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Background: Practice of Unflattened or Flattening filter free (FFF) beam has become the high

dose  standard in radiotherapy (RT), such as stereotactic radio-surgery (SRS) and stereotactic

radiotherapy (SRT). The removal of a flattening filter (FF) from the path of a photon beam

alters the characteristics of FFF beam. Since the conventional route for dosimetric analysis

of  FF beam cannot be applied to FFF beam, the procedure of analyzing beam characteristics

for  FFF beam based on inflection points (IPs) is used. IP is a point where the concavity change

observed corresponds to its change in sign (±) of the second derivative.

Aim: The objective of the study is to determine IPs for dosimetric analysis of the FFF beam

profile.

Methods and materials: In this study, IPs are determined through the python code program-

ming based on the mathematical first principle of the derivative. They are compared with IPs

estimated by the conventional graphical manual method using Microsoft Excel (MS). IPs and

their dependent dosimetric parameters determined by both mathematical and graphical

manual methods are compared.

Result: Percentage differences between the IPs determined by both methods, for 6MVFFF

inline and crossline beam profile are found to be 2.7% and 0.8% respectively. Similarly, the

average penumbra differences for 6MVFFF inline and crossline beam profile are found to

be  0.15 mm and 0.9 mm, respectively. However, differences in the field width between both

methods are found insignificant.
Conclusion: Graphical manual method is very time-consuming, tedious and user dependent.

However, the mathematical method through python code programming is more  precise,

faster and independent of individual users.
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.  Background

he practice of Unflattened or Flattening filter free (FFF) beam
as become the golden standard in the treatment high dose
adiotherapy (RT) like stereotactic radio-surgery (SRS) and
tereotactic radiotherapy (SRT) as it can deliver high dose per
raction. Removal of the flattening filter from the path of a
hoton beam produces non-uniform intensity pattern along
he cross section of the clinically useful beam profile. This
ignificantly increases the dose rate as well as reduces the
catter, off-axis doses and head leakage for the photon beam.
n addition to that, the reduction in neutron production is
lso observed.1–3 The idea behind the removal of a flatten-
ng filter (FF) is to reduce the treatment time by increasing the
ose rate which could predominantly be achieved by remov-

ng FF.4 Absence of the FF also causes the softening of the
eam spectra, which leads to a change in beam quality of FFF
eam as well.5 In addition to that, FF beam needed high posi-
ional precision for maintaining the symmetry and flatness.

ell, conventional radiation therapy techniques are replaced
ith modern automated static segmented and dynamic deliv-

ry by Multileaf Collimator (MLC). MLC  delivers the treatment
y generating an inhomogeneous fluence map.  Thus, uniform
uence of a flat beam is not strictly necessary for the high-
nd technique like SRS and SRT. Even, at the field dimension of
uch techniques, the beam is acceptably flat without FF. Hence,
or such high dose advance radiation therapy techniques, FF
s not at all required.6–8

However, the difficulty associated with FFF beam is its for-
ard peak geometry and maintaining dosimetric parameter

or clinical use. The beam softening effect along the off-axis
f a beam profile causes a sigmoid or S-shaped curve on either
ide of the beam profile. Preserving the shape of the curve is
ecessary, because this governs the symmetry and degree of
nflatness for the geometry of forward peak intensity of the
eam. This kind of curves is very common in many  disciplines

ike Graph Theory, Biological Science, Analytical Chemistry,
ose response, etc. An essential key concept of the sigmoid
urve is the inflection points (IPs).9 IP is a point where con-
avity changes and second derivatives have an absolute zero
alue. Physical and dosimetric characteristics of FFF beam can
e estimated from a point of inflection. The point of inflec-
ion lying in a high dose gradient region of the beam profile is
ne of the highly influencing factors in determining FFF beam
haracteristics that needs to be determined precisely. Many
hysicists follow the graphical manual method for determin-

ng IPs of FFF beam. However, there are multiple drawbacks
ssociated with the manual method, which incorporates error
n calculating IPs. Manual procedure belonging which could
nfluence the IPs and produces an error essentially consists
f defining the start and end points and drawing of a tangent
long those points. The procedure is highly laborious and user
ependent. This study is motivated by an observed error in
etermining IPs.
.  Methods  and  materials

e  have developed a python code for determining the IPs
ased on the mathematical first principle of derivatives.

