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Aim: In this study, the dosimetric properties of the electronic portal imaging device were

examined and the quality assurance testing of Volumetric Modulated Arc Therapy was

performed.

Background: RapidArc involves the variable dose rate, leaf speed and the gantry rotation. The

imager was studied for the effects like dose, dose rate, field size, leaf speed and sag during

gantry rotation.

Materials and methods: A Varian RapidArc machine equipped with 120 multileaf collimator

and amorphous silicon detector was used for the study. The characteristics that are variable

in RapidArc treatment were studied for the portal imager. The accuracy of a dynamic multi-

leaf collimator position at different gantry angles and during gantry rotation was examined

using the picket fence test. The control of the dose rate and gantry speed was verified using

a test field irradiating seven strips of the same dose with different dose rate and gantry

speeds. The control over leaf speed during arc was verified by irradiating four strips of dif-

ferent leaf speeds with the same dose in each strip. To verify the results, the RapidArc test

procedure was compared with the X-Omat film and verified for a period of 6 weeks using

EPID.

Results: The effect of gantry rotation on leaf accuracy was minimal. The dose in segments

showed good agreement with mean deviation of 0.8% for dose rate control and 1.09% for
leaf speed control over different gantry speeds.

Conclusion: The results provided a precise control of gantry speed, dose rate and leaf speeds

during RapidArc delivery and were consistent over 6 weeks.
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To measure the missing frames, different monitor units
were delivered at the constant dose rate and field size at SDD
of 100 cm. The missing frame due to the dead time of the
reports of practical oncology and

. Background

he potential of direct aperture optimization proposed by Otto
s Volumetric Modulated Arc Therapy (VMAT) requires one or
ore gantry rotations and produces dose distribution equiv-

lent or better than the Intensity Modulated Radiotherapy
IMRT).1 Varian has introduced volumetric modulation using
he RapidArc technique by varying the gantry speed, dose rate
nd leaf speeds.2

To verify the IMRT or RapidArc dose distribution, two-
imensional detectors such as ion chamber arrays, film or
iode arrays were used. A film is more frequently used for
erification of IMRT dose distributions because of its high reso-
ution. But the dose response of a film is affected by processing
onditions. A greater convenience afforded by electronic por-
al imaging devices has increasingly led to the replacement
f a conventional radiographic film by an electronic portal

maging device (EPID) for geometric verification in radiation
herapy. The high resolution, high contrast and the large sig-
al to noise ratio and high detective quantum efficiency of
PID made it an alternative to other detectors.

Several authors have extensively studied the dosimetric
roperties of the aS500 EPID and its applications in IMRT.3–9

an Esch et al. evaluated the portal dose prediction model
sing the algorithm for amorphous silicon (a-Si) detector mea-
urement and tested it for clinical IMRT treatment fields. This
rediction model is based on the optimal fluence created in
he IMRT optimization. Since RapidArc plan involves a direct
LC optimization, the prediction model cannot be applied for
apidArc plans.

. Aim

n this study, the quality assurance of RapidArc was performed
sing the aS1000 EPID. Since RapidArc involves the variable
ose rate, leaf speed and gantry speed, the dosimeter has to
e tested for these parameters. Initially, the performance of
PID was verified by investigating the effects of dose, dose
ate, field size, leaf speed, and sag due to gantry, jaws, MLC
nd the imager. The quality assurance tests include accurate
ositioning of dynamic MLC and a precise control of the dose
ate and leaf speed during the gantry rotation. The quality
ssurance tests were repeated with the film and the results
ere compared with that of EPID. The tests were performed

ver a period of 6 weeks to verify the consistency.

