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Aim: To explore available recent literature related to cardiotoxicity following mediastinal

radiation.

Background: Radiotherapy-related heart injury is well documented, with no apparent safety

threshold dose. The number of long-term cancer survivors exposed to mediastinal radio-

therapy at some point of their treatment is increasing. Heart dosimetric parameters are

of  great importance in developing a treatment plan, but few data are available regarding

radiosensitivity and dose-volume constraints for specific heart structures.

Materials and Methods: In October 2018, we identified articles published after 1990 through

a  PubMed/MEDLINE database search. The authors examined rough search results and

manuscripts not relevant for the topic were excluded. We  extracted clinical outcomes follow-

ing  mediastinal radiotherapy of childhood cancers, lymphoma, medulloblastoma, thymic

cancers and hematopoietic cell transplantation survivors and evaluated treatment planning

data, whenever available.

Results: A total of 1311 manuscripts were identified in our first-round search. Of these

manuscripts, only 115 articles, matching our selection criteria, were included.

Conclusions: Studies uniformly show a linear radiation dose-response relationship between

mean absorbed dose to the heart (heart-Dmean) and the risk of dying as a result of cardiac

disease, particularly when heart-Dmean exceeds 5 Gy. Limited data are available regarding

dose-volume predictors for heart substructures and the risk of subsequent cardiac toxicity.

An  individual patient’s cardiotoxicity risk can be modified with advanced treatment plan-

ning techniques, including deep inspiration breath hold. Proton therapy is currently showing
advantages in improving treatment planning parameters when compared to advanced

photon techniques in lymphoma, thymic malignancies, malignant mesothelioma and cran-

iospinal irradiation.
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observed in 50 out of 1362 childhood cancer survivors, who
were diagnosed between 1966 and 1996 and were at least five
years cancer-free, with a median follow-up of 22.5 years since
cancer diagnosis (range, 4.0–44.5). Two-hundred and sixty-six
630  reports of practical oncology an

1.  Background

The number of long-term cancer survivors is increasing,
primarily due to the successful implementation of new
diagnostic and treatment strategies in recent decades. Radio-
therapy, as one of the fundamental modalities of cancer
care, is improving progression-free and overall survival in
many  thoracic malignancies.1,2 Nonetheless, exposure to radi-
ation therapy increases long-term survivors’ relative risks
(RR, 1.2–3.5) for clinically important cardiac events, such as
congestive heart failure, pericarditis or ischemic heart dis-
ease. Subclinical abnormalities can be detected with accurate
diagnostic methods in ≥50% of patients,3 depending on the
screening method and heart-absorbed dose. Toxic effects of
mediastinal radiotherapy on heart substructures, such as peri-
cardium, myocardium, conducting system, coronary arteries
and heart valves are well documented.4–11 Most clinical data
on the association between heart dosimetric parameters and
cardiotoxicity come from adult Hodgkin lymphoma, breast
cancer, lung cancer, esophageal cancer and childhood can-
cer survivors.7 The risk of cardiac toxicity and time interval
between mediastinal radiotherapy and clinical manifesta-
tion of cardiovascular disease (CVD) may be both related to
heart-absorbed dose and irradiated heart volume, which are
further associated with planning target size and its location
in the mediastinum, vicinity to specific cardiac substruc-
tures, prescribed radiotherapy dose, technique and individual
anatomy.3,7,12 Baseline patient and treatment-related cardio-
vascular risk factors, including smoking, physical activity, diet,
obesity, arterial hypertension, dyslipidaemia, diabetes melli-
tus, family history of cardiovascular diseases, age, gender and
chemotherapy regimens may additionally affect overall risk of
radiation-induced cardiac injury.3,5

When the whole heart absorbs small radiation doses, car-
diac injury may become clinically manifested within the first
few years after radiotherapy and continue to be of great sig-
nificance decades after radiation exposure.5,13–15 That kind of
association was observed with a linear dose-effect correla-
tion between heart-Dmean and late CVD in breast cancer,5,16,17

paediatric4,18 or lymphoma11,19,20 survivors, with no appar-
ent heart-Dmean threshold. On the contrary, when prescribed
doses to the clinical target in the mediastinum are typically
higher (≥40–50 Gy), smaller parts of the heart may absorb
higher radiation doses. Evidence from oesophageal21 and lung
cancer8,12 studies reveals that excessive dose to the heart
may put patients at a higher risk of non-cancer related death
in the first few years after completion of radiation therapy.
Heart-V20 (hazard ratio, HR 1.008, p < 0.001) and heart-V40

(HR 1.013, p < 0.001) were associated with decreased survival
in univariate analysis of the RTOG 0617 randomized trial in
locally advanced lung cancer. Importantly, heart-V40 (HR 1.012,
p < 0.001) remained significantly associated with overall sur-
vival also in multivariate analysis.12

The aim of this review is to résumé available clinical and
treatment planning data regarding cardiotoxicity of mediasti-
nal (non-lung and non-oesophageal) radiotherapy, including
thoracic tumours such as lymphoma or thymic malignancies.
We also reviewed data regarding craniospinal (CSI) and total
body irradiation (TBI).
iotherapy 2 4 ( 2 0 1 9 ) 629–643

2.  Materials  and  methods

Published manuscripts were identified through a
PubMed/MEDLINE search of the National Library of Medicine
using combinations of the following keywords: cardiotoxic-
ity, cardiac toxicity, cardiovascular diseases, cardiovascular
complications, cardiac dysfunction, cardiovascular effects,
cardiac complications, cardiac injury, normal tissue com-
plication probability (NTCP), radiotherapy, radiation dosage,
dose-estimation models, dose-volume predictors, radiother-
apy dosage, radiation therapy, radiation-induced, irradiation,
dosimetric study, lymphoma, thymoma, mesothelioma, cran-
iospinal irradiation, total body irradiation, medulloblastoma,
cancer of the mediastinum, mediastinal cancer, mediastinum
cancer, mediastinum neoplasms, mediastinal neoplasms,
mediastinal tumours, mediastinal radiation. In the first
evaluation round, we examined rough search results and
excluded articles not relevant for the topic. Through hand
searching of the relevant articles’ reference lists, we found
additional references. We considered only English language
literature and limited our search to articles published after
1990.

