to tumor type, with SCC significantly 
associated with complete response [20]. However, 

Figure 2. Unsupervised hierarchical clustering analysis of radiomic features of esophageal cancer. Seventeen radiomic 
features as well as gender and tumor location, identified by univariate analysis as having a correlation with response to 
neoadjuvant radiochemotherapy, were used to cluster 53 patients into two clusters (A — orange, B — blue) according to 
the similarity of the radiomic features. Type parameters are represented separately (green, yellow) 
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the UHC-derived segmentation was not related to 
tumor type, suggesting the radiomics-based profile 
was effective in classifying neo-adjuvant response 
across esophageal cancer tumor types, possibly rep-
resenting features of general vulnerability and resil-
ience to neoadjuvant treatment [37]. Future studies 
should include larger samples of histologically sim-
ilar lesions to explore the profiles of neoadjuvant 
response unique to SCC and adenocarcinoma.

The study’s limitations include its retrospective 
design. Secondly, the relatively small sample size 
precludes us from reaching definitive conclusions, 
specifically in terms of comparing the neoadjuvant 
response profiles of SCC and adenocarcinoma. 
Lastly, the study focused solely on analyzing the ra-
diomics of FDG signals. Future studies should aim 
to incorporate both CT and FDG-derived radiomic 
features.

Conclusions

Our findings highlight the potential of FDG 
PET/CT radiomic features as a predictor for the re-
sponse to neoadjuvant therapy in esophageal can-
cer patients. The combination of these radiomic 
features with select non-radiomic variables pro-
vides a model for stratifying patients based on their 
likelihood to respond to neoadjuvant treatment.
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