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Background: In orthovoltage radiotherapy, since the dose prescription at the patient’s surface

is  based on the absolute dose calibration using water phantom, deviation of delivered dose

is  found as the heterogeneity such as bone present under the patient’s surface.

Aim:  This study investigated the dosimetric impact due to the bone heterogeneity on the

surface dose in orthovoltage radiotherapy.

Materials and methods: A 220 kVp photon beam with field size of 5 cm diameter, produced

by  a Gulmay D3225 orthovoltage X-ray machine was modeled by the BEAMnrc. Phantom

containing water (thickness = 1–5 mm) on top of a bone (thickness = 1 cm) was irradiated by

the  220 kVp photon beam. Percentage depth dose (PDD), surface dose and photon energy

spectrum were determined using Monte Carlo simulations (the BEAMnrc code).

Results: PDD results showed that the maximum bone dose was about 210% higher than the

surface dose in the phantoms with different thicknesses of water. Surface dose was found

to  be increased in the range of 2.5–3.7%, when the distance between the phantom surface

and bone was increased in the range of 1–5 mm. The increase of surface dose was found not

to  follow the increase of water thickness, and the maximum increase of surface dose was

found at the thickness of water equal to 3 mm.

Conclusions: For the accepted total orthovoltage radiation treatment uncertainty of 5%, a

neglected consideration of the bone heterogeneity during the dose prescription in the sites
of  forehead, chest wall and kneecap with soft tissue thickness = 1–5 mm would cause more

than two times of the bone dose, and contribute an uncertainty of about 2.5–3.7% to the

total  uncertainty in the dose delivery.
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Fig. 1 – Schematic diagram (not to scale) showing the
calculation geometry of the surface dose and PDD for
different thicknesses (1–5 mm)  of water on top of the bone.
reports of practical oncology an

.  Background

rthovoltage radiotherapy has a long history of over 60 years of
reatment of superficial tumors such as basal cell carcinoma,
quamous cell carcinoma and melanoma.1–3 In some skin
reatment sites, such as the forehead, chest wall, skin over the
heekbone and kneecap, soft tissue of thickness equal to about
–5 mm is over the bone of skull, rib or patella, respectively.
hen skin tumor in the above sites is irradiated by orthovolt-

ge photon beams, the presence of bone heterogeneity affects
he surface dose in the treatment due to the changed backscat-
er contribution, as water is replaced by the bone. Since bone
eterogeneity is not considered in dose calculation based on
ose calibration using a water phantom, an underestimation
f dose might occur when it is prescribed. This effect of surface
ose enhancement due to bone backscatter is more  significant

n the high orthovoltage photon energy of 220 kVp than the
ower superficial photon energies such as that of 100 kVp.4

. Aim

o investigate the impact of the surface dose variation due
o the presence of bone heterogeneity, a photon energy spec-
ral study was carried out using a heterogeneous phantom
nd Monte Carlo simulation. The photon energy spectra at the
hantom surface were determined with different thicknesses
f water. These energy spectra of photons and backscattered
hotons helped us to understand in detail the relation-
hip between the surface dose variation and thickness of
he overlaying tissue. A Gulmay D3225 orthovoltage X-ray

achine (Gulmay Medical Ltd., UK) which produces a pho-
on beam with energy of 220 kVp was modeled for Monte
arlo simulations using the BEAMnrc code to study this prob-

em. The aim of this study was to investigate the impact of
osimetric uncertainty when bone heterogeneity is present
nd underneath the patient’s surface of soft tissue (mil-
imeter scale), as prescribed dose calculation is based on
bsolute dose calibration using a homogeneous (water) phan-
om.