3.  Results

An initial search of the literature retrieved 1311 results. The
final selection resulted in 212 manuscripts, and 97 of them
were excluded because of several reasons, as follows: the
content of the article was not focused on cardiac toxicity of
mediastinal irradiation, duplicated items or the manuscripts
presented case reports. Whenever possible, we  further clas-
sified studies into clinical or treatment planning/dosimetric
comparison groups.

4.  Cardiotoxicity  in  survivors  of  childhood
and  adolescent  cancer

A linear dose-response relationship between the average
dose to the heart and the risk of cardiac mortality (esti-
mated excess RR at 1 Gy, 60%) was brought forward in a
study on childhood cancer survivors by Tukenova et al.
in 2010.4 In their study cohort of 4122 patients, including
Hodgkin and non-Hodgkin lymphoma survivors diagnosed
before 1986, anthracycline chemotherapy (cumulative dose
>360 mg/m2) and heart-Dmean, particularly when it exceeded
5 Gy (RR ≥ 12.5), were both associated with an increased risk
of dying of cardiac disease.4 In a retrospective cohort study by
Mulrooney et al., survivors of various paediatric cancers were
significantly more  likely to suffer from a pericardial disease,
congestive heart failure, myocardial infarction or valvular dis-
ease than siblings, with a reported HR of 6.3, 5.9, 5.0 and 4.8,
respectively.22 Heart-Dmean ≥15 Gy significantly increased the
likelihood of symptomatic cardiac injury.22

In another study, symptomatic cardiac events were

https://doi.org/10.1016/j.rpor.2019.09.002
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atients were exposed to the radiation, due to TBI, CSI, whole
bdominal irradiation or irradiation of the thoracic structures
ith a median cardiac absorbed dose (equivalent dose in 2 Gy

ractions, EQD2) ranging from 15.75 to 30.14 Gy.23 In the mul-
ivariate analysis, a higher anthracycline dose (HR 1.7 per
00 mg/m2), a higher cardiac irradiation dose (HR 1.8 per 10 Gy
QD2) and the presence of congenital heart disease (HR 12.0)
ll significantly increased the risk of a symptomatic cardiac
vent.23

Chow et al. proposed an individual prediction model of
schemic heart disease succeeding childhood cancer treat-

ent based on an observational study on a large population
f 5-year childhood cancer survivors (N = 13.050) and a control
roup of 4023 siblings. Low-, moderate- and high-risk cate-
ories were identified in a prediction model, which included
ex, chemotherapy and estimated heart-specific absorbed
adiation dose. The model proposed an increased risk of car-
iotoxicity for chest radiation, particularly when the absorbed
ose in the thorax exceeded 5 Gy. Cumulative incidences for

schemic heart disease at age 50 years were 7.7% (95% con-
dence interval, CI, 6.3–9.1%) and 1.2% (95% CI, 0.4–2.0%)
or survivors of childhood cancer and control group, respec-
ively. Among low-, high-risk and control groups, cumulative
ncidences were as follows: <5%, 20% and 1% (p < 0.001),
espectively.24 Nevertheless, it is worth bearing in mind that
ll long-term data for paediatric cancer survivors are derived
rom two-dimensional radiotherapy (2D-RT) treatment plan-
ing and reconstructed three-dimensional estimates of the
bsorbed heart doses.

.  Cardiotoxicity  after  mediastinal
adiotherapy  for  Hodgkin  and  non-Hodgkin
ymphoma  survivors

reatment of lymphoma patients has changed dramati-
ally during recent decades, with the de-escalation of both
hemotherapy and radiotherapy in order to diminish early
nd late toxicity while at the same time not compromis-
ng control of the disease. Most of our knowledge regarding
ardiotoxicity in long-term survivors comes from radiation
herapy delivered 20–30 years ago using mantle field and pre-
cribed radiation doses of ≥40 Gy. Today, radiation fields are
ignificantly smaller, prescribed doses are lower and, in some
ases, radiotherapy is no longer indicated. Currently, doses of
0–36 Gy are typically prescribed to a more  precisely defined
arget volume depending on the stage of the disease, type of
ymphoma and response to chemotherapy.1

Before linear accelerators and three-dimensional confor-
al  radiotherapy (3D-CRT) treatment planning became widely

vailable, the 2D-RT approach with an anterior mediastinal
eld with or without boost dose to the posterior medi-
stinum was typically used. Besides, a Cobalt-60 unit lower
ean energy of 1.25 MV  resulted in high-dose areas near

he body surface, anatomically corresponding to anterior
ortions of the heart. 3D-reconstructed doses to the heart

nd right coronary artery in a study by Vordermark et al.
ange up to 48–58 Gy, with a median maximal dose (Dmax)
orresponding to 128% of the prescribed dose.25 The mod-
rn anterior-posterior opposing-beam mantle technique with
therapy 2 4 ( 2 0 1 9 ) 629–643 631

photon energies of 4–6 MV generates much lower maximum
doses in the anterior cardiac region, resulting in lower car-
diotoxicity risk.25,26

5.1.  Cardiac  mortality  and  morbidity  after  radiation
treatment  for  lymphoma  survivors

Cardiovascular death is the third most common cause of
death of lymphoma survivors after disease recurrence and
secondary cancer.13,27 Compared to the general population,
Hodgkin and non-Hodgkin lymphoma survivors are estimated
to have 5.3–7.3 times increased risk of long-term cardiovas-
cular mortality.28 In a large meta-analysis by Boyne et al.,
including more  than 61,000 survivors, treated between the
years 1940 and 2006, the association was even more  signifi-
cant for Hodgkin lymphoma survivors treated before the age
of 21.28 Retrospective studies with median follow-up of 7–15.6
years are consistently reporting an RR of 3.1–6.7 for myocardial
infarction or sudden cardiac death.29,30

