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Artificial  intelligence  (AI) has  already  been  implemented  widely  in  the  medical  field  in the  recent  years.
This paper first  reviews  the background  of  AI and radiotherapy.  Then  it explores  the  basic  concepts
of  different  AI algorithms  and  machine  learning  methods,  such  as  neural  networks,  that  are  available
to  us  today  and  how  they  are  being  implemented  in  radiotherapy  and  diagnostic  processes,  such  as
medical  imaging,  treatment  planning,  patient  simulation,  quality  assurance  and  radiation  dose  delivery.
eywords:
rtificial intelligence
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It also  explores  the  ongoing  research  on  AI  methods  that  are  to be  implemented  in radiotherapy  in  the
future.  The  review  shows  very  promising  progress  and  future  for AI to  be widely  used  in various  areas  of
radiotherapy.  However,  basing  on  various  concerns  such  as  availability  and  security  of  using  big data,  and
further work  on  polishing  and  testing  AI algorithms,  it is  found  that  we may  not  ready  to  use  AI primarily
in  radiotherapy  at the  moment.

© 2020  Greater  Poland  Cancer  Centre.  Published  by Elsevier  B.V. All  rights  reserved.
. Introduction

.1. Artificial intelligence

The idea of artificial intelligence (AI) is believed to be gener-
ted from the idea of robots. The idea becomes more and more
rominent with more use of biosynthetic machines used in labour.
I can be defined as capability of a machine of imitating human

ntelligence. AI can be classified into two branches based on its
pplication: virtual and physical. Physical component can be rep-
esented in medical devices, sophisticated robots (care bots) and
imited mobility helper bots. The virtual component can be rep-
esented in machine learning. Machine learning is a mathematical
lgorithm that learns through experience.1 For a physician, the two
ost important factors for patient care are knowledge and expe-

ience. Humans are limited in terms of learning by gathering large
mount of data primarily due to time constraints. In the process
f human learning, knowledge and experience are both required
nd gained along a lifetime career. Computer can use algorithms
o gain far more experience and store data in significantly shorter

mount of time than human. A radiologist will look at approxi-
ately 225,000 MRI/CT exams in 40 years, while AI can start with

25,000 scans to train itself and reach millions of scans within a

∗ Corresponding author.
E-mail address: james.chow@rmp.uhn.ca (J.C.L. Chow).

ttps://doi.org/10.1016/j.rpor.2020.03.015
507-1367/© 2020 Greater Poland Cancer Centre. Published by Elsevier B.V. All rights res
very short period of time.2 Nowadays, patients demand faster and
more personalized patient care, which require physicians to inter-
pret large amount of data and analyse it in a short period of time.
Machine learning can aid in these situations by taking data analy-
sis from the physician and provide more efficient, convenient and
personalized clinical practice in a shorter time.3 Massive amount
of data is now available to train algorithms and modern computa-
tional hardware. These algorithms are being applied in many fields,
such as drug discovery, medical diagnostics and imaging, remote
patient care, risk management, hospital assistants and virtual assis-
tance. Components that require a large amount of data analysis,
such as DNA and RNA are expected to greatly benefit from these
computational algorithms.4 With the introduction of deep learn-
ing algorithm, the machine learning capabilities have advanced
significantly in the recent years.5

1.2. Radiotherapy

Radiotherapy is an important component of cancer treatment
and it is estimated that almost 50% of all cancer patients receive
radiotherapy during their course of illness.6 Radiotherapy can be
classified into seven sections; imaging, treatment planning (TP),
simulation, radiotherapy accessories, radiation delivery, radiother-

apy verification, and patient monitoring.7 Imaging process is the
first step, where the physicians diagnose the patient for tumour;
if there is a tumour present then important information related to
the tumour is collected for later use. Imaging process provides the

erved.

https://doi.org/10.1016/j.rpor.2020.03.015
http://www.sciencedirect.com/science/journal/15071367
http://www.elsevier.com/locate/rpor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rpor.2020.03.015&domain=pdf
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l Onco

p
r
a
i
t
m
i
h
m
i
t
p
r
i
(
h
(
a
h
a
t
o
t
m
n
i
t
t
m
o
t
t
t
g
c
e
s
t
a
p
e
E
p
a
r
c
s
m
u
o
w
d
c
o
p
s
l
a
d
p
r
t

tor vector is normally distributed in both groups and each group has
a different covariance structure. One of the drawbacks of QDA is that
it estimates more parameters than LDA; however, it outperforms
LDA in most cases.26
S. Siddique, J.C.L. Chow / Reports of Practica

hysician with the estimated tumour volume, shape, location, sur-
ounding organ that are at risk and other useful information which
re very important for the radiation dose delivery.8 More enhanced
maging modalities provide more accurate data, which makes the
herapy sharper and more impactful.9 In radiotherapy, distant

etastasis is often a big problem and if not identified correctly
n the imaging process, the tumour can re-grow and pose even
igher threat in the future.10 There are many advanced imaging
odalities available to us now, they can very precisely take med-

cal image with very little radiation exposure, such as computed
omography (CT), positron emission tomography (PET), and single
hoton emission tomography (SPECT).11 There are also some non-
adiative options available to us which can also take high resolution
mage with high accuracy, such as magnetic resonance imaging
MRI) and ultrasound.12 Further advancement in these modalities
ave provided us with technology that can take four dimensional
4D) image, which accounts for patient movements.13 During the TP
nd simulation process, various patient data such as tumour mass,
eight, weight, body mass index, previous exposure to radiation,
nd internal medical image of the patient is obtained and analysed
o personalize the therapy by modifying different parameters to
btain the best outcome for the patient. Lot of risk, failure estima-
ion and prediction go on in the TP process. The calculation of organ

otion, therapy technique selection, beam intensity shaping, plan-
ing margin, and optimisation of treatment planning takes place

n the TP process. Recently, TP process has improved significantly
o keep up with the advances in the therapy modalities, such as
hree-dimensional conformal radiotherapy (3D-CRT) or intensity-