.  Materials  and  methods

.1.  Phantom  and  calculated  geometry

 heterogeneous phantom containing water (thick-
ess = 1–5 mm)  over the bone (thickness = 1 cm)  was used
s shown in Fig. 1. The phantom was irradiated by an ortho-
oltage photon beam perpendicular to the phantom surface.
he energy of the beam and source-to-surface distance (SSD)
ere equal to 220 kVp and 20 cm,  respectively. A treatment

one with diameter equal to 5 cm was used to conform the
eam field. This treatment cone was examined in this study
ecause it was typical and generally used as a reference
one for the backscatter and relative exposure factor. Per-

entage depth dose (PDD) was calculated along the central
eam axis (vertical broken line) in the phantom. The photon
nergy spectra were determined based on the particle scoring
lanes at the phantom surface. For the purpose of dosimetry
The thickness of bone is 1 cm.

comparison and determining the relative results, all Monte
Carlo simulations were repeated in a water phantom using
the same calculated geometry with the bone layer replaced
by water.

3.2. Monte  Carlo  simulation

The Electron Gamma  Shower (EGSnrc) code (version 4-r2-2-4)
developed by the National Research Council of Canada was
used.5 In this code, the shape of the X-ray energy spectra
is improved by implementing the electron impact ionization
model.6 Moreover, the efficiency of energy transition from the
electron current to photons is increased by including a direc-
tional bremsstrahlung splitting.7

3.2.1. Monte  Carlo  modeling  and  verification  of  the
orthovoltage  photon  beam
A 220 kVp photon beam produced by a Gulmay D3225 ortho-
voltage X-ray machine was used in this study. An open circular
end fixed applicator with diameter of 5 cm and SSD = 20 cm
was used. The BEAMnrc8 was used to generate a phase-space
file based on the treatment head data of geometries and mate-
rials of different components such as the X-ray tube, primary
collimator, filter, ionization chamber and applicator, provided
by the manufacturer and Knoos et al.9 In our 220 kVp pho-
ton beam, 1.2 mm of Cu and 1 mm of Al were used as a filter

to define the beam quality. The energy cut off for electron
and photon transport was set at 521 keV and 1 keV, respec-
tively. A phase-space file including information of the energy,

dx.doi.org/10.1016/j.rpor.2011.09.001
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Fig. 2 – (a) PDDs of a 220 kVp photon beam with circular field of diameter = 5 cm and SSD = 20 cm in water. The depth doses
were calculated and measured using Monte Carlo simulation and parallel-plate ionization chamber, respectively. Beam
profiles of the 220 kVp beam at the phantom surface for a (b) solid water phantom, (c) 2 mm of solid water over the bone and
(d) 4 mm of solid water over the bone, calculated and measured using Monte Carlo simulation and Gafchromic EBT film. All

 dose
doses in the beam profiles are normalized to the maximum

orientation, type, charge and position of particles crossing the
scoring plane at the bottom of the applicator was generated
containing about 36 million particles.

Verification of the phase-space beam was carried out
by comparing the PDD calculated and measured by Monte
Carlo simulation and parallel-plate ionization chamber (PS-
033, Capintec Inc., New Jersey) using the solid water phantom
(30 cm × 30 cm × 10 cm), as shown in Fig. 2(a). The same exper-
imental configurations of the beam and phantom geometry
were used for Monte Carlo simulation with the voxel size set
at 0.25 cm × 0.25 cm × 0.25 cm.  It can be seen that the PDD
results of Monte Carlo simulation and measurement agreed
well within a deviation of ±1% at 1 sigma. In addition, the
surface beam profiles for a solid water phantom (Fig. 2(b)), het-
erogeneous phantoms with 2 (Fig. 2(c)) and 4 mm (Fig. 2(d))
of solid water over a bone slab of 1 cm (GAMMEX model:
450-220, Middleton, WI)  calculated by Monte Carlo simula-
tions were compared to measurements using Gafchromic EBT
films. Again, both Monte Carlo and measured results agreed
well within a deviation of ±1%. Verification of the peak scat-
tering factor was also carried out by comparing the Monte

Carlo results with those according to the AAPM TG-61.10 The
Monte Carlo model of the 220 kVp photon beam was therefore
validated.
. The error bars in (b–d) represent uncertainty of ±1%.