The most frequently occurring CVDs in Hodgkin lym-
phoma survivors are valvular heart disease (21–41%) and
coronary heart disease (17–23%), followed by heart failure
(8–17%), conduction disorders (12%) and pericardial abnor-
malities (10%).30–33 The 40-year cumulative incidence of CVD
with multimodality treatment (mediastinal radiotherapy and
anthracycline-containing chemotherapy) could be as high as
50%, with more  than half of these patients developing multiple
events.31 The risk for various cardiovascular diseases remains
increased at least 25–40 years after treatment and is especially
high in younger patients (<20–25 years of age).31,34

5.2.  Coronary  artery  disease

Chest irradiation, with or without chemotherapy, predis-
poses patients to a higher presence, greater severity, more
considerable extent and more  proximally located coronary
artery disease (CAD) compared with matched non-irradiated
controls.35 Coronary CT abnormalities can be detected early,
within the first five years after treatment and the risk remains
high ≥15 years after radiotherapy.36 Arterial stiffness, which
seems to occur soon after radiation, is frequently used as an
early marker of CVD.37 Van Leeuwen-Segarceanu et al. found
increased arterial stiffening in Hodgkin lymphoma survivors
treated with mediastinal radiation and this increase was most
evident in patients treated at an older age (>35–40 years).38 RR
for death attributed to acute myocardial infarction for those
who received more  than 35 Gy to the mediastinum is esti-
mated to be 7.5.39

5.3.  Valvular  heart  disease

Left-sided valves (aortic and mitral ones) are more  often
involved than right valves and regurgitation is more  common
than stenosis.40–44. Dysfunction is mostly mild, but the risk
of moderate or severe dysfunction is much higher than in

the general population.30,33,42 For clinically relevant valvular
disease, a latency greater than ten years and a high risk of
progressive valvular deterioration during the second and third
decade after treatment have been described.44 Prevalence

https://doi.org/10.1016/j.rpor.2019.09.002
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increases with time following irradiation and seems to be
independent of age.41,42

5.4.  Pericardial  disease

On average, a mean absorbed dose of 40 Gy to the mediastinum
increases the prevalence of the asymptomatic pericardial dis-
ease tenfold, but the clinically evident pericardial disease is
rare.30,45 In a study by Wei et al., clinical indicators of pericar-
dial disease better correspond with dose-volume parameters
derived from the dose-volume histograms of the pericardium
than with those of the whole heart. The risk for pericar-
dial effusion is particularly high for pericardium-Dmean > 26 Gy
and pericardium-V30 > 46%.3,46 In a retrospective study on 325
Hodgkin lymphoma survivors, the pericardial thickening was
reported in 21% of patients after a median follow-up of 11.2
years, in comparison with 2.5% in the general population. No
patient had wall-motion abnormalities or Doppler findings
suggestive of constrictive pericarditis.30 Lund et al. docu-
mented pericardial thickening in 15% of the total 116 patients,
who  received a median radiation dose of 40.6 Gy to the medi-
astinum. In most cases, there were no signs of hemodynamic
impairment.47 Pericardial disease requiring pericardiectomy
or pericardiocentesis occurred in 0.7% of 1279 Hodgkin lym-
phoma survivors after a median mediastinal absorbed dose of
40 Gy. The absolute excess risk for a pericardial procedure was
4.69 per 10,000 person-years of follow-up or 0.05% per year.45

5.5.  Myocardium  and  heart  failure

Myocardium exposure to high radiotherapy doses leads to
myocardial fibrosis and, consequently, to restrictive cardiomy-
opathy. The primary mechanism of heart failure in restrictive
cardiomyopathy is diastolic dysfunction. Congestive heart
failure can also be associated with other radiation-induced
heart conditions such as constrictive pericarditis, CAD,
ischaemic and valvular heart diseases and most commonly
occurs late in a series of events.36,48 Heart failure risk increases
with time and is three- to sevenfold more  common compared
to non-irradiated patients, mainly when absorbed heart-
Dmean is higher or equal to 30 Gy.34,41 Forty-year cumulative
incidence of heart failure and cardiomyopathy is rather high,
reaching 14–25%.31,33,34

5.6.  Asymptomatic  cardiotoxicity

Cardiac abnormalities are frequently found in asymp-
tomatic lymphoma survivors screened with echocardiogra-
phy, myocardial perfusion scintigraphy, electrocardiogram
(ECG) or cardiac MRI. The prevalence increases with time
post-radiation treatment and ranges from 4% to almost every
screened patient, depending on screening method, prescribed
dose, heart absorbed dose and dose to its substructures.32,33

5.7.  Dose-volume  predictors  of  cardiotoxicity
Only a few studies have examined dose-response rela-
tionships for radiation-induced cardiotoxicity in lymphoma
survivors (Table 1). In mediastinal radiotherapy for Hodgkin
lymphoma patients, the heart generally absorbs a more
iotherapy 2 4 ( 2 0 1 9 ) 629–643