odulated radiotherapy (IMRT), where dose to the surrounding
rgans-at-risk is reduced significantly while delivering high radia-
ion dose to the target volume. Both modalities require very precise
reatment setup, repeated monitoring and precise location of the
arget volume, which needs to account for the motion of the tar-
et due to internal organ motion and tumour regression.14 The TP
an be classified into many categories, such as knowledge based,
xpert based or artificial intelligence (AI) based.15 After the patient
imulation phase, treatment planning starts and the dose calcula-
ion takes place. Monte Carlo (MC) simulation is generally accepted
s the gold standard for dose calculation in radiotherapy, since it
rovides real physical process involved in the interaction in gen-
ral body or tissue. Some of the commonly used MC  codes are the
GSnrc, PENELOPE, MCNP, and Geant4. These simulations are com-
licated, time consuming and require a large amount of computing
nd data storage power. These characteristics are not suitable for
outine clinical use so the alternative solution is CloudMC, which is
heaper and undemanding in those aspects.16 Radiotherapy acces-
ories are often used to immobilize the patient to restrict their
ovement and have a more accurate estimation of the target vol-

me  location.17 This immobilization procedure is usually carried
ut in the simulation phase. Radiotherapy process is the process
here the radiation dose is delivered to the patient. Dose is energy
eposited per unit mass. The main goal of the radiotherapy pro-
ess is to kill tumour cells using ionizing radiation while sparing
r minimizing the energy deposition to healthy cells as much as
ossible. There are many radiotherapy modalities available now,
uch as stereotactic body radiotherapy (SBRT), volumetic modu-
ated arc therapy (VMAT), IMRT, proton therapy, electron therapy
nd brachytherapy.18 After the treatment plan is created, the plan
osimetry will be verified by a patient specific quality assurance
rogram to ensure an acceptable dose delivery accuracy. When the
adiotherapy is performed, the patient is followed for a period of
ime (months to years) to observe side effects and outcomes.19
logy and Radiotherapy 25 (2020) 656–666 657

2. Method

Machine learning is the idea of computer learning to per-
form a task from studying a set of training examples. Machine
learning is generally classified into two  different categories: super-
vised learning and unsupervised learning. In supervised learning
the training set contains the data and the correct output, where
computer uses both the data and the output (label data) to pre-
dict the output of the future data. Input observations are known
as the cause and output observations are the effect. The goal of
supervised learning is to come up with a functional relationship
from training data that generalizes testing data. This relation-
ship can be in the form of equation, or numerical coefficient.
There are various algorithms developed based on supervised learn-
ing, such as regression algorithm, classification and reinforcement
learning.20 In unsupervised learning, training set does not con-
tain the solution, so the computer must find the solution on
its own  and use both the data and the derived solution to pre-
dict the outcome of the future data. The goal of unsupervised
learning is to come up with the unknown variable behind the
observation or find the relationship between samples. There are
numerous algorithms that have been derived based on unsu-
pervised learning, such as dimensionality reduction algorithms,
clustering, blind source separation, and density estimation.21,22

Semi-supervised learning is the combination of supervised and
unsupervised learning methods. In semi-supervised learning, a
training set contains data with solutions and data without solu-
tions, and the method utilizes both labelled and unlabelled data
to predict future outcome. This method reduces the need for
labelled data, and labelling of data is often very expensive and
not always possible. Some examples of semi-supervised learn-
ing are information recommendation system and semi-supervised
classification.23,24

In-depth look at the various machine learning algorithms and
their applications to radiotherapy and medical imaging is shown
below:

2.1. Linear model for classification and regression

Linear model is based on a linear relationship between input
and the output of the model. Linear model is generally used in
applications that have computer-aided classification in research
and development on radiotherapy.

Linear discriminant analysis (LDA) is a method to extract dis-
criminant properties in pattern classification. LDA requires label
data to learn a discriminant projection which significantly enlarges
the distance between classes and reduce the distance within the
class (distance refers to the order of the variable). LDA ultimately
improves the classification accuracy. Various extensions of LDA
have been developed to satisfy various special needs, such as two-
dimensional linear discriminant analysis for small sample size
which improves the performance and efficiency.25

Complex relationship often cannot be classified using LDA, espe-
cially when there is a quadratic relationship involved. Quadratic
discriminant analysis (QDA) is used in such a case. QDA  is very
similar to LDA and an extension of LDA. QDA captures the relation-
ship between independent and dependent variable and provides a
more powerful discriminant tool. QDA is optimal when the predic-
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.2. Artificial neutral network

Artificial neural network (ANN) has been derived from the
undamental idea of how our brain works. ANN is composed of
odes and interconnections, where nodes have limited computa-
ional power but they work as a triggering mechanism similar to
ow neurotransmitters work and accumulate to trigger a neuron;
he density and complexity of the interconnector determines the
etwork’s computational power.24 The relationship between the
odes and interconnectors (neurons) can be portrayed as an equa-
ion:

i = fi(
n∑

j−1

wijxj − �i

here yi is the output of node i, wij is the connection between the
ode i and j, xj is the jth input of the node, and �i is the thresh-
ld of the node. ANN can be divided into two classes according
o their connectivity: feedforwarding and recurrent classes. In for-
ard feeding nodes there is no connection from a node with a larger
umber to a node with a smaller number, otherwise it is a recurrent
lass. The order of the ANN is determined by the orders of the nodes
n the ANN, for example higher order ANN contains a larger number
f higher order nodes.27 A few of the major advantages of ANN are
hat it can solve problems that are not linearly separable and can
olve many types of problems. ANN can be used to predict the sec-
ndary structure of protein due to its ability to analyse a complex
tructure. There are many different types of neural network, such
s Boltzmann machines and Kohonen networks.28

.3. Kernels

Kernel method provides a powerful tool for data analysis by
pplying both the supervised and unsupervised method. In short,
ernel corresponds to a dot product, generally in a high dimen-
ional feature space. It measures the similarity, which allows us
o construct algorithms in dot product space. For a given data set,
x1 + y1),. . .,(xn, yn) ε X x Y, where domain X are the inputs or predic-
or variables and Y are the targets or response variables, with given
ew input x ε X, corresponding yε {±1} needs to be predicted, then
he kernel equals to:

 = X × X → R,
(

x, x′)K
(

x, x′)

