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All radiation devices in use nowadays are subject to cause serious incidents and accidents,

with potential risks in exposed population groups. These risks may have immediate or long

term health implications. The detection of radioactive incidents is a procedure that should

be systematized in economically developed societies. International organizations may pro-

vide support to other states in the event of a radioactive incident. Prevention, mitigation and

treatment of the radiation effects are done by anticipating the moment of exposure and by

establishing new efforts for investigation of radioprotective products.

In this article we will analyze the causes of radiological incidents, the means to detect them,
and the current preventive and therapeutic procedures available, with special emphasis on

new biodosimetry methods for triage and investigational radioprotective drugs. Finally, we

will explore the most efficient measures, for future prevention.

© 2011 Greater Poland Cancer Centre, Poland. Published by Elsevier Urban & Partner Sp.

use for military purposes.
. Introduction

he response to emergency events, such as chemical, biologi-
al, radiological or nuclear accidents, requires the existence
f a general health organization. These events are usually
lassified together in order to share common protocols.1 How-
ver, each of these risks has its own idiosyncrasy. An accident
efers to an undesired event which may cause death, an estab-
ished illness, injuries or other damages. An incident is the
vent which, without causing such harmful damages, has the
otential to cause an accident. Risk assessment of an incident

s of great interest, for it may reveal unknown or underesti-
ated risks, therefore controlling processes before damages

ay occur.
Undeniably, the prevention of radioactive incidents

equires the identification of the environments in which they
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may occur. These were classically classified into two clearly
different scenarios: Civilian or accidents in time of peace
(radiation and health industry)2 and War time or terrorist
attacks.3 Newer risk environments such as the exposure to
cosmic rays by pilots or astronauts were later added.4 In this
sense, the increasing use of air transportation may extend
the use of preventive procedures to non-professional popu-
lation in these areas. Recently, the limits between civilian and
war time accidents and their consequences have become less
clear. International organizations concerning atomic energy
are developing rules and procedures to prevent the uncon-
trolled use of ionizing radiations in the sanitary and industrial
fields as well as to minimize the effects of a possible massive
l.: +34 914 222 485.
ail.com (M.J. Martín).

The experience gained from incidents occurring during
peace time with ionizing radiation should be used to reassess
catastrophe protocols.5 Drills should include actions not only

hed by Elsevier Urban & Partner Sp. z.o.o. All rights reserved.
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in terms of radioactive damage but also in that of traumatisms,
burn wounds, inhalation injuries and psychological impact.
The current world scenario is more prone to terrorist-derived
“dirty bomb” type incidents,6 and in these cases, economic,
political and mass media response should be optimized.

1.1. Response to a radiological accident or radiological
terrorist attack

If a radioactive accident is expected, it is important to have a
strategic plan. The following steps should be taken in order to
systemize the procedures:

a) Determining the radioactive incident: This report should
normally be obtained through a statement of those implied
in the incident. Should this not be the case, a series of
environmental dose detector stations should be estab-
lished, with reinforcement in those areas at a higher risk.
Along with this information, other interfering data, such
as weather conditions, should be gathered.

b) Establishing initial estimations using environmental
dosimetry. This can be obtained from detection stations
or by sending moving field detectors, or using aircraft, to
obtain dose distributions.

c) Population assessment. Immediate assessment of the
affected area’s demographics in relation to the total dose
received, therefore establishing the radiation dose received
by different population groups.

d) Decontamination. Decontamination teams should be sent
to affected areas or victims brought to previously built
decontamination stations.

e) Sample gathering: This should take place once the decon-
tamination process has concluded.

f) Preliminary assessment. Once enough information is gath-
ered about each patient, the risk of each patient should
be established individually. In severe individual cases,
patients should be carried to reference hospitals for fur-
ther treatment. In case of mass affection, protocols should
be properly adapted for optimization of all available means.

g) Rapid analysis of biological dosimetry, in hours or days
depending on the procedure used. Biological injury will be
related to the clinical presentation of the radiation syn-
drome.

h) Establishing the most appropriate medical treatment to
deal with the deterministic effects of radiation. Depend-
ing on the complexity of the treatment required, patients
that have received lethal doses of radiation will be sent to
low level medical centres to receive palliative measures.
Patients that receive near-lethal doses will be sent to max-
imum level centres for highly sophisticated treatments
such as bone marrow transplants. Those with sub-lethal
doses will be sent to medium-level equipped centres for
supportive treatment. Finally, patients who have received a
minimum dose of radiation, without deterministic effects,
will be sent to primary care units for thorough symptom
registration for future follow-up of long term or stochastic

effects.