b
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Recently commissioned state of art Varian TrueBeamTM med-
ical linear accelerator equipped with millennium 120 leaves
MLC  producing a 6MVFFF beam was used for this study. Beam
profile measurement was accomplished using Sun-nuclear
Corporation (SNC) 3D-scanning Radiation field analyzer (RFA)
dosimetry system accompanied by SNC 0.125cc ionization
chamber controlled with SNC software. SNC dosimetry allows
us to perform auto-alignment of a phantom platform and
water level adjustment. After pouring water, the phantom
platform and water were leveled automatically and checked
manually for any misalignment. Central axis correction (CAX)
was done before taking the measurements. The measure-
ments were taken for 6MVFFF inline and crossline beam
profiles. Both the profiles were measured at a depth of 10 cm
for 90 cm source to surface distance (SSD) and 100 cm source
to axis distance (SAD). All the measurements were planned
at an actual collimated geometric field width opening of
20 cm × 20 cm at isocenter SAD = 100 cm.  The scanned beam
profiles were normalized to 100% of their beam center and
exported to the text file. The same exported text file was used
for determining IPs through the graphical manual method
and python code programming. Primarily, we  started with the
manual method of finding IPs. Then, we plotted the graph
in the Microsoft (MS) Excel for estimating IPs. Subsequently
IPs dependent dosimetric parameters like field size and beam
penumbras were calculated manually. Later, the same dosi-
metric parameters were computed through the python code
programming. Then, the beam profile previously exported
in text file was imported and executed in python code pro-
gramming. The resulting values of IPs and corresponding
dosimetric parameters obtained using graphical manual and
python code were compared.

2.1.  Inflection  points

Points on the graph of function f(x) at which the concav-
ity changes and its second derivative becomes absolute zero
are called points of inflection.10 Concavity is governed by the
sign of the second derivative. Sign of the second derivative
changes from concave-up to concave-down or vice versa. At
that moment, there exists a point between the concavities
where the second derivative value is absolute zero for func-
tion. IPs is the transition point between the concave-up and
concave-down curve.

Let function f: [a, b] → R, f ∈ C(n) n ≥ 2 which is convex for x ∈
[a, p], and concave for x ∈ [p, b], p is the unique inflection point
of function f in [a, b] and let an arbitrary x ∈ [a, b].9 Condition
of concavity is as given below:

. Concave-up: The second derivative is greater than zero. A
slope is increasing, and the curve is concave-up at x = x0. For
which f′(x0) changes from positive (+Ve) to negative (−Ve)
and there are local maxima.

f ′(x0) = +Ve and f ′′(x0) > 0 (1)
. Concave-down: The second derivative is lesser than zero. A
slope is decreasing, and the curve is concave-down at x = x0.
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Fig. 1 – Pictorial representation of change in concavity at

Fig. 2 – Schematic diagram for determining inflection point,
field size and penumbra.
points x = a and x = −a.

For which f′(x0) changes from −Ve to +Ve and there are local
minima.

f ′(x0) = −Ve and f ′′(x0) < 0 (2)

c. Inflection point: The second derivative has absolute zero.

f ′′(x0) = 0 (3)

If function f′(x) changes from +Ve to −Ve values, we
approach the local maxima. Similarly, if f′(x) changes from −Ve
to +Ve values, we  have local minima. Since at local minima
and local maxima there exist f′ ′(x) = 0. Existence of f′ ′(x) = 0 is
a necessary condition for the point of inflection at x, whereas
f′ ′(x) = 0 and f′ ′ ′(x) /= 0 is a sufficient condition for the point of
inflection to exist for a continuous function at point x. Fig. 1
illustrates how the concavities change around the inflection
point.