(
x, x′) =

(
� (x) , �

(
x′))

here� maps into a dot product space (feature space), and K is
he measure of kernel or similarity measure.29 A set of supervised
ased kernel learning method is support vector machine (SVM) that
an be used for classification and regression. SVM minimizes the
mpirical classification error and maximizes the geometric margin
n the training set which gives a higher generalization ability on
he new sample.24 The commonly used kernel functions are poly-
omial, linear and Gaussian radial based. General kernel describes
he point-to-point similarities, systematic and is known for its use
n hyperspectral image classification.30

.4. Probabilistic models

A probabilistic model allows us to predict a future event using
resent observation. The model uses probability distribution to rep-

esent all the uncertain unobserved quantities and explain how
hey relate to the data. Basic rules of probability theory are used
o find the unobserved data from the observed data. This method
f learning data from the probability theory is called Bayes rule.
logy and Radiotherapy 25 (2020) 656–666

Bayes rule is the combination of the sum rule and product rule of
the probability theory:

P ( y| x) = P (x |y ) P (y)∑
y ∈ YP (x, y)

where x and y are sets of observed and unknown quantities, P(y) is
probability of y occurring, P(x,y) is combined probability of x and
y occurring and P(x|y) is the probability of x occurring conditioned
on observing the value of y. Ultimately, the Bayes rule is,

P (m|D) = P (D|m) P (m)
P (D)

where m can be used to compare models and it is the condition
term, and D is the observed data. Still, the graphical models are the
most popular probabilistic models.31

2.5. Ensemble learning

Ensemble learning is another method of machine learning that
works by training the learners by increasing the diversity of the
ensemble classifier system. One of the advantages of ensemble
learning is that the ensemble classifier can reach a high success
ratio compared to a single classifier. That is why ensemble learning
is widely used for image classification.32 It is also a very effective
mechanism to measure the uncertainty of space of statistical pre-
dictors. It can provide an accurate prediction by combining the
estimates. The predictive models are trained using different subsets
of the training data, this data is selected appropriately to ensure an
appropriate amount of variability in predictive models. Bootstrap
aggregating or bagging is a well-known selective method. It creates
variability between predictors by sampling with replacement from
the set of training data. One drawback of this method is the random
selection of a subject in each training subset that can lead to large
difference in predictor due to inter-subject difference.33

2.6. Cluster analysis

Clustering data is widely and very frequently used in radiother-
apy and radiology. Natural data generally has an inherent clustering
property and data samples belonging to the same cluster are simi-
lar or would have lower a distance than the samples from different
cluster under distance matrices. Some of the commonly used clus-
tering algorithms are hierarchical clustering, K-means clustering,
DBSCAN, mixtures of Gaussians and normalized cut.

2.6.1. K-means algorithm
K-means algorithm uses parameter k, which divides n number

of objects into clusters by having high similarities in clusters and
low similarities between clusters, ultimately lowering the total dis-
tance between values in each cluster to the centroid. Centroid is an
average value of a cluster. The reciprocating Euclidean distance is
used to measure the similarity, where the lower the distance, the
higher the similarities and vice versa. Euclidean distance can be
calculated using the equation:34

d
(

xj, cj

)
=

√√√√
n∑

j=1

(
xj − cj

)2
.

2.6.2. DBSCAN
DBSCAN algorithm is a density-based clustering algorithm,
where clusters are a dense region of the object and object of one
cluster must be surrounded by objects of the same cluster. Some
of the core concepts of DBSCAN are Eps-neighbour, which is a d-
dimensional hypersphere with object p being its core and Eps being
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ts radius. Other common concepts are core point, which is a given
bject P with more than minPts data points; and direct density-
eachable, where object p is directly density-reachable, when p
elongs to the Eps neighbourhood of a core point q given the values
f Eps and minPts. Ultimately, DBSCAN checks Eps-neighbourhood
f each data point in dimensional hyperspace and searches for the
ore point of the cluster and the objects which are directly reachable
rom the core point.35

.6.3. Gaussian mixture model
Gaussian mixture model is used as a tool for model-based clus-

ering and used in many fields such as pattern recognition, image
nalysis, data mining, and machine learning. Gaussian mixture
odel with k components can be modelled using:

(
yi; �

)
=

k∑
j=1

�j�
p
(

yi; �j

)
,
∑

j

here �j are the positive weights subject to
k∑

j=1

�j = 1, and �j,
∑

j,

re the parameters of Gaussian components.36 Volumetric analysis
f brain necrosis in proton beam therapy is currently being studied
sing a mixture model.37

.7. Dimensionality reduction and feature selection

To keep up with the latest technology in radiotherapy, AI is
equired to compute additional variables. Input of additional vari-
bles is problematic in AI-based machine learning classification
roblem due to a longer training time, more noise, larger number of
raining data required, overfitting and lower model interpretability.
imensionality reduction reduces the number of input variables
nder consideration, which reduces most of the side effects of hav-

ng a large number of initial variables. Dimensionality reduction
an be divided into two categories: variable selection and feature
xtraction.38

.7.1. Variable selection method
Variable selection or feature selection method works by figuring

ut and taking the best subset of original input variables. Feature
election method does not alter the original representation of the
ata. Variable selection method is preferred over feature extrac-
ion method for the diagnostic model because in the diagnostic

odel, variables are more useful when they are not transformed
o non-interpretable features. Feature selection methods are classi-
ed into three categories: Filter, wrapper and embedded technique.
ilter extracts the features from the data without any learning
nvolved. Wrapper uses various learning techniques to evaluate

hich features are useful. Embedded techniques combine the fea-
ure selection step and the classifier construction. Some examples
f commonly used variable selection methods in radiotherapy are
he Pearson correlation coefficient based variable selection, mini-

um redundancy maximum relevance algorithm (mRMR), and the
arkov blanket .39
.7.1.1. Pearson correlation coefficient. Pearson correlation coeffi-
ient measures the strength of linear association between two
ariables.40 It is one of the simplest approaches for selecting sig-
ificant variables from independent input variables and target
logy and Radiotherapy 25 (2020) 656–666 659

variables. Pearson correlation coefficient can be measured using
the formula:

r =
∑

(Ri − Rav) (Gi − Rav)√∑
(Ri − Rav)2 ∑

(Gi − Gav)2

where Ri is the first variable, Rav is the arithmetic mean and Gi, Gav

are corresponding second variable and arithmetic mean.41

2.7.1.2. The Markov blanket. The Makarov blanket (MB) was first
named by Pear and represents a crucial part in the Bayesian net-
work. MB  of a variable consists of parent (direct cause), children
(direct effects), and spouses (other direct causes of variable chil-
dren) in a Bayesian network. One unique property of MB  is that,
given a target node, all other nodes are independent of the target
node.42 The MB of a variable gives a complete picture of local causal
structure around the variable. By figuring out the MB of all variables
in the data set, the MBs  can be used as constraints to reduce the
search spaces in a large scale Bayesian network.43