3.2.2.  Dose  calculation  of  phantoms  using  the  DOSXYZnrc
The surface doses and PDDs of the phantom in Fig. 1 were
calculated using the DOSXYZnrc.11,12 The voxel size used in
the simulation was 0.1 mm × 0.1 mm × 0.1 mm,  which corre-
sponds to the x, y and z-axis. Under this calculation set up, the
surface dose in this study was defined at the depth of 0.05 mm.
This is the average energy deposited in the center of the first
voxel in the phantom. One hundred and fifty million histories
were run in each calculation as per thicknesses of water equal
to 1, 2, 3, 4 and 5 mm in the phantom of Fig. 1. In the simula-
tion, PRESTA II was selected for the electron-step algorithm.13

The spin effect, bound Compton scattering, Rayleigh scatter-
ing, atomic relaxation and electron impact ionization were all
set at ON. The energy cut off for electron and photon transport
was equal to 521 keV and 1 keV in the simulation, respectively.
Under this approach, the relative dose error (statistical uncer-
tainty as a fraction of dose in the voxel) for the surface voxel
was found to be around 0.5% at 1 sigma based on the Monte
Carlo results using the same number of histories.11,14 In this
study, ICRPBONE700ICRU with mass density of bone equal to
1.85 g cm−3 was selected as bone material in the simulations.

The surface doses and PDDs of the heterogeneous (Fig. 1) and
homogeneous (bone replaced with water) phantoms were
calculated.

dx.doi.org/10.1016/j.rpor.2011.09.001
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Fig. 3 – PDDs of the 220 kVp photon beam in phantom as
shown in Fig. 1 with thicknesses of water equal to 1–5 mm,
calculated by Monte Carlo simulations. PDD of the water
phantom with the same calculation configuration is also
shown in the figure for comparison. Doses in the PDD curve
are all normalized to the surface of the corresponding
p
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Fig. 4 – Relative surface dose (surface dose ratio in
percentage with to without a bone) varying with the
thickness of water over the bone. Doses are normalized to
the surface dose of a water phantom with the bone (Fig. 1)

enhancement can be seen clearly compared to the surface
dose. Comparing PDDs of the water phantom with that of the
bone in the phantom replaced with water, it can be seen in

Fig. 5 – Relative photon energy spectra at the phantom
surface varying with the thicknesses of water equal to 1, 3
and 5 mm.  Photon energy spectrum at the same position of
hantom with specific thickness of water over the bone.

.2.3.  Calculation  of  energy  spectrum  using  the
EAMnrc  and  BEAMDP
he photon fluence at the phantom surface was deter-
ined from the phase spaces which included the multiple

rossers (backscattered photons) calculated by the BEAMnrc.
he BEAMDP8 was used to calculate the energy spectrum
ased on the photon fluence. The number of bins in the photon
nergy spectrum was set at 200 in the range of 0–250 keV. Pho-
on energy spectra at the phantom surface were determined
ith thicknesses of water equal to 1–5 mm.  The SSD was kept

onstant (20 cm)  when the thickness of water was changed in
he phantom. In comparison, Monte Carlo simulations were
epeated in pure water phantoms with the same calculation
onfigurations of the heterogeneous phantoms.

.  Results

he PDDs of the 220 kVp photon beams (field size = 5 cm diam-
ter; SSD = 20 cm)  for the heterogeneous phantom in Fig. 1 are
hown in Fig. 3 with thicknesses of water equal to 1–5 mm.
he PDD of the water phantom (i.e. bone replaced with water)

s also shown in Fig. 3 for comparison. All doses in Fig. 3
re normalized at the phantom surface to illustrate the dose
nhancement in the bone layer. Fig. 4 shows the relative sur-
ace dose (surface dose of phantom with bone to without bone)
arying with the thickness of water over the bone. The surface
oses in Fig. 4 are therefore normalized to the surface dose of

 water phantom (relative dose = 100%) with the same dimen-
ion by considering the surface voxels at the same position
f the heterogeneous and water phantom. Fig. 5 shows the

hoton energy spectra at the phantom surface with different
hicknesses of water equal to 1, 3 and 5 mm  over the bone. Pho-
on energy spectrum at the surface of a pure water phantom
replaced with water. The error bar represents ±0.5%.

is also included in Fig. 5 for comparison. Spectral curves in
Fig. 5 are all normalized to the total areas of the curves.