2.2.  Manual  procedures  of  inflection  points

Removal of the flattening filter from the path of a photon beam
changed the beam characteristics of FF beam and it became
FFF beam with non-uniform fluence along the off-axis of the
beam profile. In addition to the change of a dosimetric param-
eter of FFF beam, the change in the geometric shape of FFF
beam was observed.11 Because of the significant change in the
shape of a beam profile, the conventional way of characteriz-
ing a flat beam profile cannot be applied to FFF beam. In order
to analyze the characteristics of the FFF beam, the researcher
came up with a concept of a point of inflection for the FFF
beam. There are numerous works in literature proposing a the-
ory about determining IPs for FFF beam. Rational of FFF beam
profile can be explained with the help of the concept of IPs. IP is
a property of the FFF beam profile and it can be determined by
taking derivatives of the beam profile. This represents a varia-
tion of a dose along the off-axis. Researchers presented several
mathematical methods of determining IPs such as extremum
surface estimator (ESE) or extremum distance estimator (EDS),

9
Newton, spline interpolation method. Analyzing character-
istics of FFF beam profiles as per the definition of IPs needs
a dedicated software. Atomic Energy Regulatory Board (AERB)
of India has stated a graphical manual method of estimating
IPs and analysis of FFF beam. AERB constituted a Task Group
(TG) that involved experts from a regulatory agency.12 We  have
used this method as a manual method of evaluating IPs for a
FFF beam. Fig. 2 describes the graphical manual method of
evaluating IPs and its characteristics. Manually IPs defined as
the midpoint on either side of the high dose gradient region
(sharply descending part) of the FFF beam profile.12 In order
to get the region of high dose gradient, start (S) and end (E)
points are defined on either side of the beam profile. Height of
the high dose gradient region (h) was identified as shown in
Fig. 2. The point at h/2 is considered as a point of inflection.
Dose value corresponds to h/2 (IPs) considered as a reference
dose value (RDV). Field size is usually defined by the collimator
setting at the isocenter. For a FFF beam, a radiological field is
defined as the separation between left and right IPs. As per the
AERB TG protocol for determining radiation beam penumbra,
dose values at IP are taken as RDV. Points Pa and Pb, which are
located at 1.6 and 0.4 times of RDV, respectively, are identified
in Fig. 2. Lateral separation between those Pa and Pb on either
side of the profile are defined as radiation beam penumbra.12

2.3.  First  principle  of  derivatives

The first principle of derivatives is a basic fundamental prin-
ciple of derivatives. In 1823, Cauchy defined the derivatives of
function f(x) in the form of a limit; when it exists, the quotient
difference of (f(x + h) − f(x))/h goes to zero.13 Cauchy provided
a proof called mean value theorem for derivative illustration.
The theorem states that: if function f(x) is continuous on [x,
x + h], then

′ f  (x + h) − f (x) ′
min  f (x)
[x, x+h]

≤
h

≤ max  f (x)
[x, x+h]

(4)

https://doi.org/10.1016/j.rpor.2019.07.009
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dent dosimetric beam parameters on both sides of the beam
profile. Finally, the codes were compiled to plot the graph
and display results. Python code for this program is as fol-
lows.
erivative.

This principle itself referred to as postulates in mathe-
atics, which cannot be derived from any other alternative

ostulates.
Let f(x) be a real value function and then its derivatives of

unction f(x) are defined as,14

′(x) = lim
h→0

{
f (x + h) − f (x)

h

}
R.H. Limit (5)

′(x) = lim
h→0

{
f (x + h) − f (x)

−h

}
L.H. Limit (6)

Fig. 3 can explain the physical interpretation of the first
rinciple of derivatives.13 Method involved considering quo-
ient of a difference of the value of a function at a different
ocation to the increment h computing slope of the secant.

f (x + h) − f (x)
h

(7)

Fig. 3 indicates that, when quantity h vanishes, secant
ecomes tangent. Therefore neglecting h in the expression for
he slope, Eq. (7) of the secant gives the slope of the tangent.