2.7.1.3. Minimum redundancy maximum relevance algorithm. Wang
and Peng proposed minimum redundancy maximum relevance
algorithm (mRMR), which is a variable selection approach. It tries
to select features with high correlation in the output class and low
correlation between the classes, and provides a measure of how
potentially useful a candidate feature may  be (scoring criterion)
when used in a classifier model using the Battiti’s proposed for-
mula. It applies Peng’s condition to avoid the need of a pre-defined
threshold. The mRMR  can be defined as:

f (xi) = I (Xi; Y) − 1∣∣S∣∣
∑
xj ∈ S

I(Xi; Xj)

where f estimates the scoring criterion, Xi is the candidate fea-
ture, Y is the class attribute, and 1

|S| is the adjust of the subtraction

comparability of the relevance and redundancy term.44 In the case
of a continuous feature, the correlation can be calculated using F-
statistics and the correlation between classes (redundancy) can be
calculated using Pearson’s correlation. The features are selected one
by one by applying a greedy search, which maximizes the objec-
tive function (function of relevance and redundancy). For the case
of temporal data, the mRMR  first needs the data to be flattened
into a single matrix using preprocessing techniques. It also has a
drawback due to the possibility of important data loss during the
flattening process.45

2.7.2. Feature extraction method
Feature extraction methods are classified into two categories:

linear feature extraction and non-linear feature extraction.

2.7.2.1. Linear feature extraction (principal component analysis).
Linear feature works when the data lies on a lower dimen-
sional linear subspace. It projects the data on the subspace using
matrix factorization. In 1901, Karl Pearson proposed the princi-
pal component analysis (PCA) method, which is also known as
Karhunen–Loeve (K–L) method. It is one of the well-known dimen-
sionality reduction algorithms. PCA transforms high-dimensional
feature space into low-dimensional feature space using orthogonal
transformation, where the dimension of the reduced feature space
may  be equal to or less than the original feature space. The trans-
formation of the feature space carried out in a way that the highest
variance lies in the first component, then the next highest variance

lies in the second component and so on.46 In PCA, the first computed
variables are called principal components which are a linear combi-
nation of the original variables. First principal components have the
largest possible variance. Second components are computed under
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he constraint of being orthogonal to the first components and have
he largest possible inertia. The values of the new variables for the
bservations are called factor scores and can be computed as:

 = P� = P�Q T Q = XQ

here F is the factor score or projection matrix, X is the data set, Q
s the coefficient of linear combinations, � is the diagonal matrix
f singular values.47

.7.2.2. Nonlinear feature extraction. Nonlinear dimensionality
eduction can be done using the linear dimensionality technique,
ut a few tricks need to be applied first. Low-dimensional surface
eeds to be mapped on a high-dimensional space so that a nonlinear
elationship exists among them, which can easily be detected. Ker-
el function can be designed to create the same effect without the
eed to explicitly compute the lifting function. Another approach
o solve the nonlinearity problem is to assume that the data line
n an embedded nonlinear manifold has lower dimension than the
aw data space and lies within it. The isomap map  is a commonly
sed algorithm that constructs the manifold by joining neighbours

n a form of map. The distance between the points is the geodesic
istance on the output graph. Other manifold based algorithms that
re used are Laplacian eigenmaps and locally linear embedding.39

.8. Reinforcement learning

Reinforcement learning provides tools to optimize a sequence
f decisions for long-term outcomes. Reinforcement learning algo-
ithms generally take an input sequence of interactions known
s histories between the decision maker and their environment.
n each decision point, the algorithm chooses an action accord-

ng to its policy and receives new observations and immediate
utcomes (reward). It is used in many healthcare optimization
uch as antiretroviral therapy in HIV.48 One of the most com-
on  reinforcement learning algorithms is Q-learning algorithm

ased on instantaneous strategy and irrelevant model. One of the
ain advantages of this algorithm is that it does not need prior

nowledge. It interacts with the environment directly and obtains
nformation from the state feedback in the process of control.49

urrent advances in AI and reinforcement learning provide a deep
-network that can learn successful policies directly from the high
imensional sensory inputs using end-to-end reinforcement learn-

ng and can reach human level control.50

.9. Multiple instance learning

Multiple instance learning (MIL) was first introduced by Diet-
erich in 1997 and it was mostly used for identification of proteins
nd content-based image retrieval. MIL  deals with the uncertainty
n the label. Several methods are available to solve MIL  problems,
ome common examples are diverse density, kernel based SVM and
-nearest (K-NN) algorithm.51 In MIL, a bag is used to represent an
bject and can be modelled as:

i =
{

xil|l = 1, 2, . . ..  . . , ni

}
∈ Rd

here ni is the number of feature vector in bag Bi, and Rd is the
-dimensional feature space. The training data set for MIL  can be
epresented as:

 =
{

(Bi, yi) |i = 1, 2, . . ..  . . , N
}

here yi = (+1, −1) and it is the class label corresponding to each
ag in the dataset. If the bag contains at least one positive instance,
he bags are labeled +1, otherwise it is −1 or a negative labelled
ag.52
logy and Radiotherapy 25 (2020) 656–666