homogenous dose — heart-Dmean is significantly higher and
patients are typically younger at the time of treatment
compared to breast cancer patients. A large case-control
study of 2617 Hodgkin lymphoma survivors evaluated dose-
response relationship between heart-Dmean and risk of CAD
after mediastinal radiotherapy.20 The authors confirmed a
linear radiation dose-response relationship described in pre-
vious studies and indicated that there is no threshold dose
(Fig. 1). Neither chemotherapy in general nor a specific
chemotherapeutic agent was associated with CAD risk. It
was also demonstrated that higher physical activity levels
may decrease the risk for CAD development, while hyper-
tension, obesity and recent smoking are independent risk
factors for higher risk of CAD.20 Cella et al. linked the risk
of asymptomatic alteration of valvular function with dose-
heart volume constraints for the whole heart and specific
cardiac substructures. In their study on 56 patients, 32.1%
of patients developed valvular regurgitation and/or stenosis
after a median follow-up of 70.5 months. Left atrium (LA),
left ventricle (LV) and right ventricle (RA) dosimetric param-
eters were all associated with a higher risk of mitral, aortic
or tricuspid valve dysfunction.49 Moreover, in another pub-
lication, the authors emphasized the importance of jointly
considering lung dose-volume constraints and lung volume
in predicting subclinical radiation-related injury, resulting in
valvular dysfunction.19 Cutter et al. assessed the relationship
between radiation dose to the heart valves and the subse-
quent risk of clinically significant valvular dysfunction. A
non-linear relationship was found between valve-Dmean and
valvular dysfunction with a progressive increase in valvu-
lar dysfunction rates with valve-Dmean > 30 Gy. The authors
estimate that 30-year risk of significant valvular dysfunction
will be increased by only approximately 1.4% for Hodgkin
lymphoma patients treated with modern mediastinal radio-
therapy using 20–30 Gy.11

5.8.  Target  volumes  and  radiotherapy  techniques

Reduction in target volume and total prescribed dose,
using modern radiotherapy techniques such as intensity-
modulated radiotherapy (IMRT), volumetric modulated arc
therapy (VMAT) or proton therapy and deep inspiration breath
hold (DIBH) are all ways to reduce radiation dose to the heart
and its substructures.

Compared to mantle field radiotherapy, involved field
radiotherapy (IFRT) or involved node radiotherapy (INRT)
reduce heart-Dmean by 35–72% 50,51 The average reduction of
heart-Dmean by an absolute of 19.8 Gy in a study by Maraldo
et al. would, interpreting data from van Nimwegen.study, lead
to an expected 146% relative reduction in the risk of ischaemic
heart disease.20,51 A significant difference in heart-Dmean was
shown in a treatment planning study, taking into account four
different volumes and two different prescribed doses. Heart-
Dmean ranged from 6.7 to 21.2 Gy, depending on target volume
size and prescribed dose.52 Similar reductions of heart-Dmean

(range, 8.4–21.9 Gy) and also heart-V30 (range, 2.1–29.1%) were

calculated in a dosimetric comparison study by Murray et al..43

Studies coherently report the benefit of IMRT  versus 3D-CRT
in lowering the mean doses to the heart and cardiac sub-
units. While typical heart-Dmean reduction with IMRT  is in the

https://doi.org/10.1016/j.rpor.2019.09.002
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Table 1 – Studies investigating dose-volume predictors for radiation-induced cardiotoxicity in lymphoma survivors. Abbreviations: Dmean, mean dose absorbed to the
specified volume; Dmax, maximum absorbed dose to the specified volume; ↑, higher; AMI, acute myocardial infarction; ERR, the excess relative risk; CAD, coronary
artery disease; HL, Hodgkin lymphoma; 2D-RT, two-dimensional radiotherapy; 3D-CRT, three-dimensional conformal radiotherapy; RT, radiotherapy; Vx, receiving at
last x Gy; LA, left atrium; LV, left ventricle; RV, right ventricle; VD, valvular dysfunction; CAO, coronary artery origin; CCTA, coronary CT angiography; OR odds ratio; NA,
not available; HR, hazard ratio; LAD, left anterior descending artery, LCX, left circumflex coronary artery; * indicates average; � indicates median; • 8.9% and 20.8% of
patients did not receive radiotherapy in cases and controls group, respectively; §  median age was not reported; �, 83.3% of patients received radiation.

Author and
year of
publication

Type of
study

Number of
patients

Time at HL
diagnosis
(years, median
age)

Follow-up
(years, median
time)

Period of
treatment

RT technique Prescribed
dose to the
mediastinum

Heart dose Dose-volume predictors and
clinical endpoint

Cella et al., 2011
49

Retrospective 56 14–70§ 5.8 2002–2008 3D-CRT 32 Gy Heart-Dmean

24.3 Gy* (VD)
Heart-Dmean 22.4
Gy* (no VD)

LA-V25 ≥63% (OR = 5.7) and LV-V30

≥25% (OR = 4.4) associated with mitral
and aortic VD RV-V30 ≥65% (OR = 7.2)
associated with tricuspid VD

Girinsky et al.,
2014 36

Prospective 179 29 11.6 1971–2008 89% 2D-RT 11%
IMRT

36 Gy CAO-Dmean

33.3 Gy
CAO-Dmean associated with CCTA
abnormalities (OR 1.13 per Gy) CCTA
abnormalities found in 25% patients, a
significant increase of irregularities
(34%) occurred >10 years
post-treatment

Cutter et al., 2015
11

Retrospective
case control
study

89  cases
200 controls

NA 18.8 1965–1995 2D-RT 25–42 Gy� Valve-Dmean

22.9-42.2 Gy�
Approximate 30-year cumulative risks
of VD: Valve-Dmean ≤30 Gy → 1.6%
Valve-Dmean =31–35 Gy → 3.0%
Valve-Dmean = 36–40 Gy → 9.3%
Valve-Dmean >40 Gy → 12.4%

van Nimwegen
et al., 2016 20

Retrospective
case-control
study

325 cases
1,024 controls

32.2 25.0 1965–1995 2D-RT 15–45 Gy• Heart-Dmean

22.0 Gy* (CAD)
Heart-Dmean 20.4
Gy* (no CAD)

↑Heart-Dmean associated with
symptomatic AMI or angina pectoris
ERR for CAD increased by 7.4% per Gy
1.74-fold increased risk at a
Heart-Dmean of 10 Gy 2.48-fold
increased risk at a Heart-Dmean of
20 Gy