##### Importing module ########################
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from tkinter import*
from tkinter import filedialog
##### Importing user data ######################
root = Tk()
Profile = filedialog.askopenfile()
user cols = [“Distance”, “Dose”]
df1 = pd.read table(Profile, names=user cols, header=None)
#####Define 1st and 2nd derivative with central divide diff

h = (df1.ix[1,“Distance”] - df1.ix[0,“Distance”])
X = df1[“Distance”]
Y = df1[“Dose”]
therapy 2 4 ( 2 0 1 9 ) 432–442 435

According to the definition of an inflection point, to ensure
a change in concavity, the second derivative needs to be deter-
mined. The second derivative was derived from differentiating
the first derivative as follows:

f ′′(x) = d

dx
{f ′(x)} = d

dx

(
lim
h→0

f (x + h) − f (x)
h

)

= lim
h→0

(
f ′(x + h) − f ′(x)

h

)

f ′′(x) = lim
h→0

(
f (x + 2h) − 2f (x + h) + f (x)

h2

)
(8)

2.4.  Python  programming

Python was invented by Guido Rossum in the late 1980s.
It is a powerful high-level interpreted, object-oriented and
scripting programming language with dynamic semantics.
Python has many  application domains, such as a website,
internet, and software development. Furthermore, it has been
utilized in education, desktop GUIs, scientific numeric com-
puting and scientific simulation programming. Similarly, for
scientific programming, it has been practiced in simulat-
ing bimolecular, collaborative drug discovery, meteorologistic,
energy efficiency, weather forecasting and many  more.15 Each
programming language has its unique advantage. However,
python can be more  user friendly because of its more  intu-
itive coding style. We have developed the python code to find
IPs of a FFF beam and its associate dosimetric parameters.
For that, we employed free open source Python software of
Pycharm Community Edition 2017.2.4 version. Entire Python
code consists of several parts in the order. It comprises a
code for importing Python module, selecting user beam pro-
file data in text format via opening dialog box automatically
and calculating the first and second derivatives based on
the mathematical first principle of derivatives. To under-
stand the change of concavity around the point of inflection,
python code programming was developed to plot the graph.
Following that, the code was extended to find IPs and IP depen-

https://doi.org/10.1016/j.rpor.2019.07.009
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)) / (2 * h))

 (df1.ix[count - 2, “Dose”])) / (4 * h * h))

)”])

[0])

[0])
t ipvalues)), columns = [“Rt dis”, “Rt dose”, “f”(x)”])

 ipvalues)), columns = [“Lt dis”, “Lt dose”, “f”(x)”])
tSign Change+1, “Rt dose”])/2
ign Change+1, “Lt dose”])/2

tSign Change+1, “Rt dis”])/2
tSign Change+1, “Lt dis”])/2

e(int))

 “Rt Y”])

“Lt Y”])
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def f1():
f1 = (((df1.ix[count + 1, “Dose”]) - (df1.ix[count - 1, “Dose”]
return f1

def f2():
f2 = (((df1.ix[count + 2, “Dose”]) - 2*(df1.ix[count, “Dose”]) +
return f2

##### Calculation first and second derivatives #####
X1 = df1.iloc[1:len(X)-1,0]
X2 = df1.iloc[2:len(X)-2,0]
Y1 = []
Y2 = []
for i in df1[“Dose”]:

count = 1
while count <= (len(Y)-2):

f1 store = Y1.append(f1())
count += 1

count = 2
while count <= (len(Y)-3):