(i) Deferred analysis of stochastic effects, by means of periodi-
cal medical follow-up and examinations. Stochastic effects
of radiation are the appearance of cancer or congenital
iotherapy 1 6 ( 2 0 1 1 ) 153–161

disorders in the patient or descendants.7 One of the most
typical tumor is the papillar thyroid cancer. This could be
due to either chance, or to a certain genetic susceptibil-
ity that would favour the appearance of these diseases in
certain families.8 (Fig. 1).

2. New methods of detection of radiation
effects

Biological dosimetry refers to procedures that quantify
radioactive damage. They consist of laboratory tests that cor-
relate the genetic modifications that take place with the
amount of dose received. These biological dosimeters quantify
biological signals and establish a relationship with the amount
of the radiation exposure dose.

Presently, the most suitable biodosimetry methods for
epidemiologic studies are: Dicentric chromosome assay, flu-
orescence in situ hybridization (FISH) of peripheral blood
lymphocytes and Electron paramagnetic resonance (EPR)
measurements made on tooth enamel. These types of mea-
surements, however, are usually invasive and require difficult
to obtain biological samples. Moreover, doses derived from
these methods are not always directly relevant to the tissues
of interest.

2.1. Dicentric chromosome assay (DCA)

This is currently the tool of choice. Because the assay is
labor-intensive and time-consuming, strategies are needed to
increase throughput for use in radiation mass casualty inci-
dents. One of the strategies to overcome its limitations is to
truncate metaphase spread analysis for triage, as reported in
Room’s study.9 The triage dose is estimated by scoring 50 or
fewer metaphases, compared to a routine analysis of 500–1000
metaphases, and to increase throughput using a large group of
scorers in a biodosimetry network. These results demonstrate
that for rapid triage of acute radiation syndrome (ARS), a net-
work of cytogenetic biodosimetry laboratories can accurately
assess doses even with a lower number of scored metaphases.

2.2. Fluorescent in situ hybridization

The fluorescent in situ hybridization (FISH) of cytogenetic
samples is more selective for the detection of chromoso-
mal translocations. These procedures are highly laborious
and require a long processing technique. This is why they
are of little use in the event of a medical emergency. How-
ever, they can be used in medical check-ups in workers with
radiation exposure. A recent study examined aberrations in
FISH painted chromosomes in vitro irradiated blood samples,
and the results suggested that translocations can be used
as a test to identify individuals with a potentially elevated
radiosensitivity.10

2.3. Electron paramagnetic resonance (EPR) in vivo

dosimetry

It is feasible to perform tooth dosimetry measurements in
situ, greatly expanding the potential for using this approach

dx.doi.org/10.1016/j.rpor.2011.06.004
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Fig. 1 – Strategic plan

or immediate screening after radiation exposures. EPR tooth
osimetry, have an immediate and permanent signature that
eflects the dose. The current cycle time of 5 min enables this

ethod for high-throughput primary screening of hundreds
f patients per hour at a response center when using multi-
le systems11,12. Other physical techniques (e.g. EPR based on
ails) may have a gradual fall-off in measurable intensity, and
his needs to be taken into account in assessing when such

easurements are appropriate.
The characteristics that would make a biodosimetry

ethod ideal from the point-of-view of assisting long-term
ealth risk studies are numerous and while each attribute
ight have varying importance for different studies, methods

hould include some or all of the following attributes:

Register the actual absorbed energy regardless of type of
ionizing radiation to which it is exposed.
Have a radiation-induced signal that is stable over long peri-
ods of time (tens of years at minimum).
Be specific to ionizing radiation.
Has a well-characterized dose–response.
Have low inter-individual variation.
Have a low minimum detectable dose (on the order of a
few tens of mGy) or at least, be able to measure doses that
are as low as those received by a substantial fraction of the
subjects of the epidemiologic study.
Have moderately good precision (on the order of ±30%) at
two-times the minimum detectable dose (and possibly bet-
ter at higher doses)
Have good accuarcy(low bias).
Be field-friendly.
Depend on minimally invasive sampling.
Produce a measurement that directly reflect the absorbed
energy in a single identifiable tissue.
Produce measurements that can be interpreted to reflect
doses in other organs besides the tissue assayed.
Have low per-sample cost.

In practice, all of those conditions are not met by any cur-

ent biodosimetry technique. In particular, the characteristics
f low invasiveness and low cost have not been met. Of these
umerous characteristics, all are not equally important to
ll long-term health risk studies though the combination of
radiation accidents.

attributes available in a particular biodosimetry method would
determine its usefulness for any particular study.13

Other biososimetry methods that are under investigation,
and can be potentially applied in large scale incidents, are:

2.4. Blood protein immunoassay

Cytokines are a class of proteins and glycoproteins involved
in intercellular signaling. Most act through autocrine and
paracrine cellular communication but can be found in the
circulation. They include growth factors, angiogenesis and
angiostatic proteins, interleukins, adhesion molecules and
chemokines. Subsequently, the impact of TGF�1 on pul-
monary radiation effects has now been studied extensively in
humans. The bulk of current evidence suggests that if TGF�1 is
elevated for a long period of time before, during, or after irra-
diation, the risk of pulmonary toxicity increases. The most
promising macromolecular markers are cytokines: TGF�, IL-
1, IL-6, and TNF� being lead molecules in this class as both
markers and targets for therapy.14

In one study, human cell lines were screened by enzyme-
linked immunosorbent assay (ELISA) for the expression of a
dozen secreted cytokines that have been reported to have
changes in protein or mRNA levels. They identified four
cytokine molecules that had altered levels after radiation
exposure, one of which, Interleukin (IL) 6, was consistently
elevated after irradiation in vitro and in vivo.15

2.5. Rapid automated biodosimetry tool (RABIT)

This is a new method of biologically based biodosimetry
developed at Columbia University, designed to be a com-
pletely automated, ultra-high throughput robotically based
biodosimetry workstation.15 It analyzes fingerstick-derived
blood samples, designed to score either micronuclei or phos-
phorylation of the histone H2AX. The rapid phosphorylation
of histone H2AX at serine 139 (�H2AX) serves as a sensitive
marker for DNA double-strand breaks induced by ionizing

radiation or other genotoxic agents. Parallel handling of mul-
tiple samples through the use of dedicated, purpose-built,
robotics and high speed imaging allows analysis of up to 30,000
samples per day.16

dx.doi.org/10.1016/j.rpor.2011.06.004
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2.6. Gene expression microarray

It is possible to specifically detect radioactive damaged DNA
fragments using gene expression microarrays. There is a
report17 on the development of a biodosimetry device that
comprises a set of 14 genes selected on the basis of their
abundance and differential expression level in response to
radiation. Gene expression is analyzed through direct signal
amplification using a quantitative Nuclease Protection Assay
(qNPA). The assay can be performed with volumes as small as
30 �L of whole blood, which is compatible with collection from
a fingerstick. The results revealed statistically significant dis-
crimination between irradiated and non-irradiated samples.
These results indicate that it is a valid test to measure biologi-
cal radiation exposure based on a small number of genes. The
scalability characteristics of the assay make it appropriate for
population triage.18

Gene expression signatures are looking increasingly attrac-
tive as potential biodosimeters for radiation exposure.
However, further validation in terms of in vivo responses in
cancer patients and animal models (including non-human pri-
mates), inter-individual variability and radiation specificity of
the signatures is still needed. Other future areas for investi-
gation also include the study of gene expression responses
to partial body irradiation, responses to internal emitters, and
the effects of age, co-morbidities, combined injuries, low dose-
rate exposures, and different radiation qualities.