Hahn et al., 2017
66

Retrospective 125 31 10.4 1988–2004 2D-RT 35 Gy�  Heart-Dmean

24.9 Gy�
Heart-Dmax

39.1 Gy�

Heart-Dmean (HR 1.09) and increasing
inhomogeneity both associated with a
higher risk of late cardiac effects
Heart-V30 (HR 1.03) For ischemic
events only (coronary artery model):
Dose homogeneity (HR 0.94) Age (HR
1.05), LAD-V5 (HR 0.98), LCX-V20 (HR
1.02)

https://doi.org/10.1016/j.rpor.2019.09.002
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Fig. 1 – Cumulative risks of coronary artery disease (CAD) as the first cardiac event among 5-year survivors of Hodgkin
Lymphoma by time since initial Hodgkin Lymphoma treatment by categories of Heart-Dmean. The estimated 25-year
cumulative CAD incidence was 4.1%, 9.4% and 12.6% for patients with a Heart-Dmean of 0 Gy, 15 Gy and ≥25 Gy, respectively.
Reprinted with permission. © (2016) American Society of Clinical Oncology. All rights reserved. Van Nimwegen et al.: J Clin

ative radiation treatment, with a higher heart-Dmean being
Oncol Vol. 34 (3), Year: 2016, 235–43.

range of 1.4–6.8 Gy, there is almost no difference between the
techniques when the target volume is located in the supe-
rior mediastinum (heart-Dmean reduction in the range of only
0–0.23 Gy).53–56 When target volumes of the same sizes are
irradiated, proton therapy, compared to photon techniques,
delivers the lower absolute heart-Dmean (8.2 Gy vs. 10 Gy).57

DIBH in combination with either 3D-CRT, IMRT  or even
proton therapy further decreases the dose to the heart
and its substructures.55,58,59. Mean doses to the heart, pul-
monic and aortic valves, mitral and tricuspid valves and
coronary arteries can be reduced by 12–15%, 20%, 30%
and ≥28%, respectively.55,59,60 The reduction is most pro-
found in superior or inferior mediastinal target volume.59,60

Several dosimetric studies comparing proton to photon
plans have been recently conducted in lymphoma patients
with mediastinal involvement.53–57,61–63. With proton ther-
apy, heart-Dmean, heart-V5–30 and heart wall-Dmean could
be reduced by ≥30%,56,61,63 left anterior descending artery,
LAD-V5–30 by 11–28%,63 LAD-Dmean by 72%54 and mean
dose to the heart chambers by 47–100%.56,61,63 In some
cases, particularly in bulky mediastinal disease with ante-
rior and posterior mediastinum involvement, proton therapy
combined with DIBH, significantly reduced heart-Dmean to
<5 Gy.61

Although proton therapy seems promising in reducing
organ at risk (OAR) exposure to radiation and first non-
randomized clinical studies, confirming low toxicity rates are
available,64 the predicted benefit of proton therapy may vary
from patient to patient.53,54,57,64 It is also associated with some
disadvantages, namely possible uncertainties at the field edge,
motion management, unavailability and cost of the treatment.
Nevertheless, proton therapy should be reasonably consid-
ered in appropriately selected lymphoma patients, when dose

to OAR can be significantly decreased.64,65 According to the
International Lymphoma Radiation Group (ILROG) recommen-
dations, two patient groups may benefit from proton therapy
in order to reduce cardiotoxicity. The first group includes
patients with mediastinal disease that spans below the ori-
gin of the left main stem coronary artery and is anterior to,
posterior to or on the left side of the heart and the other
includes heavily pretreated patients, who are at a higher risk
of radiation-related toxicity.65

6.  Cardiotoxicity  after  mediastinal
radiotherapy  for  thymic  malignancies

Thymomas and thymic carcinomas are rare thoracic cancers,
most often located in the upper anterior mediastinum. Indi-
cation for radiation treatment is not common in this group
of tumours, but when carefully considered in the postoper-
ative setting, typically prescribed doses are in the range of
45–50 Gy for patients with clear or close surgical margins and
up to 60–70 Gy for patients with gross residual or unresectable
disease.67 In a study of thymic malignancies diagnosed in
Europe between 2000 and 2007 by Siesling et al., 5-year rel-
ative survival rates for patients older than 65 and younger
than 25 years were 60% and 78%, respectively.68 Patients could
be cured, and every other patient survived 15 years or more,
results which should be taken into account in radiotherapy
treatment planning.69

6.1.  Clinical  and  treatment  planning  studies

Our search did not reveal any study correlating radiotherapy
of thymoma or thymic cancer with cardiac toxicity end-
point. In a small retrospective study by Liao et al., 72 out
of 130 patients with stage III thymoma received postoper-
associated with an increased risk of cardiovascular death
in long-term survivors.70 In 2018, Adams et al. published a
large population-based, longitudinal cohort of 2657 patients,

https://doi.org/10.1016/j.rpor.2019.09.002
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reated with orthovoltage irradiation for an enlarged thy-
us during infancy.71 Median estimated cumulative heart

ose was 1.41 Gy (range, 0.17–202 Gy, mean 1.45 Gy), with 91%
f subjects receiving <3 Gy. The authors assessed coronary
eart disease events during a combined 339,924 person-years
f follow-up. Estimated absorbed heart-Dmean <3 Gy did not

ncrease the lifelong risk of coronary heart disease.71

Guidelines suggest at least 3D-CRT treatment planning to
educe the dose to OAR in the mediastinum,67 but further
mprovement in dosimetric parameters was demonstrated

ith advanced photon techniques, such as IMRT.72 On the
ther hand, particle therapy plans, with both protons and car-
on ions, demonstrated lower doses to the lung, breasts, heart,
esophagus and spinal cord without compromising planning
arget volume (PTV) coverage when compared to 3D-CRT,73