Materials and methods

.1 EPID calibration

he aS1000 imaging detector unit (IDU 20 model, Varian Med-
cal Systems, Palo Alto, CA) consists of a 1 mm copper plate,
34 mg/cm2 gadolinium oxysulphide phosphor screen with
he active area of 40 cm × 30 cm a-Si arrays. The spatial resolu-

ion of the device is 0.391 mm × 0.391 mm, which is attached to
he Linear accelerator Clinac 2100 C/D equipped with millen-
ium multileaf collimator 120 leaves (Varian Medical Systems,
alo Alto, CA) by Exact-arm. The image acquisition soft-
therapy 1 6 ( 2 0 1 1 ) 248–255 249

ware (IAS3) provides several modes for acquisition. Integrated
image acquisition is commonly used for dosimetric appli-
cation. This mode captures a single image consisting of an
average of many image frames acquired during radiation
delivery. In Image, frame is scanned row by row, with a fixed
average frame rate of 9.574 frames/s. For portal dosimetry, the
image is acquired in the integrated mode during the radiation
delivery.10

EPID calibration is designed to remove background noise
and provide a spatially uniform response for clinical image.
The response of EPID is dependent on the photon energy and
the repetition rate of the radiation beam. The detector is cal-
ibrated by acquiring flood field and dark field images. The
dark field image is acquired by averaging 20 frames without
any radiation for offset of the pixel values. The flood field is
acquired by the uniform irradiation of the field size larger than
the active area of the EPID. Flood field calibration is to deter-
mine the difference between the pixel sensitivities. The unit
of the electronic portal imager device is calibrated unit (CU).
The CU can be calibrated as MU or Gy or cGy. The intrinsic EPID
water equivalent made of the copper plate and other materi-
als placed above the phosphor layer is approximately 0.8 cm3.
It is calibrated with ion chamber measurements at the depth
of 0.8 cm which is the effective depth (water equivalent depth)
of the portal image including the copper. The CU is calibrated
in centiGray (1 CU = 1 cGy).

3.2 Dosimetric properties of the electronic portal imaging
device

3.2.1 Dose linearity
Dose linearity of the EPID in the integrated mode at
300 MU/min was examined by irradiation with different moni-
tor units ranging from 2 to 500 MU for 10 cm × 10 cm at 100 cm
source to detector distance (SDD). The mean pixel value of
3 by 3 matrix at the centre of the field was measured and a
graph was plotted against MU. Using the number of frames
acquired, the frames/s was calculated for the different dose
rate and plotted against MU.
Fig. 1 – Calibrated units to MU linearity.

dx.doi.org/10.1016/j.rpor.2011.08.001
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Table 1 – The missing frame due to dead time in frame acquisition.

MU Acquired frames Time (s) Time/frame (s) Calculated frames Missing frame due to dead time

2 7 0.4 0.05714 7.00035 −0.00035
5 12 1 0.08333 12.00048 −0.00048

10 22 2 0.09091 21.99978 0.00022
25 49 5 0.10204 49.00039 −0.00039
50 98 10 0.10204 98.00079 −0.00079

100 193 20 0.10363 192.9943 0.00569
150 288 30 0.10417 287.9908 0.00922
200 384 40 0.10417 383.9877 0.01229
300 576 60 0.10417 575.9816 0.01843
400 767 80 0.10430 767.0182 −0.01822
500 958 100 0.10438 958.037 −0.037

Fig. 2 – Response of frame rate with respect to monitor

units.

imager was calculated using the number of frames acquired
and the time of exposure. The CU/MU ratio should be constant
for delivered monitor units. These ratios were compared with
ionization chamber measurements.
3.2.2 Dose rate and field size response
The CU for 10 cm × 10 cm was measured for different dose
rates. The values were measured for five readings for each

Fig. 3 – Signal ratio vs. monitor units.
Fig. 4 – Output factor to field size.

dose rate and an average was calculated. The percentage vari-
ation was calculated between the averaged value and averaged
value of 300 MU/min.

For different field sizes ranging from 5 cm × 5 cm to
27 cm × 27 cm, 100 MU was delivered at 100 cm SDD. The mean
pixel value for 3 by 3 matrix was measured. The output fac-
tors were calculated and plotted against field size. The results
were compared with those of the ionization chamber mea-
surements.