2.7. Metabolomics

This method is the profiling of induced small-molecule
metabolites. Irradiation in vivo triggers the expression of
many genes involved in intercellular signaling, whose pro-
teins can have wide-ranging effects on cellular metabolism.
These changes are reflected in alterations in the spectrum of
small-molecule metabolites in blood, urine, and saliva. Such
metabolomic analyses offer several key advantages, particu-
larly simple, non invasive collection, and thus the potential for
very high-throughput radiation biodosimeter screening. Dis-
tinct metabolomic changes have been detected within hours
of exposure to doses as low as 0.5 Gy, and some alterations
persist for at least 30 days. Studies in this field to date have
focused on higher radiation doses, but it has great potential
also for low-dose studies. The high-throughput and non-
invasive nature of sample collection may even make it feasible
for epidemiological studies.19,20 (Fig. 2).

3. Radioprotective drugs

The molecular mechanisms activated in an irradiated tissue,
involve pathways that communicate not only between cell
types within the tissue but also between the vasculature, its
coagulation system, and the bone marrow-derived inflamma-
tory and immune systems. Late normal tissue damage reflects
a failure to regenerate functional tissue, whether through a

lack of stem cells or radiation-induced dysregulation of the
normal healing process.

A common alternative pathway of tissue restoration is
by fibrogenesis, which is often invoked to maintain struc-
assessment.

tural integrity. After irradiation, there are recurring patterns of
expression of pro- and antiinflammatory cytokines, molecules
that promote and diminish cell adhesion, proteases and
antiproteases, oxidants, and antioxidants. This interactive
network of factors is critical to tissue regeneration and healing
after irradiation, and it changes with time and space to move
the healing processes forward in a controlled way. The sever-
ity of injury, extent of cell death, nature and extent of disease,
and adjunctive therapies will all impact the balance of forces
within the network.

The radiation-induced bystander responses are the occur-
rence of biological changes in unirradiated cells in the
proximity of or sharing medium with cells that have been
traversed by ionizing radiation. An important characteristic
of bystander effects is that the responses occur at low radi-
ation doses (<0.05 Gy), increase rapidly with dose, and then
reach a plateau, usually by 0.1–0.3 Gy. When normal human
fibroblasts are irradiated with 0.1–0.5 Gy X rays, bystander
cells exhibit increased DNA damage in the form of c-H2AX
foci or micronuclei and increased reactive oxygen species
(ROS) generation. With all three radiation types, the bystander
responses are decreased by addition of catalase, SOD or c-PTIO
to the shared medium, indicating roles for hydrogen peroxide,
superoxide and/or NO in the signaling. These data suggest that
the increase of damage in the irradiated population at low
doses is a result of bystander signaling rather than a direct
effect of radiation on traversed cells. The bystander signal-
ing depends on cell type, radiation quality and end point. At
low-dose of radiation exposures presented there may be an
epigenetic modification of DNA. The epigenome refers to the
sum of heritable alterations in DNA that do not involve base
sequence changes and includes histone modifications, DNA
methylation and chromatin conformation changes.21

Clearly, there are multiple possible targets for intervention
aimed at improving the outcome, although minimizing the
effect of any one molecule may not have the same effect in all

tissues, at all intervention times, and at all levels of damage.22

Radioprotection refers to the reduction of cytotoxic damage
induced by ionizing radiation to normal tissues by chemical

dx.doi.org/10.1016/j.rpor.2011.06.004
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senger mRNA within dermal wounds is 160-fold greater than
the level found in intact skin, and it is also elevated in the
r physical agents. Radioprotective drugs can minimize the
rganic impact of radiation in comparison to the natural his-
ory of a patient without these drugs. Many of these drugs
ere developed during the Cold War to prepare the army and

he general population in case of nuclear attacks. Initially, they
ere to be used before an attack took place, though they may
lso be used immediately afterwards. Some of these agents
ave been later used in the clinic to protect normal tissues
uring radiotherapy, thus the experience with them has been
roadened. Great amounts of drugs have been researched,
hough few conclusions have been reached as to which sub-
tances should be part of a strategic plan in the event of a
adioactive incident or accident.