5.  Discussion

5.1.  PDDs  and  surface  doses  of  the  phantoms

Fig. 3 shows the PDDs of the phantoms in Fig. 1 with differ-
ent thicknesses of water, and all depth doses in the curve
are normalized to the surface of corresponding phantom with
specific thickness of water. Under this approach, the bone dose
the phantom surface using a pure water phantom is
included for comparison. All spectral curves are normalized
to the total area of the corresponding curves.

dx.doi.org/10.1016/j.rpor.2011.09.001
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Fig. 3 that the maximum increase of dose is about 210% in the
bone. This bone dose enhancement can be explained as the
increase of the interaction cross-section for the photoelectric
effect with a high atomic number and photon beam energy
in the kV range.15,16 The variation of bone doses is between
205% and 211% for the thickness of water ranging from 1 to
5 mm,  and it shows that the dependence of water thickness
on the bone dose is insignificant under such range. Although
the increased bone dose would increase the patient’s com-
plication rate to the red bone marrow and bone surface cells
as radiosensitive organs at risk, it should be noted that this
study is not focused on the bone dose enhancement as it is a
well-known phenomenon. Instead, our study makes empha-
sis in the dosimetric impact on the surface dose due to the
presence of bone heterogeneity, and the relative surface dose
varying with the thickness of water can be seen in Fig. 4. In
Fig. 4, all surface doses of bone phantoms are normalized to
the surface dose of a water phantom. With this normalization
approach, the increase of surface dose due to the presence of
the bone can be seen. Moreover, the relative surface doses in
Fig. 4 represent the variation of prescribed dose at the patient’s
surface, when the surface dose is affected by bone heterogene-
ity as per the phantom geometry in Fig. 1. It is seen in Fig. 4 that
the surface dose is increased between 2.5% and 3.7% when the
thickness of water is increased in the range of 1–5 mm over the
bone. In orthovoltage radiotherapy, since the dose prescription
at the patient’s surface is done by assuming the patient’s body
is homogeneous according to the absolute dose calibration,
an underestimation of 2–4% of a prescribed dose might occur.
This dosimetric uncertainty will narrow down the total treat-
ment uncertainty of 5% including the uncertainties of patient
setup, dose calibration and dose calculation.17,18

5.2.  Photon  fluence  spectral  analyses

Fig. 5 shows the photon energy spectra at the phantom surface
for thicknesses of water equal to 1, 3 and 5 mm.  The spec-
tral curves in Fig. 5 are normalized to the total area of the
curve, and it is seen clearly that the relative intensities of the
photon spectra using the heterogeneous phantom are higher
than that of the spectral curve using a pure water phantom.
Moreover, a relative intensity of the spectral curve for water
thickness of 3 mm is higher than those of 1 and 5 mm.  This
gives the maximum surface dose at thickness of water equal
to 3 mm,  while surface doses of 1 and 5 mm of water are close,
as shown in Fig. 4. The surface dose is affected by bone hetero-
geneity due to two effects: the loss of backscatter compared to
the full scattering condition and bone backscatter to the phan-
tom surface.16,19 The effect of loss of backscatter decreases the
surface dose while the effect of bone backscatter increases the
dose. Since both effects become weaker with the bone located
further from the phantom surface, the combination of these
two  effects results in a maximum surface dose at the bone
depth of 3 mm in this study.
6. Conclusion

In orthovoltage radiotherapy of soft tissue over the bone, the
dosimetric impact when the treatment dose is prescribed at
diotherapy 1 7 ( 2 0 1 2 ) 38–43

the patient’s surface was investigated by a clinical ortho-
voltage photon beam using Monte Carlo simulation. Results
based on the treatment cone of 5 cm in diameter showed
that an increase of the surface dose of 2.5–3.7% was found
when the distance between the phantom surface and the bone
was increased to the range of 1–5 mm.  This increased surface
dose results in additional dosimetric uncertainty that narrows
down the total error margin (5%) concerning the patient setup
and machine calibration in a clinical dose delivery. Investi-
gations considering the patient’s curvature using cylindrical
or spherical phantoms, as well as more  treatment applicators
(circular and square) with different bone thicknesses are in
progress.
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