3.2.3 Effect of leaf speed
To ensure the accuracy of EPID with rapid changes in dose

rate during dynamic MLC (DMLC) delivery, a uniform inten-
sity pattern of 10 cm × 10 cm using DMLC was delivered. The
leaf speed was increased by reducing the monitor units for

Table 2 – Variation in the CU with dose rate.

Dose rate
(MU/min)

Calibrated
units (CU)

Percentage
variation (%)

100 101.343 −0.7521
200 102.102 −0.0088
300 102.111 0.0000
400 101.46 −0.6375
500 102.267 0.1528
600 101.522 −0.5768

dx.doi.org/10.1016/j.rpor.2011.08.001
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Fig. 5 – Leaf speed tests with uniform intensity.

onstant dose rate of 300 MU/min. Monitor units and corre-
ponding leaf speeds were 20 MU – 2.5 cm/s, 25 MU – 2 cm/s,
0 MU – 1 cm/s, 100 MU – 0.5 cm/s and 200 MU – 0.25 cm/s,
espectively. The profile of the DMLC test pattern was com-
ared with the open field profile.

.2.4 Evaluation of the sag
o evaluate the gravitational sag due to gantry, jaws and EPID,
ortal images were acquired for a known field size with gantry

n static and rotational modes. Portal images were acquired for
he field size of 10 cm × 10 cm at SDD of 100 cm at gantry zero
egrees. The same number of MUs were delivered in the rota-
ional mode with a constant field size and SDD and an image
as acquired. Both images were compared by the Gamma

valuation method using Eclipse planning system software
ith 3 mm distance to agreement (DTA) and 3% dose differ-

nce (DD) criteria.11,12 To evaluate errors in the MLC during
otation due to sag, the field size was defined by the MLC and
he test was repeated.

.3 Accuracy of the DMLC positioning
o verify the positional accuracy of the DMLC, RapidArc plans
f picket fence patterns were compared with the same pattern

Fig. 6 – Gamma evaluation with
therapy 1 6 ( 2 0 1 1 ) 248–255 251

acquired with a static gantry. The slits were 1 mm wide at the
distance of 1.5 cm. The DMLC positional accuracy for differ-
ent gantry angles and RapidArc plans was verified by position
of the slits in each image. Profiles were taken for each image
and the distance between the peaks was measured. The picket
fence test with an intentional error of 0.5 mm was performed
to access the sensitivity of the imager.

3.4 Control of the dose rate over gantry speed

To verify the control of the dose rate over gantry speed, a Rapi-
dArc plan with seven segments of the same dose with varying
dose rate and gantry speed (111 MU/min for 90◦, 222 MU/min
for 45◦, 332 MU/min for 30◦, 443 MU/min for 22.5◦, 554 MU/min
for 18◦, 600 MU/min for 15◦ and 600 MU/min for 12.9◦) was
carried out. To measure the variation in doses, the seven seg-
mented test fields were normalized to the open field delivered
with the same MU. 30 MUs were delivered at each segment.
The X-omat films had the range of 0–100 cGy and were found
to be a linear dose response of up to 80 cGy.13,14 Since the lower
dose is delivered in each segment of the test field, X-omat films
were used for the comparison.

The mean pixel values of 3 by 3 matrix in EPID and the
mean optical density values in the film were measured at the
centre of each segment and normalized to corresponding open
fields. The stability of the test results was verified by acquiring
images every week and deviations were compared. Using Eq.
(1), the pixels values were made independent of the sensitivity
and output variation. To calculate the correct pixel values, Eq.
(1) was used

Rcorr = Rtest field(x)
Ropen field(x)

× 100 (1)

The deviation from the corrected R average readings were
calculated using Eq. (2)
Percentage Diff(x) =
((

Rcorr(x)
RCorr avg(x)