2.10. Graph matching

Graphs are commonly used as an abstract representation of a
complex structure. Graph matching is finding a correspondence
between nodes of two  graphs in a way  that they look most similar
when their vertices are labelled according to the correspondence.
Nodes represent local features of the image, where edges cor-
respond to a relational aspect between images. There are many
models that approach graph matching in different ways, some
examples of different methods are spectral methods, relaxation
labelling, probabilistic approaches, semi-definite relaxations, grad-
uated assignment, tree search, and replicated equations. Spectral
method works by studying the similarities between the spectra of
the adjacency or Laplacian matrices of the graphs and use that infor-
mation to match them. Probabilistic and relaxation methods first
define a probability distribution over mappings and optimize using
discrete relaxation algorithms. Tree search runs sequential tests
for compatibility of local parts of the graphs.53 Integer-projected
fixed-point algorithm is another commonly used graph matching
algorithm used widely for image segmentation and has a high effi-
ciency. Graph matching is an essential component of 2D and 3D
feature matching and object recognition.54

2.11. Deep learning

Deep learning computational power has a high potential and
it has already led to the rise of many new research companies
in a start-up setting in the recent years, such as Deep Genomics.
The deep learning method uses multiple processing layers to dis-
cover pattern in a large data set.55 Deep learning is a branch of AI
and a set of computational models composed of multiple layers
of data processing. During the training phase, the system com-
putes the error between the observed output and desired output
and adjusts its internal parameters known as weights to reduce
this error. The system also computes a gradient vector for each
weight, which indicates the error deviation due to weight adjust-
ment. The weight vector is adjusted in the opposite direction of
the gradient vector. Generally, a method called stochastic gradient
descent (SGD) is used to find an effective set of weights. In this
process, the system is shown the input vector for a few examples
and have it computed the output, error and the average gradient
for those examples. The whole process is repeated multiple times
with a small set of examples until the average of the object func-
tion stops decreasing.56 Many deep learning-based networks have
been developed and applied recently in radiotherapy for complex
computation such as deep neural network and convolutional neural
network.

2.11.1. Deep neural networks
Deep neural networks (DNNs) can be supervised or unsuper-

vised. In machine learning, it is often necessary to reduce the
complexity of the data and highlight the relevant pattern for the
learning algorithm. In most cases, the AI function greatly depends
on how effectively the learning algorithm function performs.57

DNNs independently learn the order representation of the input
data and require a large set of them. DNNs are a combination of mul-
tiple neural networks or multilayered ANNs. DNNs use the same
principles of ANN to compute the data using nodes at first, then the
output from the first layer becomes the input of the following layer
and the process repeats, where final layer’s output is the derived
output for the system.58 In unsupervised DNNs, the fundamentals
are the same as unsupervised learning and ANN, so in the first layer

ANN output is generated using unsupervised learning principle,
then the outcome from the first layer serves as the input for the
second layer. Unsupervised deep learning algorithms are more pre-
ferred over supervised DNNs due to the need of lower labelled data.
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ne drawback of unsupervised DNNs is that it is more complex to
uarantee the learned representation will be meaningful.59

.11.2. Convolutional neural networks
Convolutional neural networks (CNNs) are suitable to process

ata that comes in arrays, such as medical image. Typically, CNN
onsists of three types of layers: convolutional layer, pooling layer
nd fully connected layer. The role of convolutional layer is to detect
imilarities of the feature from the previous layer and learn feature
epresentation of the input. Convolution layer number corresponds
o the number of convolution kernels that are used to compute
eature maps. In the feature map  each neuron is connected to a
eighbouring neuron on the previous layer. The role of the pooling

ayer is to achieve shift variance by reducing the resolution of the
eature map. A pooling layer is generally placed between two con-
olutional layers, where each future map  of the layer is connected
o a corresponding feature map  of the previous convolutional layer.
he role of a fully connected layer is to perform high level reasoning
y taking all neurons in the previous layer and connecting them to
very single neuron of the current layer.60

. Implementation of machine learning algorithms in
adiotherapy

.1. Medical imaging

Various machine learning methods are being implemented in
odern medical imaging systems, such as computed tomography

CT) or magnetic resonance imaging (MRI). CT is a radiologi-
al imaging modality that can obtain volumetric, morphological
nformation of the patient’s anatomy through a medical image.

 modern CT scanner can scan a patient from head to toe, with
igh resolution.61 Another popular medical imaging system is MRI.
RI  can differentiate soft tissue very well which makes it ideal

o see inside a joint or ligament; however, MRI can be used to
btain image almost anywhere on the body, if it involves soft tis-
ue density difference.62 MRI  obtains the image by aligning the spin
oments of water protons (H) and can obtain better image than CT
ithout the risk of radiation exposure; however, MRI  cannot be
sed in the presence of metal such as a metal implant because it
ill interfere with the magnetic field of MRI.63–65 Each of these

maging systems have its disadvantages, like radiation exposure,
ensitivity to its surroundings and cost, whereas AI-based algo-
ithm offers cheap non-radiative solutions and it has been widely
esearched in the recent years. AI-based algorithm does not come
ithout any risk, they increase the risk of systematic errors with
igh consequences.66 The accuracy of the radiation dose delivery
o the target area is significantly improved with the advances in
omputing technology and medical imaging; which has led to the
ntegration of MRI  and linear accelerator that can provide real time

RI-guided radiotherapy.67

AI-based algorithms are primarily implemented in three aspects
f medical imaging as shown below:

.1.1. Image segmentation
Image segmentation plays a vital role in medical image analysis.

here are a lot of segmentation methods available but none is uni-
ersal. Some commonly used image segmentation methods are the
nake model introduced by Kass et al. and the level set method
LMS). LMS  can further be divided into two categories: region-
ased models and edge-based models. Edge-based model utilizes
dge information, where region-based model utilizes region infor-

ation to control the motion of the active contour. Region-based
odels are not sensitive to object with poorly defined boundaries;

owever, they are sensitive to inhomogeneity of image inten-
ities (overlapping of intensity ranges), and parameter turning.
logy and Radiotherapy 25 (2020) 656–666 661

Some other approaches to image segmentation are K-NN, SVM and
extreme machine learning. They can analyse complex patterns but
require post processing such as morphological operations.68