There is a challenge for Renin-angiotensin system (RAS) sup-
ression as a modulator of late radiation injury because the
echanism is currently unknown; it may be less of a chal-

enge for agents aimed at Chronic oxidative stress because their
evelopment is more mechanistically driven. Irradiating late
esponding normal tissues leads to chronic increases in reac-
ive oxygen species (ROS) that serve as intracellular signaling
pecies to alter cell function/phenotype, resulting in chronic
nflammation, organ dysfunction, and ultimate fibrosis and/or
ecrosis.23

There are three fundamental approaches to pharmacologic
ntervention. Protection or prophylaxis would refer to therapies
hat must begin before the time of irradiation; a classic exam-
le is the use of a free radical scavenger such as amifostine.
itigation would refer to therapies that could begin after irra-
iation but before there was overt evidence of clinical disease;
xamples include the use of angiotensin-converting enzyme
ACE) inhibitors (e.g. Captopril) to mitigate radiation-induced
ulmonary, renal or central nervous system (CNS) injuries.
reatment would refer to therapies that could be effective after
vert clinical disease has developed; examples include the
se of pentoxifylline and tocopherol to treat radiation-induced
brosis24 (Fig. 3).

.1. Amifostine

mifostine (WR-2721) is an organic thiophosphate that was
elected from over 4400 compounds that were screened by
he US Army as the best radioprotectant compound. Its sub-
equent declassification made the drug available for medical
xperimentation. It is dephosphorylated by alkaline phos-
hatase at the tissue site to its active metabolite WR-1065.

ifferential alkaline phosphatase activity and intracellular pH
ave been shown to result in differential uptake of WR-1065.
therapy 1 6 ( 2 0 1 1 ) 153–161 157

Once inside cells, WR-1065 acts as a scavenger of free radicals
that are induced by ionizing radiation.

The cytoprotective mechanism of amifostine is compli-
cated, involving free radical scavenging, DNA protection and
repair acceleration, and induction of cellular hypoxia. Ami-
fostine is a broad-spectrum cytoprotective agent, with activity
directed to all normal tissues; the only exception is the central
nervous system because the blood–brain barrier prevents the
accumulation of clinically relevant concentrations of amifos-
tine metabolites in neural and glial cells.

The drug is administered intravenously, although a subcu-
taneous administration is also feasible, with a bioavailability
of 72%. Because amifostine is inactivated by gastric acidity,
oral administration is not possible. In oncology practice, ami-
fostine was approved by the FDA for radiotherapy-induced
dryness of mouth in head and neck cancer patients, and
for prevention of renal damage from cisplatin.25 Additionally,
diminished dysphagia, hematologic toxicity and mucositis
have been reported.

Important experimental evidence has been also provided
on the protective role of amifostine against leukemogene-
sis and carcinogenesis. Amifostine prevents the induction
of mutations of the hypoxanthine-guanin phosphoribosyl
transferase gene induced by radiation. Results of in vivo
experiments in mice showed a significant reduction in the
rate of development of leg fibrosarcomas when amisfotine
400 mg/kg was administered before a single dose of 35–57 Gy
gamma-irradiation. As the development of malignancies after
irradiation can be quite high, amifostine may also prove of
value in the prevention of stochastic effects of radiation, espe-
cially for long-term survivors.

Although well tolerated in general, intravenous adminis-
tration can result in hypotension, nausea and emesis. The
main caveats pertaining the use of this drug are that is expen-
sive, it is not self-administrable and it is not suitable for
prolonged use. Also its lack of brain radioprotection can limit
its use in some patients suffering of acute radiation syndrome.