)
− 1

)
× 100 (2)

field size defined by jaws.

dx.doi.org/10.1016/j.rpor.2011.08.001
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3.5 Control of the leaf speed during RapidArc

To evaluate the ability of the MLC leaf speed control during
RapidArc, four uniformly irradiated segmented test patterns
were delivered with different combinations of leaf speeds
and dose rates. The leaf speed–dose rate combination used
in the test patterns were 0.46 cm/s – 138 MU/min, 0.92 cm/s –
277 MU/min, 1.84 cm/s – 554 MU/min – 2.76 cm/s – 554 MU/min,
respectively. The width of DMLC fields was 4.5 cm for the last
leaf speed segment and 3 cm for the others. The test pattern
pixel values were normalized to the open field using Eq. (1)
and the deviations were measured using Eq. (2). The test was
repeated using the X-Omat films and deviations were calcu-
lated. The stability of the test results was verified by acquiring
image every week and deviations were compared.

4. Results and discussion

4.1. Dosimetric Properties

4.1.1. Dose linearity
Fig. 1 shows the dose linearity graph. The CU was found to be

linear to the dose delivered. The linear fit parameter showed
Squared R value equaling one (R2 = 1). Fig. 2 shows the frame
acquisition rate vs. MU. The frame acquisition rate increased
up to 20 frames/s for dose rate of 600 MU/min and it reached

Fig. 7 – Gamma evaluation with

Table 3 – Percentage deviation in seven segments in RapidArc p
of dose rate test.

Positions (cm) R (DR-GS) R (op)

5 174.866 2896.116
−3 179.438 3009.515
−1 183.275 3078.608

1 183.753 3095.725
3 182.969 3060.671
5 179.556 3012.325
7 169.87 2890.58

Avg

R (DR-GS) – CU values in the test pattern image; R (op) – CU values in the o
iotherapy 1 6 ( 2 0 1 1 ) 248–255

the average frame rate of 9.574 frames/s as monitor units
reached the level of 50.

Time per frame is calculated from the known frames and
the time of exposure. The missing frame due to dead time is
less than a frame as shown in Table 1.

The CU/MU ratios were plotted against monitor units in
the logarithmic scale which showed underresponse for lower
monitor units. For the ionization chamber measurements, the
detector showed overresponse of up to 3%. As the dose rate
increased, the detector showed underresponse for lower mon-
itor units (Fig. 3).

4.1.2. Dose rate and field size response
The CU was measured and averaged for each dose rate and
the variation was calculated from the standard treatment dose
rate of 300 MU/min (Table 2). Even though the CU is calibrated
separately for different dose rates, the variation observed was
found to be 0.75%. The CUs were measured and the output
factor was calculated for different field sizes and plotted. The
variation for 5 cm × 5 cm is 2.9% and 5% for 27 cm × 27 cm. This
variation was due to the difference in the phantom scatter
factor for both ionization chamber and EPID (Fig. 4). Since the

scatter has a low energy component, its effect on the EPID’s
phosphor response is enhanced compared to ionization cham-
ber due to the presence of high atomic number component in
the phosphor.

field size defined by MLCs.

lan when compared to normalised open field for control

Rcorr(x) diff(x) S.D.

6.037949 1.345172

0.048227

5.962356 0.076371
5.953178 −0.07769
5.935702 −0.37101
5.978068 0.340095
5.960711 0.048766
5.876675 −1.36176
5.957806

pen field at the same positions of test pattern image.

dx.doi.org/10.1016/j.rpor.2011.08.001
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The pixel values were measured at the centre of the four
segments and compared with a normalized open field pro-
file (Fig. 12). Table 4) shows the percentage deviations in four
Fig. 8 – Picket fence test with intentional error.