Segmentation can be applied to many structures, such as bones,
organs, muscles and fractures. In recent research, tree-based seg-
mentation method has been studied intensively for brain imaging.
Neural networks and deep learning algorithms are also being
used for the brain segmentation task. Together they provide a
semi-automatic method to classify the brain MRI  into cancer cells
and healthy tissue. Early brain has lower tissue contrast, which
makes it more difficult to segment than the adult brain. Frac-
tional anisotropy image is more suitable for differentiating grey
and white matter; while T2 weighted image is better at captur-
ing cerebrospinal fluid. CNN method can combine these different
modality’s image data to enhance segmentation predominance. The
neural network normally requires a convolutional layer to per-
form this task. Deep learning methods can automatically segment
MRI  brain images.69 There are other segmentation methods avail-
able for brain MRI, such as intensity-based methods (clustering,
thresholding reign growing, classification), atlas-based methods,
surface-based methods (contours and surfaces and multiphase
active contours) and hybrid segmentation. Most of these meth-
ods utilized previously explored algorithms and techniques, such
as the Markov random field, k-point, regression and clustering.70

New CNN-based interactive segmentation framework only needs
the tumour core in one MR sequence for training and provides a
more robust segmentation method than the other state-of-the-art
regular CNN method. This method provides accurate result with
fewer interaction and less time.71

Breast cancer is one of the commonly diagnosed cancers,
responsible for 30% of all new cancer diagnosis in women. Ultra-
sound is normally used to diagnose breast cancer and improvement
in segmentation of breast ultrasound images into functional tis-
sues provides a better tumour localization, assessment of treatment
response, and breast density measurement. Segmentation of ultra-
sound is very time consuming for radiologist and it is skill and
experience dependent. Automated segmentation of ultrasound
image will help mitigate those problems. Recent study shows con-
volutional CNN-based segmentation can segment the 3D image into
four major tissues: skin, mass, fibro glandular tissue, and fatty tissue
with high accuracy. This shows potential to provide segmentation
in the future in clinical diagnosis of breast cancer.72

A fully automated whole-body segmentation for diagnostic CT
has already been proposed. The segmentation method used random
forest algorithms and explored its accuracy and limitation. Tissue
segmentation of CT scans was done by training various data sets
and applying them to neck, chest, pelvis and abdomen CT scans.73

Another fully automated diagnostic system is also presented for
abdomen disease that uses a feature extraction method to classify
the disease, and uses genetic algorithms, SVM and ANN to classify
the disease from CT images. Regions of interest segmented from
the CT images were tumour, calculi, cyst, and normal liver cell.74

3.1.2. Medical image registration
Image registration is an application of machine learning. In the

case when a patient is scanned by different or same modality mul-
tiple times from different positions, at different times or situations,
then machine learning algorithms are used to combine the results
to obtain a more accurate diagnosis. This process is often known
as image fusion, matching or warping. The goal of this process
is to find the optimal transformation that best aligns the struc-
tures of interest in the input images. Image registration is a very

crucial step in image analysis. Few examples of commonly used
image fusion modalities are CT or MRI  with PET or SPECT. In the
intensity-based registration method, the algorithm searches for
geometric transformation iteratively so that when applied to the
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oving image it optimizes (maximizes or minimizes the similarity
easure or cost function). Cost function is related to voxel inten-

ity and computed in the overlapped region of the input image. In
he feature-based registration method, the algorithm searches for
ptimal transformation after the features are established. Criterion
ased on geometrical, physical or statistical properties is used to
atch among features.75 LDA is used to classify lung lesion using

ET and CT radiomics features.76

.1.3. Computer-aided detection (CAD) and diagnosis system
Automated image recognition has improved significantly in

he recent years primarily due the availability of largescale data
ets. CT lung node identification is an improved example in CAD.
mageNet consists of more than 1.2 million categorized natural
mages of over 1,000 classes, which play a big role in training
his complex CNN. CAD-based CNN trained from ImageNet on
horaco-abdominal lymph node and interstitial lung disease shows
romising results for clinical use.77 CAD also shows a potential

n detection of metastases, and colonic polyps.78 Computer-aided
etection and diagnosis (CADe and CADx) for colonoscopy use deep

earning algorithms that are currently being studied. This AI has
wo principal roles in diagnosis: Polyp detection (CADe) and polyp
haracterization (CADx). CADe will decrease the polyp miss rate,
hich will lead to a better adenoma detection. CADx will improve

he accuracy of colorectal polyp optical diagnosis.79

Prostate cancer is one of the leading causes of cancer death for
en  in western side of the world. Currently a transrectal ultrasound

iopsy is performed to diagnose prostate cancer. One drawback of
his diagnosis is that it has low specificity, so, recently, MRI  has
een increasingly used for prostate cancer. However, it requires a
ery expert radiologist team to detect prostate cancer from an MRI
mage with a lot of time. CAD can solve these problems. A new CAD
ystem is being studied right now, which is composed of two stages.
n the first stage, initial candidates are detected using multi-atlas
ased prostate segmentation, classification, local maxima detec-
ion and feature extraction. In the second stage, cancer probability
f each filtered candidate is predicted using classification. The sys-
em was evaluated with 347 patients with MR-guided biopsy as the
eference standard. The evaluation result showed that the system
ould potentially be used as a second reader or to improve the sen-
itivity of the radiologist. The system also shows a potential for first
eader settings; however, more works need to be done for that to
e operating effectively.80

Breast cancer has shown a significant survival rate if detected at
arly stage. In the United States alone nearly 40 million mammo-
raphic exams are performed per year. The mammographic image
eeds to be interpreted and analysed by one or more experienced
eaders, which is very time consuming and error-prone. CAD is
eing studied and employed widely as a second reader to increase
fficiency. Computer does not suffer from concentration volume.
hey can also be trained with incredible number of samples, more
han any radiologist can learn within a lifetime. A convolutional
eural network-based CAD system can do pattern recognition and
bject detection with high accuracy. It was put to test against a
anually designed feature set with 45,000 images and CNN out-

erforms at low sensitivity and shows comparable results at high
ensitivity. The CNN network was also compared against a certified
creening radiologist on a patch lever and showed no significant
ifference.81