3.2. Keratinocyte growth factor

Keratinocyte growth factor (KGF, Palifermin), a member of the
fibroblast growth factor family, is an important stimulator of
epithelial cell growth, regeneration and repair. The potential
therapeutic use of KGF has been evaluated in disease models
associated with damage to epithelial cells of the skin, diges-
tive tract, and bladder. KGF has shown beneficial effects in
models of dermal injury, in irradiation-induced oral and gas-
trointestinal mucositis, and in preventing lung injury caused
by radiation.26

KGF is produced by mesenchymal cells located adjacent
to the epithelium, pancreas, liver, lung, urothelium, prostate
epithelium and other tissues. It is produced by dermal fibrob-
lasts within the skin and by lamina propria cells of the
intestines. The widespread expression of KGF in normal
tissues indicates a role in homeostasis. The level of KGF mes-
intestines of patients with inflammatory bowel disease. These
observations indicate that increased production of KGF is a

dx.doi.org/10.1016/j.rpor.2011.06.004
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normal response to epithelial injury and that it may represent
a component of damage repair.

Palifermin is being developed to reduce the severity and
duration of oral mucositis and related clinical sequelae and
improve patient functioning after radiation therapy to the
head and neck area, and after total body irradiation in patients
with haematological malignancies.27 A significant reduction
on the incidence of severe oral mucositis was found in patients
treated with chemoradiation for head and neck cancer receiv-
ing weekly intravenous palifermin, at a dose of 120 �g/kg, in a
double-blind, randomized trial.28

The rational for the use of palifermin in the treatment of
acute radiation syndrome is early stimulation of oral and gas-
trointestinal mucosa regeneration, ameliorating the enteritis
that would follow accidental whole body irradiation.

3.3. Melatonine

Melatonin (N-acetyl-5-mehoxytryptamine) is a substance pro-
duced by the pineal gland which is also known to have robust
radioprotective features. Both human and experimental ani-
mal studies have clearly shown that it is a unique antioxidant
and a DNA and chromosome protector against a variety of
harmful agents including ionizing radiation. In the human
body, melatonin is not exclusively produced by pineal gland;
every single cell with DNA may produce melatonin in small
amounts basically to protect themselves from the harmful
effects of free radicals.29 Ionizing radiation generates free rad-
icals an also directly hit DNA.

Melatonin is an amphipathic molecule and can read-
ily enter all cells. There is no known biological barrier
for melatonin, including the blood–brain barrier. After oral
administration, melatonin rapidly passes into blood stream as
well as into the cerebrospinal fluid, bile, seminal, amniotic and
ovarian follicular fluid. Melatonin has been administered in
both physiological and pharmacological amounts to humans
and animals, and there is widespread agreement that it is a
non-toxic and non-teratogenic molecule. It has been recently
documented that melatonin is an excellent candidate as a
countermeasure against radiation exposure.30 It reduces the
oxidative injuries due to ionizing radiation, decreasing the risk
of cancer and several other health problems which can be seen
in decades after a nuclear accident. It would be indicated for
people not heavily irradiated.

3.4. Captopril

The angiotensin-conveting-enzyme (ACE) inhibitor captopril
is an effective mitigator of pulmonary dysfunction caused by
survivable doses of radiation. At doses (on a mg/m2/day basis)
approved by the FDA for use in humans, captopril improves
vascular, functional and structural derangements that develop
in the rat lung by 8 weeks after a single dose of radiation.
Also the initiation of captopril therapy after a delay of 1 week
following injury also has mitigating properties.31
ACE inhibitors and antagonists (e.g. Captopril) of
angiotensin type 1 receptors (e.g. Losartan), are able to
mitigate radiation nephropathy,32 radiation injury to the cen-
tral nervous system and skin in rats.33 All these advantages
iotherapy 1 6 ( 2 0 1 1 ) 153–161

make it imperative to continue investigations on a promising
drug that can reduce morbidity after exposure to radiation.