f2 store = Y2.append(f2())
count += 1

break
df2 = pd.DataFrame(list(zip(Y1, Y2)), columns = [“f’(x)”, “f”(x
Data = pd.concat([df1, df2], axis = 1)
###### Finding the Beam Profile parameters ######
## Inflection Points
Rt maxslope = int(Y1.index(max(Y1)))
Rt ipvalues = Y2[(Rt maxslope-6):(Rt maxslope+4)]
Rt disvalue = X[(Rt maxslope-4):(Rt maxslope+6)]
Rt dosevalue = list(Y[(Rt maxslope-4):(Rt maxslope+6)])
RtSign Change = int(np.where(np.diff(np.sign(Rt ipvalues)))
Lt minslope = int(Y1.index(min(Y1)))
Lt ipvalues = Y2[(Lt minslope-5):(Lt minslope+5)]
Lt disvalue = X[(Lt minslope-3):(Lt minslope+7)]
Lt dosevalue = list(Y[(Lt minslope-3):(Lt minslope+7)])
LtSign Change = int(np.where(np.diff(np.sign(Lt ipvalues)))
RtIP df = pd.DataFrame(list(zip(Rt disvalue, Rt dosevalue, R
LtIP df = pd.DataFrame(list(zip(Lt disvalue, Lt dosevalue, Lt
Rt RDV = (RtIP df.ix[RtSign Change, “Rt dose”] + RtIP df.ix[R
Lt RDV = (LtIP df.ix[LtSign Change, “Lt dose”] + LtIP df.ix[LtS
RDV = ((Rt RDV)+ (Lt RDV))/2
## Field Size
Rt Fwidth = (RtIP df.ix[RtSign Change, “Rt dis”] + RtIP df.ix[R
Lt Fwidth = (LtIP df.ix[LtSign Change, “Lt dis”] + LtIP df.ix[L
Field Width = (Lt Fwidth - Rt Fwidth)
Field Size = Field Width/10
## Beam Penumbra
ZeroPoint = int(df1[df1[“Distance”] = = 0].index.values.astyp
Rt X = X[0:ZeroPoint+1]
Rt Y = Y[0:ZeroPoint+1]
Rt df = pd.DataFrame(list(zip(Rt X, Rt Y)), columns=[“Rt X”,
Rt Pa = 1.6*Rt RDV
Rt Pb = 0.4*Rt RDV
Lt X = X[ZeroPoint:len(X)]
Lt Y = Y[ZeroPoint:len(X)]
Lt df = pd.DataFrame(list(zip(Lt X, Lt Y)), columns=[“Lt X”, 

Lt Pa = 1.6*Lt RDV

Lt Pb = 0.4*Lt RDV
pa = []
pb = []

https://doi.org/10.1016/j.rpor.2019.07.009
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t)

t)

t)

t)

0.5, marker=“*”, ms=1)
width=0.5, marker=“*”, ms=1)
reports of practical oncology and 

for value in Rt Y:
if value >= Rt Pa:

pa = Rt df[Rt df[“Rt Y”] = = value].index.values.astype(in
break

for value in Rt Y:
if value >= Rt Pb:

pb = Rt df[Rt df[“Rt Y”] = = value].index.values.astype(in
break

pa Rt = (Rt df.ix[int(pa), “Rt X”] + Rt df.ix[int(pa-1), “Rt X”])/2
pb Rt = (Rt df.ix[int(pb), “Rt X”] + Rt df.ix[int(pb-1), “Rt X”])/2
Rt penumbra = (pb Rt - pa Rt)
for value in Lt Y:

if value <= Lt Pa:
pa = Lt df[Lt df[“Lt Y”] = = value].index.values.astype(in
break

for value in Lt Y:
if value <= Lt Pb:

pb = Lt df[Lt df[“Lt Y”] = = value].index.values.astype(in
break

pa Lt = (Lt df.ix[int(pa-1), “Lt X”] + Lt df.ix[int(pa), “Lt X”])/2
pb Lt = (Lt df.ix[int(pb-1), “Lt X”] + Lt df.ix[int(pb), “Lt X”])/2
Lt penumbra = (pb Lt - pa Lt)
print(Data)
print(“Right IP=”, Rt RDV)
print(“Left IP=”, Lt RDV)
print(“Average RDV=”, RDV)
print(“Field Size=”, Field Size, “cm”)
print(“Rt Penumbra=”, Rt penumbra, “mm”)
print(“Lt Penumbra=”, Lt penumbra, “mm”)
###### Plotting Graph ###########################
fig = plt.figure()
graph = fig.add subplot(1, 1, 1)
graph.spines[’left’].set position((’data’, 0.0))
graph.set xlim(-150, 150)
graph.set ylim(-5, 100)
major xticks = np.arange(-150, 150, 10)
major yticks = np.arange(-5, 105, 5)
minor xticks = np.arange(-150, 150, 1)
minor yticks = np.arange(-5, 105, 1)
graph.set xticks(major xticks)
graph.set xticks(minor xticks, minor=True)
graph.set yticks(major yticks)
graph.set yticks(minor yticks, minor=True)
plt.grid(b=True, which=’major’, color=’black’, linestyle=’-’)
plt.grid(b=True, which=’minor’, color=’red’, linestyle=’-’)
plt.plot(X, Y, label=“Beam Profile”, color=“blue”, linewidth=
plt.plot(X2, Y2, label=“Inflection Points”, color=“black”, line
plt.xlabel(“Distance from central axis (cm)”)
plt.ylabel(“% Relative Dose”)
plt.title(Profile.name)
plt.legend()

plt.show()
root.mainloop()
####################### End of program code ##########################

https://doi.org/10.1016/j.rpor.2019.07.009
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3.  Results

The graphical representations to determine an inflection point
by the graphical manual method are shown in Figs. 4 and 5.
These figures further illustrate the determination of the beam
characteristic parameter for 6MVFFF inline and crossline
beam profiles. Then, the parameters, like dosimetric field size
and beam penumbra, are determined manually. In another
method of python code programming, the resulting output
comprises values of the first and second derivatives based on
the mathematical first principle of derivative and beam char-
acteristics parameters are shown in Fig. 6. Resultant graphs
with a line of concavity (line of second derivatives) indicat-
ing the point of inflection are shown in Figs. 7 and 8. Table 1
summarizes the estimated results for both methods.

Fig. 4 – Schematic diagram describing the 6MVFFF inline beam profile for determining an inflection point, field size and
penumbra by graphical manual method.

IPs determined by the graphical manual method and the
mathematical first principle of derivatives in python program-
ming for 6MVFFF inline beam profile are found at RDV 42% and
39.3%, respectively. Similarly, for the 6MVFFF crossline beam
profile the values are found at RDV 42.5% and 43.3%, respec-
tively. The percentage difference between the IPs determined
by both methods for the 6MVFFF inline and 6MVFFF crossline
beam profile are found to be 2.7% and 0.8%, respectively. While
the penumbra difference between both methods on the right
and left side of the 6MVFFF inline beam profile are found to
be 0.9 mm and 1.4 mm,  respectively. Similarly, for the 6MVFFF
crossline beam profile the difference in penumbra is found
0.5 mm and 1.3 mm,  respectively. Dosimetric field width for a
FFF beam was determined by both methods. Estimated dosi-
metric geometric field width for the inline beam profile with
the graphical manual method and python code programming
Fig. 5 – Schematic diagram describing the 6MVFFF crossline bea
penumbra by graphical manual method.
m profile for determining an inflection point, field size and

https://doi.org/10.1016/j.rpor.2019.07.009
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Fig. 6 – Resultant output after executing python code programming for the 6MVFFF inline and crossline beam profile.

Fig. 7 – Schematic diagram for the 6MVFFF inline beam profile for determining an inflection point, field size and penumbra
by python code programming. Circle inscribed on the second derivative plot line are shoving the change of concavity that
corresponds to the inflection point on either side of the profile.

https://doi.org/10.1016/j.rpor.2019.07.009
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Fig. 8 – Schematic diagram for the 6MVFFF crossline beam profile for determining an inflection point, field size and
 the
ide 
penumbra by python code programming. Circle inscribed on
concavity that corresponds to the inflection point on either s

are found to be 19.81 cm and 19.9 cm,  respectively. Likewise, for
the crossline beam profile, the values are found to be 19.92 cm
and 19.9 cm,  respectively. Field width variations between both
methods are found to be minimal.