MRT74–76, VMAT73 or helical tomotherapy, HT.73 In a study
f six patients with thymic malignancies, heart-Dmean was
educed on average by 36.5% (15.3 vs. 22.8 Gy, p < 0.001) using
roton therapy compared with IMRT.74 Vogel et al. calculated
he risk of coronary events up to 20 years after radiotherapy
ased on mean heart doses in 22 patients treated with double-
cattered proton beam therapy. Sliding-window IMRT plans
ere generated for all patients and compared to proton ther-
py plans.76 Heart-Dmean (1.0 vs. 11.0 Gy, p < 0.01), heart-V30 (18
s. 29%, p < 0.01), heart-V5 (31 vs. 50%, p < 0.01) and left ventri-
le dosimetric parameters were all significantly lower with the
roton therapy plans. On the other hand, LAD-Dmean and LAD-

max did not statistically differ in both treatment methods.76

etter heart protection finally resulted in a decreased rate of
alculated major cardiac events, up to 20 years following radi-
tion treatment (74% vs. 135%, p = 0.04).76

The DIBH technique is becoming globally available, spar-
ng the heart high- and low-dose radiation exposure.59,77,78

s already mentioned in the previous section, in a treatment
lanning study by Baues et al., the authors compared VMAT-
IBH and proton-DIBH therapy in patients with Hodgkin

ymphoma. DIBH-proton combination achieved the lowest
ose to the heart, lung and breasts, simultaneously with a
uperior target volume coverage. Dose to OAR was reduced by
8–83%.61 A similar practice can be adopted in thymic malig-
ancies (Fig. 2).

.  Cardiotoxicity  after  mediastinal
adiotherapy  for  malignant  mesotheliomas

adiation therapy for malignant pleural mesothelioma after
xtrapleural pneumonectomy, pleurectomy/decortication or
urgical biopsy is a real clinical challenge due to a large and
ircumferential PTV in order to encompass the pleural cavity.
s a part of multimodality treatment in malignant mesothe-

iomas in (neo)adjuvant settings, prescribed doses are up to
0–60 Gy.2,79

.1.  Clinical  and  treatment  planning  studies
easible toxicity profiles are reported for adjuvant radiother-
py with helical tomotherapy, HT,80–82 IMRT 83–85 VMAT86 and
ecently for proton techniques.87,88 Table 2 presents clinical
therapy 2 4 ( 2 0 1 9 ) 629–643 635

studies using photon adjuvant therapy including at least some
of the cardiotoxicity profile in their report.

Typical mean heart-Dmean doses are in the range of
18.8–24.8 Gy (VMAT), 18.5–32.9 Gy (IMRT) and 21.5–24.8 Gy
(HT), with lower heart-Dmean in the right hemithorax
radiotherapy.90 More recently, intensity modulated proton
therapy (IMPT) has been shown to be clinically safe and feasi-
ble, with increased contralateral lung, heart, esophagus, liver
and ipsilateral kidney sparing compared to IMRT  or VMAT
photon techniques.87,88,91,92 Clinical and comparative plan-
ning studies demonstrated clinically acceptable proton plans
with simultaneous reduction of heart-Dmean, heart-V40 and
V45 dosimetric parameters by 49–76%, 36–75% and 53–69%,
respectively.87,91,92

A lack of prospective clinical studies and randomized con-
trolled data in mesothelioma malignancies makes a definite
conclusion regarding cardiotoxicity rather difficult. The inci-
dence of reported grade 2 or higher cardiac events is in the
range of 6–8%. Most of the presented studies are small and
retrospective cohorts with a short follow-up, using different
chemotherapy regimens and surgical approaches, preferably
focusing only on lung toxicity with insufficient reporting on
heart dosimetry. IMPT has shown promising results, partic-
ularly in limiting radiation exposure to thoracic OAR, but
clinical outcomes have to be confirmed in prospective clinical
trials.

8.  Cardiotoxicity  after  craniospinal
irradiation

8.1.  Clinical  studies

Clinical studies evaluating heart-related side effects of CSI in
medulloblastoma patients are scarce and mostly retrospec-
tive. The prescribed total treatment dose in medulloblastoma
CSI varies from 18 to 36 Gy delivered in 1.8 Gy fractions
with a boost dose to intracranial or spinal metastases,
when indicated.93 It is essential to be aware of possible
late treatment-related toxicity because the 5-year event-free
survival rate in medulloblastoma patients is high, reaching
>80%.94 In CSI, all heart structures are susceptible to cardiac
injury due to the exit radiation dose. In a small retrospec-
tive study of 19 patients treated with VMAT,  heart typically
received 33.5% (heart-Dmean) and 65.7% (heart Dmax) of the
prescribed CSI dose. Mean dose to the PTV ranged from 18.8
to 37.9 Gy.93 However, study follow-up was too short (≤3 years)
to demonstrate any long-term cardiac sequelae. In a study by
Schiopu at al., 45 patients were treated with tomotherapy CSI.
The average heart-Dmean was 29.6% (9.2 Gy) of the absorbed
PTV dose. With a median follow-up of 52 months, no acute or
late cardiac toxicity was observed.95

8.2.  Treatment  planning  and  risk  assessment  studies

Compared to conventional 2D-RT or 3D-CRT, advanced treat-

ment techniques (i.e., IMRT,96 VMAT,97,98 HT,98,99 electron-
based technique100 and proton pencil beam scanning101,102)
were all found to be superior regarding dosimetric parameters
in order to achieve better sparing of the heart and other OAR.

https://doi.org/10.1016/j.rpor.2019.09.002
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Fig. 2 – Free breathing (FB) VMAT  plan and dose-volume histogram taking into account internal target motion based on
4D-CT scan versus deep inspiration breath hold (DIBH) VMAT  plan in a 50-year old patient after R1 resection of thymoma.

https://doi.org/10.1016/j.rpor.2019.09.002
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Table 2 – Studies of adjuvant radiotherapy after surgery for mesothelioma. Abbreviations: Vx receiving at last x Gy,
Dmean, mean absorbed dose, IMRT,  intensity modulated radiation therapy, 3D-CRT, three-dimensional conformal
radiation therapy, HT, Helical tomotherapy, G, grade, Gy, Gray, PTV, planning target volume.