.2. Treatment planning
Low dose rate (LDR) prostate brachytherapy is one of the best
reatment methods for prostate cancer. Several trials have proven
hat permanent implantation of low dose radioactive sources pro-
ides excellent result. The main goal of the therapy is to maximize
logy and Radiotherapy 25 (2020) 656–666

the dose to the prostate while sparing normal tissue by implant-
ing radioactive seeds in a 3D pattern. The implementation of those
seeds and the precise location of the seeds are very important and
require an expert brachytherapy team. Since error in systematic
source placement will result in insufficient dose to the target, the
TP process needs to be very carefully crafted and requires a lot of
time. Computer optimized algorithms for TP in LDR brachytherapy
was introduced to improve the efficiency and lighten the work-
load, some examples of the algorithms that are used are inverse
planned simulated annealing (ISPA), and hybrid inverse planning
optimization (HIOP). The CAD uses similarity matching and K-
nearest neighbour methods, where they try to match the current
situation to the most similar previous training data. CAD has proved
to be able to make accurate treatment plans for LDR brachytherapy
that are in par with those made by the expert treatment planer and
radiologist.82 Bayesian network and Makarov model-based deci-
sion aid were developed for intensity-modulated plan selection
in a prostate cancer patient. The aid used Bayesian network in
TP for local tumour control, regional spread, distant metastases,
and normal tissue spearing; while Makarov method was  used to
calculate quality adjusted life expectancy. By combining the two
outcomes the aid would provide a treatment decision.83 K-mean
clustering can be used as a classifier for adaptive radiotherapy
in prostate cancer. The system compares delivered and planned
radiotherapy in the patients and automatically identifies those that
can benefit from adaptive treatment. The main goal of the system
is to deal with dosimetry uncertainties due to the movement of
hollow organs. K-means clustering algorithm is used to make an
unsupervised predictive tool which detects incorrect setup due to
stochastic physiological changes.84 CNN-based automated method
for predicting dosimetry eligibility of patients with prostate can-
cer undergoing IMRT has shown reasonably accurate results and
showed its potential in the TP process.85 In the study of Coates
et al., QDA is used in prostate radiotherapy. QDA is used to predict
various outcome parameters for both tumour control and radio-
therapy induced normal tissue effect. Experimental results showed
that QDA prediction matches expected outcome accurately for low
dose and starts to deviate significantly over 6-8 Gy; however, most
modern radiotherapy treatment regimens use 2-3 Gy. A modified
QDA can be used to deal with other parameters that start to deviate
from the expected result.86

Recent radiotherapy modalities such as photon-based VMAT
require a lot of planning before dose delivery. The dose deposi-
tion in VMAT is very complex and an accurate prediction of the
plan outcome allows radiation oncologists to make a better and
more informed decision for therapy and saves a lot of time. New
proposed machine learning algorithm can predict dose distribu-
tion for organs-at-risk and planning target volume. The algorithm’s
accuracy was  validated on 69 plans for lung SBRT and 121 head-
and-neck plans; this resulted in a mean error below 2.5 Gy. This
shows a potential to be used as automated treatment plan in SBRT
for lung and head-and-neck therapy.87 In Cho et al., ANN shows
outcome prediction capabilities for head-and-neck cancer. ANN
combines relevant variables into a predictive model during train-
ing and analyses all possible correlation of variables. Out of 73 test
subjects, 51 patients were used for the training set, 11 patients
were used for the test set and the remaining 11 patients were used
for the validation set. The result shows that for focal target control
the accuracy for all combined sets is 90.4% and distant metasta-
sis outcome accuracy is 91.8%, proving its viability as a prediction
tool.88 ANN also allows the prediction of survival of radiotherapy
alone from uterine cervical cancer by evaluating important prog-

nostic factors. ANN combines the histological grading of radiation
effect from periodic biopsy examination, and the additional funda-
mental factors and provides an accurate prediction.89 CNN-based
rectal dose toxicity prediction model can serve as a practical pow-
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rful tool for rectal dose and induced toxicity analysis for high dose
ate brachytherapy in cervical cancer.90 ANN is also used to analyse
rognostic factors related to radiation pneumonitis in patients with

ung cancer.91 DNNs can be used to quantitatively classify imaging
ata and integrate them with clinical risk factors to predict local
ailure after stereotactic body radiotherapy.92

Radiobiological effectiveness (RBE) is an important quantity
o describe the effectiveness of cell killing by radiation. In the
xperiment of Friedrich et al., the relationship between RBE and
inear energy transfer (LET) is analysed using the survival curves,

hich has been parameterized using linear quadratic (LQ) model.
he RBE values derived from that model show the dependence of
BE on LET24,93. QDA can be used to predict the optimal position
o efficiently spare the organs-at-risk in left-sided whole breast
adiotherapy.94 Linear regression algorithm is used to predict var-
ous parameters in TP, an example would be the linear regression

odel used to predict patient-specific skeletal spongiosa volume
n molecular radiotherapy dosimetry.95 Linear regression model is
lso used to study predictors of cardiac and lung dose to organs-
t-risk in the deep inspiration breath hold method for left breast
ancer treatment.96

A kernel-based optimization tool was developed to find the
ffective composition of carbon beams with input fluence and ener-
ies to deliver desired depth dose distribution over a spread-out
ragg peak region in carbon radiotherapy. The study shows it is
n effective tool to use in the TP process which could ultimately
ubstitute Monte Carlo (MC) simulation.97

.3. Simulation

A hybrid framework of electron dose point kernel method was
roposed to estimate the dose distribution around gold nanoparti-
les (GNP). GNP are used for dose enhancing in radiotherapy. This
s a hybrid computational framework combined with the Geant4

C simulator, which halves the calculation time when compared
ith the full Geant4 MC  simulator ultimately lowering the cost and

ime efficiency.98

In prostate cancer, detection of intestinal gas is very important
n image-guided radiotherapy. Miura et al. show that a deep con-
olutional neural network can detect intestinal gas in the pelvis
egion very effectively.99

.4. Radiotherapy delivery

In microbeam radiotherapy (MRT), the treatment field is frac-
ionated into arrays of a few tens of a micrometre wide planar beam
ith high peak doses that are separated by a low dose region. MRT
as proven to spare normal tissue more efficiently than general
adiotherapy. The dose calculation in MRT  is based on MC  sim-
lations, which are time consuming. So, Debus et al. provided a
ernel-based dose calculation algorithm which separates the pho-
on and electron mediated energy transport and can calculate the
alley and peak dose of MRT  field within a few minutes. The peak
ose value matched the MC  simulation within 4% deviation and
alley dose within 8%, except for the region close to the material
nterfaces.100