Inhibition of ACE is considered to be cardioprotective in
part by suppressing the breakdown of bradykinin by ACE. The
roles of renin-angiotensin-system (RAS) and bradykinin in car-
diac radiation injury need further investigation.34

3.5. Antioxidants

Superoxide dismutase agents have shown promising results
in the reduction of acute and long-term radiation-induced
injuries. Endogenous superoxide dismutases (SODs) are natu-
ral enzymes that catalyze the conversion of single-electron
reduced species of molecular oxygen to hydrogen peroxide
and oxygen. Free copper/zinc (Cu/Zn)-SOD (bovine) was devel-
oped in the 1980s as a new drug with a very short serum
half-life for treatment of severe inflammatory diseases.35 Sev-
eral studies have described a radioprotective effect when SOD
is given during irradiation. Free Cu/Zn-SOD (orgotein) was
administered during pelvic irradiation to reduce acute effects,
such as cystitis and proctitis, in double-blind randomized tri-
als, but the results are controversial.

There is some evidence that therapies aimed at reducing
oxidative stress are effective in reducing radiation-induced
normal tissue injury. In experimental models, it has
been shown that preirradiation introduction of manganese
superoxide dismutase (MnSOD) plasmid/liposomes provides
protection against a wide range of normal tissue injuries.36,37

However, because the MnSOD plasmid/liposomes therapy is
started before irradiation, the efficacy could be caused by clas-
sic radioprotection.

3.6. Steroids

Corticosteroids have long been used extensively to reduce
edema caused by radiation. They have been used to atten-
uate late radiation induced effects since the 1950s. In vitro,
steroids inhibit polynuclear cell and macrophage recruitment,
collagen synthesis, prostaglandins, and leukotrienes. In vivo,
dexamethasone has been used to treat radiation pneumoni-
tis, nephropathy, and liver injury in rats and appears to delay
development of organ dysfunction.38 In the radiation pneu-
monitis treatment, according to retrospective studies, steroids
are used: prednisone 1 mg/kg/d for several weeks followed by
a slow decrease in the dose.39

Dexametasone has proved effectiveness in the treatment
of radiation-induced vomiting. Also, corticosteroid therapy
(methylprednisolone) may improved clinical and radiologi-
cal/endoscopy features after several weeks, in patients with
radiation enteritis and proctitis secondary to radiotherapy.40

3.7. Pentoxyfilline and tocopherol

It has been suggested that the combination of pentox-
ifylline and tocopherol may abrogate radiation-induced
fibrosis through antioxidant effects. The possible utility of

pentoxyfilin-vitamin E (PE), is being investigated to decrease
lung toxicity, improving parameters as the diffusion capacity
and the lung perfusion, and is useful in the prevention and
treatment of fibrotic injuries.41

dx.doi.org/10.1016/j.rpor.2011.06.004
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Recent in vitro studies using PE have shown an antioxidant
ffect in irradiated human fibroblasts or endothelial cells, by
educing immediate and late reactive oxygen species (ROS)
roduction, and interference with DNA repair processes. Long-
erm tolerance of combined PTX-vitamin E is excellent for
ts use for long periods of time, and the PE combination is
n efficient and safe treatment of moderately severe cases of
stablished radiation induced fibrosis.42

Animal experimentation has proved that haematopoietic
rowth factors treated with this product in blood transfusions
how a survival increase, as these organisms are better pre-
ared to fight against the sepsis that usually takes place in
nimals subject to lethal radiation.43

.8. Sulfasalazine

ulfasalazine (SAZ) and its metabolite, 5-aminosalicylic acid
5-ASA) is an aminosalicylate that is an established agent
or the treatment of inflammatory bowel disease through a
eduction of prostaglandin production and has a free radical
cavenging activity.44 Sulfasalazine 500 mg orally twice daily
an help to reduce the incidence and severity of radiation-
nduced enteropathy in patients receiving external beam
adiotherapy to the pelvis. Several small trials of 5-ASA,
rally or enemas for radiation proctitis have produced mixed
esults.40

Some of these products, like melatonin and antioxidants,
an be taken for long periods of time since they lack of sec-
ndary effects, and, therefore, can be indicated for people
xposed during days or weeks to small amounts of irradiation,
ot enough for causing acute radiation syndrome, but cer-
ainly enough to cause an increase in the incidence of cancer
n the future.