Author and year of
publication

Type of study and
number of patients

Prescribed dose,
target volume and
radiotherapy
technique

Follow-up
(months,
median time)

Heart
absorbed
dose

Cardiovascular toxicity

Rice et al., 2007 84 Retrospective, 63
patients after
extrapleural
pneumonectomy

50 or 45 Gy in 25
fractions, with a boost
dose up to 60 Gy in 25
fractions IMRT (100%)

Not reported Not reported One (1.5%) case of death of
presumed arrhythmia after
receiving approximately half of
the prescribed target dose Four
(6%) cases of minor,
self-limited cardiac events: two
cases of sinus tachycardia, one
new onset of atrial fibrillation
and one case of mild
pericarditis

Tonoli et al., 2011 85 Retrospective, 56
patients

50 Gy in 25 fractions
with simultaneous
integrated boost up to
60 Gy in 20 patients
Target volume was
ipsilateral hemithorax
and affected
mediastinum 3D-CRT
(7.1%) IMRT (89.3%) HT
(3.6%)

20 (range, 5–74) Heart
V40 = 66% and
V50 = 14.1%
(mean values)

One case of constrictive
pericarditis causing death
three years after radiation
treatment, other cardiac
toxicity not reported

Gomez et al., 2013 89 Retrospective, 86
patients after
extrapleural
pneumonectomy

45–50 Gy to the
ipsilateral hemithorax
and a radiation boost to
55–60 Gy when
indicated IMRT (100%)

13.9 (range,
2.7–99.3)

Not reported Six (6.9%) cases of ≥ G2 cardiac
toxicity, with two (2.3%)
being ≥ G3 toxicity, namely
pericardial effusion and severe
cardiomyopathy

Parisi et al., 2017 80 Retrospective, 36
patients after pleurec-
tomy/decortication or
surgical biopsy

25  Gy over 5 consecutive
days, Five Gy per
fraction with dose
escalation up to 37.5 Gy
in 26 patients HT (100%)

37.0 (range,
3.0–54.0)

Heart Dmean,
range,
4–14 Gy

Three (8.3%), cases of
pericardial effusion One (2.7%)
case of pericarditis One (2.7%)
case of cardiac arrest, which
occurred three months
following radiation treatment
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years were 5.7 times more  likely to develop a severe or life-
threatening condition, such as myocardial infarction, stroke
and diabetes, compared with siblings (p < 0.001).109 A com-
harma et al. demonstrated clear benefits of HT regarding tar-
et volume coverage, dose homogeneity, conformity and, at
he same time, OAR sparing. Heart-Dmean, heart-V80% and V10%

or 3D-CRT, IMRT  and HT were 17.8 Gy, 7.5 Gy, 5.0 Gy, 23.2%, 0%,
% and 73.7%, 93.9%, 72.9%, respectively.99

Proton beam CSI, compared to photon beam CSI tech-
iques, confers lower predicted healthy tissue complication
isks. Due to the Bragg-peak, the exit dose to OAR in proton
adiotherapy treatment delivery is considerably reduced. The
stimated complication rate risk reduction is based on dif-
erent models of risk assessment, as shown by Ho et al..103

n a small study of 17 paediatric patients, the risks of car-
iac mortality between field-in-field photon CSI and passively
cattered proton plans were compared. The ratio of RR (pro-
on/photon) for cardiac mortality ranged from 0.12 to 0.24. The
uthors were able to lower heart-Dmean from 10.4 ± 2.2 Gy in
hoton plans to 0.2 ± 0.2 Gy in reconstructed proton plans.104

ong-term prospective clinical data are required to demon-
trate clinical benefits of one radiotherapy technique over

nother.
9.  Cardiotoxicity  after  total  body  irradiation

Long-term survivors of hematopoietic cell transplantation
have an increased risk of treatment-related severe chronic
health conditions, due to intense chemotherapy,105,106

radiotherapy treatment23,106–108 and graft versus host
disease.106,107,109 TBI itself, as part of hematopoietic cell
transplantation conditioning, exposes long-term survivors to
a higher risk of CVD106–108 due to direct radiation exposure
of the heart and indirect disruptions of metabolic, renal,
pulmonary, neurologic and endocrine functions, causing
late treatment sequelae such as growth hormone deficiency,
diabetes mellitus, dyslipidaemia, metabolic syndrome, hyper-
tension or renal failure.106,107,110,111 In a study by Sun et al.,
hematopoietic cell transplantation survivors, surviving ≥10
plete review of TBI-related heart toxicity is beyond the scope

https://doi.org/10.1016/j.rpor.2019.09.002
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Table 3 – Clinical studies evaluating late cardiac effects following total body irradiation as part of hematopoietic cell transplantation conditioning. Abbreviations: TBI,
total body irradiation, HR, hazard ratio.