Kernel method provides an inexpensive computational solution
o markerless tracking of respiration induced tumour motion in
ilovoltage fluoroscopy image sequence in image-guided radio-
herapy. The method first enhances the contrast of kilovoltage
uoroscopic image using histogram equalization, then the target
racking is formulated by maximizing the Bhattacharyya coefficient

sing the mean shift algorithm. The obtained result was  compared
ith four clinical kilovoltage fluoroscopic image sequences and

our conventional template matching methods. The kernel method
roved superior to the conventional template matching method,
logy and Radiotherapy 25 (2020) 656–666 663

showing comparable result to the fluoroscopic image sequence.101

Markerless prostate localization strategy using DNNs to interpret
projection x-ray images in image-guided radiotherapy has been
investigated and the experimental result shows high accuracy and
can be used for patient positioning and real-time target tracking.102

In IMRT the optimized beam angle typically clusters around in
a distinct orientation, so a K-means algorithm is used to identify
cluster centroids as irradiation angle of an IMRT treatment plan. The
optimized beam angles provide better sparing of organs-at-risk in
the case of pancreas and intracranial cancer.103 In the development
of radiation track structure clustering algorithm, a cluster-based
analysis can be used to cluster the ionization events in each cell into
two categories; simple or complex double-strand break, which can
later be used to identify the RBE relationship.104

In carbon radiotherapy the energy deposition due to clustering
fragments produced from the main beam can be estimated using
the DBSCAN clustering algorithm. Each energy deposition cluster
from each individual fragment can be individually estimated using
this algorithm.105 DBSCAN algorithm is also used to study the DNA
cluster damage after the irradiation of fibroblast cell nucleus.106

Deep learning method is being studied to predict local control
in non-small cell lung cancer, where not many label data available
for machine learning, the experimental result showed that local
control predictions were accurate and comparable to multi-layer
perceptron. In the future, the deep learning method can be used to
prospectively individualize dosing and guiding in altering systemic
therapy.107 DNNs are also being implemented in advanced radio-
therapy modalities, such as stereotactic body radiotherapy to keep
up with dose calculation, which can also transform the dose calcu-
lated in one algorithm to another with high speed and accuracy.108

CNN is also being studied in integration with conventional CT to be
a potential replacement for MRI  only based prostate proton beam
therapy.109 CNN is also being studied to be implemented to track
tumour boundary in MRI  for lung cancer.110

3.5. Radiotherapy verification and patient monitoring

IMRT is heavily dependent on the accuracy and position of
each radiation beam. Gamma  analysis is the standard method
for analysing the fidelity of IMRT. The gamma statistic is used to
compare the measured dose distribution to the planned dose dis-
tribution. Gamma  analysis does not correlate with many clinically
relevant deviations in delivered dose and is insensitive to small
errors in multi-leaf collimator positioning. A method was  devel-
oped to detect specific errors using image features in gamma  image.
It treats the gamma  distributions as an image and uses feature
evaluation on the patient image to predict prognoses, response to
therapy and other outcomes. The model studied using 186 IMRT
beams from 23 patients, where half of them have head-and-neck
cancer and the rest have rectal cancer, lung cancer, glioblastomas,
and sarcomas.111

Bayesian network and Markov random field are two  commonly
used graph models. In their study, Kalet et al. used the Bayesian net-
work model to detect error in radiotherapy TP. The probability of
obtaining certain radiotherapy parameters were calculated using
the network, set of initial clinical information and radiation oncol-
ogy based clinical database system. A low probability in propagated
network signals for potential error is flagged for investigation. The
network performance was  then compared with human experts
and in the case of brain cancer the network outperforms human

experts.112 Bayesian network method can be used to detect exter-
nal beam radiotherapy physician order errors. Chang et al. showed
that using the Bayesian network method the average true and false
positive rates of error detection were 98.72% and 1.99%, which are
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omparable to human error detection and can detect physician’s
rder error accurately.113

Carrara et al. showed that ANN can be used to predict
ny selected acute or late toxicity endpoint after prostate
adiotherapy.114 LDA is used in various radiotherapy studies and
pplications such as identifying predictive genes using whole
enome microarray data from prostate cancer patients to study
ancer related fatigue115; and linking the connection between gut
icroorganism and chemotherapy induced diarrhoea from CapeOX

egimen in resected stage III colorectal cancer patients.116

. Current challenges and future works

The advances in deep learning algorithms have allowed AI to
ove forward an impressive distance and they are being imple-
ented in various clinical tasks. They are statistically impressive

ut individually far from perfect due to their unreliability in certain
ases and prone to make some mistakes that a human would not
ake. Many of the AI learning methods require large data sets and

hey are often not available or very expensive or protected by intel-
ectual property right. The algorithm also needs to be extensively
ested for accuracy before it can be implemented clinically and that
s often time consuming and expensive; however, AI does show a
reat promise for the future. Another big challenge for implement-
ng the AI method in clinical practice is legal and ethical reasons: if
ome reason AI fails to deliver the correct output who will take the
esponsibility for the mistake?117 Many of the current CAD systems
equire high quality diagnostic image for testing and training, and
hey are often obtained from one institute due to cost and avail-
bility, which can jeopardize the CAD system’s viability results. 118

n the future, it is expected that the deep learning method will
e implemented with the CAD systems to further improve their
ccuracy and reliability.119 AI in mammography has made great
mprovement and shows a very promising potential to have fully
utomated CAD system primarily for clinical use.120

. Conclusion

It can be seen that AI has unlimited potential in radiotherapy;
owever, it is not completely tuned yet to be used widely by itself

n clinical use. It is already being implemented in some diagnostic
iche cases for a solo first reader; however, more works need to
e done. In the future, with more research and development, AI is
xpected to take massive workload away from the radiation staff
ncluding radiotherapists, medical physicists and radiation oncol-
gists in radiotherapy.
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