. Future actions

uture actions in the prevention of radioactive incidents
hould focus on economical areas, politics, international
iplomacy, central intelligence services, and of course,

nvestigation. Medical services should be instructed in the
anagement of the effects of total body irradiation, with a

eed to identify treatment experts for these patients. In this
ense, specialists with professional competence in this field
re haematologists, radiation oncologists, nuclear medicine
nd health physicits.45

In terms of detecting genetic damage, certain individuals’
enetic status must be taken into account depending on the
iodosimetrical system used, as the most commonly labora-
ory procedures usually quantify DNA alterations. A genetic
ank would be useful to compare biological situations before
nd after radioactive impact. The current data suggest that
ate normal tissue injury is the result of the interaction of mul-
iple genes, each making a relatively minor contribution to
he phenotype, making it difficult to identify each gene. Lay-
red on top of this genetic complexity is the likelihood that at

east some of these genes interact with environmental factors,

hich currently are completely undefined.46

There is certain progress in the investigation of phar-
acological presentations that help radioprotective drugs
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reach the inside of tissue cells. Gene therapy can play an
important role in this area, as with the use of manganese
superoxide dismutase plasmid liposome.47 The transfer of
a radioprotective gene into normal tissue cells would pro-
vide the opportunity to reduce the risks associated with
haematopoietic or intestinal toxicity after irradiation. Several
potentially radioprotective genes like multidrug resistance
1 (MDR1), snail homolog 2 (SNAI2), and superoxide dismu-
tases have been evaluated in preclinical models for their
radioprotective potential in the last years. For gene trans-
fer and ectopic expression, adenoviral, adeno-associated
virus (AAV) or retroviral vectors were used.48Gene therapy
of attenuated Salmonella typhimurium Ty21a-recombined KGF
gene (TPK strain) ameliorated radiation-induced pulmonary
injury in an experimental rats model at acute inflamma-
tory pneumonitis phase. Administration of TPK strain could
decrease radiation-induced reactive oxygen species (ROS) and
TGF-� expression in lung tissues, and increase SP-A and
SP-C levels against radiation damage. This study suggested
that this gene therapy is a promising potential treatment
for radiation-induced pulmonary injury. Further studies are
needed to assess the effects of TPK strain on the pulmonary
fibrosis phase.49

Post-radiation inflammatory reaction leads to an irre-
versible pulmonary fibrosis which may cause lethal respi-
ratory insufficiency. Pathological inflammatory and fibrotic
changes might be attenuated by inhibiting tumour necrosis
factor (TNF)-� activity using TNF-� soluble receptors. In a
study,50 an experimental antifibrotic gene therapy with the
plasmid vector encoding a mouse soluble receptor I for TNF-�

(psTNFR-I) was assessed. The ability of psTNFR-I expressing
vector to transfect cells, and its biological activity in vitro
and in vivo were examined by PCR, RT-PCR, MTT assay and
ELISA. Sequential administration of soluble TNFR-I by a non-
viral, intramuscular gene transduction in the early and late
post-radiation inflammatory phase prolonged survival of irra-
diated mice and attenuated the symptoms of lung fibrosis.
They conclude that psTNFR-I gene transduction may provide
a safe and simple method to partially neutralise TNF-� activity
and prevent radiation-induced lung injury.Conclusion

Future actions in the prevention of radioactive incidents
should focus on the implementation of emergency plans and
establishing the most appropriate medical treatment in case
of a nuclear accident occurs.

The actual use of pharmacologic approaches for modula-
tion of radiation injuries after a mass-casualty event would be
severely limited. Most of these agents are still experimental.
Getting agents approved and labelled for such use, as would
be required in a mass-casualty event, will be challenging.

Radioprotective gene therapy represents a very promising
method for reducing radiotherapy-related cytotoxicity of nor-
mal tissue cells and thus may improve therapy success and
the patient’s quality of life.
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