Author and
year of
publication

Type of study and number of
patients

Prescribed dose or heart
absorbed dose

Follow-up
(years,
median
time)

Period of
treatment

Age at
diagnosis
(years)

Cardiovascular toxicity

Van Der Pal et al.,
2012 23

Retrospective, 1362 childhood
cancer survivors 28 (10.5%) out of
266 childhood cancer survivors
who received radiation treatment,
received TBI

Median heart absorbed dose
15.75 Gy (range, 14.0–21.60)

22.5  1966–1996 range, 0–18 Symptomatic cardiac events, including congestive heart
failure, cardiac ischemia, valvular heart disease, pericarditis
and cardiac arrhythmias, were increased with anthracyclines
and/or cardiac irradiation

Mulcahy Levy
et al., 2013 110

Retrospective, 15 patients, who
received TBI under three years of
age

Total prescribed dose 12 Gy,
delivered in six fractions of 2 Gy,
lung shielded to receive less than 9
Gy, four patients received
additional cranial boost irradiation
to a total dose of 22 Gy

range,
1.4–13.0

1994–2010 ≤3 18.2% (2 out of 11 evaluated patients) had some cardiac
abnormalities, 20% (3/15) had hypertension, 69.2%, (9/13) had
dyslipidaemia

Künkele et al.,
2013 112

Retrospective, 98 paediatric cancer
survivors, 39 patients included in
the follow-up study

Total prescribed dose of 12 Gy,
delivered in six fractions of 2 Gy,
lung exposure reduced to 10 Gy

8.3 (range,
2.0–21.9)

1985–2008 17.4 (range,
7.5–30.2)

No long-term impact on cardiac function observed, defined as
echocardiographic shortening fraction <30%

Marnitz et al.,
2014 113

Retrospective, 110 patients with
acute lymphoblastic leukaemia

Total prescribed dose 12 Gy,
delivered in six fractions of 2 Gy;
lung shielded with lung blocks, to
receive less than 10 Gy

14.0  (mean
time)

1985–2010 34 (mean),
range, 17–54

No acute or late cardiac toxicity reported during follow-up

Novetsky
Friedman
et al., 2017 107

Retrospective, 123 childhood
hematopoietic cell transplantation
survivors

Total prescribed dose 12–15 Gy 8.0 1987–2011 11.8 (median),
range,
1.6–21.9

Increased risk of high triglycerides and low HDL, no acute or
late cardiotoxicity reported Growth hormone deficiency,
history of cranial irradiation and grade II-IV acute graft versus
host disease were all associated with an increased risk of
developing cardiovascular risk factors

Myers et al., 2018
114

Retrospective cohort of two-year
survivors of autologous
hematopoietic cell transplantation
for Hodgkin (n = 836) and Diffuse
large B-cell lymphoma (n = 781)
Hodgkin lymphoma: 44% (n = 371)
received radiation therapy before
transplantation and 5% (n = 5)
received TBI Diffuse large B-cell
lymphoma: 28% (n = 218) received
radiation therapy before
transplantation and 15% (n = 115)
received TBI

Not  reported 10.5 (range,
2–24.3)

1990–2008 33 (median)
for Hodgkin
lymphoma
and 51
(median) for
Diffuse large
B-cell
lymphoma

14  (<1%) cases of congestive heart failure 11 (<1%) cases of
myocardial infarction Risk factors for overall mortality
included TBI exposure in Hodgkin lymphoma (p < 0.001) and
Diffuse large B-cell lymphoma (p = 0.013) survivors

Duncan et al.,
2018 115

Multiinstitutional retrospective
study of 661 two-year survivors of
hematopoietic cell transplantation
for childhood hematologic
malignancy, 453 (83%) patients
received TBI

TBI  conditioning not reported
Median chest irradiation dose (TBI
excluded) = 7 Gy (range, 0.1–50.4)
Median cranial irradiation dose
(TBI excluded) = 12 Gy (range,
0.12–50.4)

8.1 (range,
2–19.2)

1995–2008 8.8 (median)
range,
0.3–20.9

4.2% patients experienced at least one late cardiovascular
outcome, including coronary artery disease (0.2%)
cardiomyopathy (3%), cerebrovascular accident (0.6%),
cardiac-related death (0.5%) The risk was increased with chest
radiation (HR, 2.18, p = 0.0087), cranial irradiation (HR 5.58,
p < 0.0001) and anthracycline chemotherapy (HR 4.67, p = 0.036)
TBI was not predictive of the development of one of the
primary cardiovascular outcomes
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f the present work. However, we  summarized published
linical data in Table 3. Reports are limited by short follow-up
ime, small retrospective cohorts, retrospective evaluation of
ardiac events, lack of cardiac dosimetry reports, different
ematopoietic cell transplantation conditioning schemes and

 wide range of age at diagnosis.

0.  Conclusions

tudies uniformly show a linear radiation dose-response rela-
ionship between heart-Dmean and the risk of dying as a result
f cardiac disease, particularly when absorbed mean heart
ose exceeds 5 Gy. However, cumulative incidences of CVD
fter mediastinal radiotherapy are low, but must be considered
n the context of global increases in the number of cancer sur-
ivors. Mediastinal radiotherapy with doses of around 40 Gy
ith the 2D-RT technique increases the risk of cardiovascu-

ar death roughly six fold. The risk is the highest ten years
ost-treatment and increases with heart-Dmean, increasing

nhomogeneity of the absorbed heart dose and depends on
ge at diagnosis. For specific heart substructures, only a few
ose-volume predictors for cardiotoxic events are available
nd further studies are warranted. Asymptomatic CVD is more
ommon and could be found at screening in the majority
f lymphoma survivors, although some of these abnormal-

ties may be of minor clinical relevance. Dosimetric studies
how that the burden of cardiac toxicity is substantially
educed with modern radiotherapy techniques, compared to
istorical series. All efforts should be made to lower the
ose to the heart and its substructures as reasonably as
ossible, regardless of patient age or primary tumour histol-
gy. Technological developments such as breathing control
nd improvements in treatment planning techniques may
acilitate further reduction in cardiac mortality risks. Proton
herapy is rapidly evolving and currently showing the best
osimetric advantages in sparing thoracic OAR when com-
ared to advanced photon techniques in lymphoma, thymic
alignancies, malignant mesothelioma and CSI, although real

linical benefits and cost-effectiveness have yet to be demon-
trated.
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