.1.3. Effect of leaf speed
he profiles of different leaf speed patterns were normalized

o the central axis and the variations were evaluated (Fig. 5).
he variation in profile was pronounced with an increase in

eaf speed. For the leaf speed of 2 cm/s and 2.5 cm/s, variation
f 4–5% was found in the first segment due to the multi-

eaf edge transmission. But the comparison of the images by
amma index method shows the >98% pass criteria in all the
eaf speeds.

.1.4. Evaluation of the sag
he area failing the gamma criteria in the field defined by the

aws was due to sag in the gantry and jaws during the rota-
ion. In superior and inferior edges, the area failing was due
o gantry and EPID sag, whereas in the left and right edges
t was due to the sag in the jaws. The percentage of the area
ailing the gamma criteria was 2.52% (Fig. 6).

The area failing the gamma criteria in the field defined by
he MLC was due to the sag in gantry and MLCs. The area
ailing gamma criteria was found to be 1.26% in the inferior
nd superior regions of the field (Fig. 7).

.2. Evaluation DMLC positional accuracy

he image of the delivered picket fence is analysed using
he Verisoft software (PTW, Version 3.2). The maximum varia-
ions in distances between the peaks were found to be within
2 mm. The tests showed the accuracy of the DMLC position-

ng at different gantry angles and during RapidArc plan. The
ests with intentional error of 0.5 mm were discerned in the
mage (Fig. 8). The tests with intentional errors showed that
ven small errors could to be discerned in the EPID image.

.3. Control of dose rate during gantry rotation
able 3 shows the percentage deviations in seven segments in
apidArc plan when compared to a normalised open field. The
Fig. 9 – Control of dose rate over gantry speed.

variation in all segments was within 2% (Fig. 9). The standard
deviation between the segments was found to be 0.8%. For
both a film and EPID, the maximum percentage variation was
in the first segment (Fig. 10). These results were similar to the
leaf speed test carried out with static fields. The stability was
good during the period of 6 weeks (Fig. 11).

4.4. Control of the leaf speed during RapidArc plan
Fig. 10 – Comparison of DS vs. GS film and EPID results.

dx.doi.org/10.1016/j.rpor.2011.08.001
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Fig. 11 – DR vs. GS weekly variation of results.

Fig. 12 – Control of leaf speed over gantry speed.

Fig. 13 – Comparison of LS vs. GS film and EPID results.

Fig. 14 – LS vs. GS weekly variation of results.

Table 4 – Percentage deviations in four segments in RapidArc plan when compared to normalised open field for control of
leaf speed test.

Positions (cm) R (LS) R (op) Rcorr(x) diff(x) S.D.

−4.5 189.519 3404.217 5.567183 −1.56143

0.062101
−1.5 202.293 3544.47 5.707285 0.915833
1.5 200.997 3551.677 5.659214 0.065847
4.5 194.477 3418.909 5.688277 0.57973

Avg 5.65549

R (LS) – CU values in the leaf speed test pattern; R (op) – CU values in the open field at same positions.

dx.doi.org/10.1016/j.rpor.2011.08.001
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egments in RapidArc plan when compared to a normalised
pen field for control of leaf speed test. The standard deviation
etween four segments was found to be 1.4%. For both the film
nd EPID, a variation of less than 2% was noted (Fig. 13). The
eekly variation was also within 2% (Fig. 14).

Conclusion

he dosimetric properties of amorphous silicon EPID were
nvestigated. The EPID has a linear dose response. The max-
mum variation due to dose rate was 0.8%. Underresponse
as detected at the lower monitor units for higher dose rate.
he output factor increase for the larger field size was due

o backscatter and variation of 5% was observed for the larger
eld size. The errors due to the leaf speeds during the uniform

ntensity delivery were also reduced because of the dead time
limination. A maximum variation of 5% was observed at the
rst segment of the delivery at larger leaf speeds.

This study assessed the MLC positional accuracy, the accu-
acy of variable dose-rate, and the accuracy of MLC leaf speed
uring RapidArc using EPID. The weekly variation shows the
onsistent control over the dose rate and leaf speed during the
apidArc delivery.
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