4.  Discussion

Conventional radiotherapy has been practiced with a FF beam
for many  years. However, the significance of a flattened beam
has diminished over time due to the technological advance-
ment. Intensity modulations with segmented and dynamic
motion of MLC  are invented in the modern era. This brought
a change in custom of radiation delivery. This kind of delivery
technique does not need a flattened beam specifically. In addi-
tion to that, there are well-established and proven clinical and
dosimetric advantages of an unflattened or FFF beam over FF
beam. Since the unflattened beam has been used predomi-
nantly in the treatment of high dose per fraction for SRS and
SRT, dosimetric verification for small deviations in its beam
characteristics parameters need to be evaluated periodically.
However, conventional ways of analyzing FF beam do not hold
good to FFF beam, so researchers came up with the concept of
an inflection point.16,17 Point of inflection has been used for
analyzing beam characteristics of FFF beam. The inflection
point is a point where the concavity changes and its second
derivative exists absolute zero. Estimated inflection points
with both methods are shown in Figs. 4, 5, 7 and 8. Since the
FFF beam is non-uniform along the width of the beam profile,
IP is highly sensitive for a dose gradient. There is a large devia-
tion in value of inflection points observed for a small change in
the dose gradient. In graphical manual method, the degree of
the dose gradient is determined from the trace of the tangent.
However, the trace of the tangent cannot be drawn with high
precision. Consequently, this could not allow us to determine

exact IPs. Graphical manual method approximates the result-
ing values of IPs by extracting midpoint at h/2 in the dose
gradient region are shown in Figs. 4 and 5. Points of inflection
differ with dose gradient, which is a function of beam energy,
 second derivative plot line are shoving the change of
of the profile.

depth of measurement and field width18. In addition to that,
trace of the tangent cannot account for small variation in the
above parameters and IPs on either side of the beam profile
are very much sensitive to beam symmetry. We have noticed
that even a 1% symmetry deviation on either side of the beam
profile can lead to a 2% of change in IPs. According to scientific
literature, dosimetric field size defined for FFF beam is the
separation between the IPs on either side of the beam profile.
However, field width variations between both methods were
found minimal. Even a change of 10% dose at the inflection
point can influence the field width only by 1 mm.16 Second
method of finding a point of inflection is based on a theoreti-
cal mathematical first principle of derivatives through python
code programming. Theoretically, necessary and sufficient
condition of inflection points is truly holds good for a contin-
uous function. A beam spectrum of the linear accelerator is
heterogeneous. Continuity in a beam profile cannot be main-
tained truly because of the fluctuation in beam energy fluence.
First and second derivatives were estimated at every point of
measurement at each step increment of 1 mm to find out the
point where it satisfies the condition of IPs through developed
python code programming. Fig. 6 shows the value of second
derivatives describing concavity changes that correspond
to IPs calculated by python code. We  observed a concavity
change occurring multiple times due to the fluctuation in the
beam energy that was considered as noise. However, from the
value of the second derivatives, we  can see that the function
is truly continuous near the point of inflection shown in Fig. 6.
Concavity curve for IPs shown in Figs. 7 and 8 shows how the
IPs existed for concavity changes near the point of inflection
for continuous functions. Concavity curve also shows the
existence of maxima and minima near the point of inflec-
tion. Python code uniquely determined point of inflection
between maxima and minima where the second derivatives
goes zero. Therefore, the theoretical basis of determining an

inflection point is independent of dose gradient, detector size,
and measurement step size of the inflection point through
python code programming was found to be reliable and
consistent.

https://doi.org/10.1016/j.rpor.2019.07.009
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5.  Conclusions

The graphical manual method of determining inflection point
was found very cumbersome, tedious and there are many
possibilities of human error. This method approximates the
resultant value of IPs and it could not determine them pre-
cisely. Besides, this method could not account for a small
change in the dose gradient, measurement step size and beam
symmetry of the profile. Whereas, IPs determined based on
the mathematical first principle of derivative through python
code programming truly account for small changes in beam
profile, measurement steps size and symmetry. This method
was found highly effective to find out location of IPs indepen-
dently and precisely on either side of beam profile. This was
found to be more  efficient, fastest and user-independent.
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