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a b s t r a c t

In the recent years, application of nanoparticles in diagnosis and treatment of cancer has

been the issue of extensive research. Among these studies some have focused on the dose

enhancement effect of gold nanoparticles (GNPs) in radiation therapy of cancer. On the

other hand, some studies indicated energy dependency of dose enhancement effect, and

the others have studied the GNP size effect in association with photon energy. However,

in some aspects of GNP-based radiotherapy the results of recent studies do not seem very

conclusive in spite of relative agreement on the basic physical interaction of photoelectric

between GNPs and low energy photons. The main idea behind the GNP dose enhancement
Radiation therapy

Monte Carlo method

Dose enhancement effect

in some studies is not able to explain the results especially in recent investigation on cell

lines and animal models radiation therapy using GNPs. In the present article the results of

the available reports and articles were analyzed and compared and the final status of the

GNP-RT was discussed.
© 2010 Greater Poland Cancer Centre, Poland. Published by Elsevier Urban & Partner Sp.

that diminishes tumor cells eradication in radiation therapy.
1. Aim

The purpose of the current paper was to assess the current
status of gold nanoparticles (GNP) application in radia-
tion therapy. The studies on GNP and its applications in
radiotherapy beams were reviewed and the advantages and
controversies were discussed.

2. Introduction
Nanoparticles are defined as microscopic particles between
1 and 100 nm but definitions including particles of up to
1 �M have also been reported.1 In cancer treatment they have
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provided better penetration ability for substances used for
therapy and diagnosis with lower risk compared to conven-
tional drugs.2,3 Nanoparticles distribution is influenced by
different parameters, like size and their ability to use can-
cerous cells features for own inactivation.4 Radiation therapy
with ionizing radiations including X-rays, gamma rays and
high energy particles is employed extensively for treatment of
almost all types of solid tumors. Unfortunately, ionizing radia-
tions do not discriminate between cancerous and normal cells.
Thus, normal tissue damage is still the dose limiting factor
l, Attare-Neishabouri Street, Tabriz, Iran.

Application of tumor-specific nanoparticles in radiation ther-
apy has aimed to improve the radiation therapy outcomes by
inducing more toxicity for tumors and less for normal tis-

. Published by Elsevier Urban & Partner Sp. z.o.o. All rights reserved
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ues. Among various nanoparticles, preclinical studies have
eported gold nanoparticles (GNPs) radiosensitization effect in
onjunction with different photon beams.5–9 Although Monte
arlo simulations of GNPs have demonstrated physical dose
nhancement of about 60% for low energy photons of 192Ir
rachytherapy sources and also X-rays in kilovoltage range,10

he biological study of Jain et al. found comparable sensiti-
ation effect at kilovoltage and megavoltage X-ray energies.11

t was suggested that physical dose enhancement based on
ncreased X-ray absorption could not be the main mechanism
f sensitization. However, it should be noted that the used
NP dimensions have been different in these studies. In other
ords, in the MC study GNPs with diameter of 100 nm, while

n the biological study the diameter of 1.9 nm were used.
In the pioneering study of Heinfeld et al., the GNP with

he diameter of 1.9 nm was injected intravenously into mam-
ary tumor-bearing mice in combination with 250 kVp X-ray.6

esults showed a 86% one-year survival for new method com-
ared to 20% for X-rays alone. Another study was conducted
y Chang et al. on melanoma tumor-bearing mice using 13 nm
NP in conjunction with a single dose of 25 Gy of 6 MeV
lectron beam.5 It resulted in significant reduction in tumor
olume compared to a control group. Additionally, the num-
er of apoptotic cells in GNP plus irradiation animals was two
imes higher than irradiation alone.

It is believed that interactions of X-rays and GNP result in
he release of photoelectrons from high Z gold atoms as well
s generation of auger electrons. The range of these electrons
s very short relative to photons and a pronounced energy is
eposited in cells containing GNP or in direct proximity to gold
toms.

The controversial results concerning GNP radiosensitiza-
ion could be originated from the differences in performed
nvestigations in terms of key parameters including GNP
hape, size, concentration and type of cell lines, and radiation
nergy and type. To address the problem, the affecting param-
ters in GNP X-ray radiosensitization were comprehensively
valuated by Burn et al. The most efficient factors were found
o be large-sized GNP, high molar concentration and 50 KeV
hotons with possible dose enhancement factor of 6.4

In the present review, the principles behind the GNP
adiosensitization will be discussed and the results of the
elated studies will be reviewed.

. Interaction of X-ray and gamma
adiations with GNPs

efore clinical application of GNP-based radiation therapy, it
s a requisite to comprehend the GNP interactions on the cel-
ular level and its molecular partners in biochemical reactions
or further optimizations. On the other hand, the X-ray inter-
ction with high-Z GNP and subsequent mechanisms which
ead to dose enhancement should be explained for further
pplications.

The irradiation stability and cytotoxicity of GNPs for radio-

herapy purposes was evaluated by Zhang et al. They found
o obvious instability and size variation in spherical GNPs
ith the diameter of 15 nm following gamma radiation of

000–10,000 Rontgen. Cytotoxicity results showed that the
therapy 1 5 ( 2 0 1 0 ) 176–180 177

extremely high concentration of GNP could cause a sharp drop
off in K562 cell viability, while the low concentration did not
affect the cell viability.12

Based on the energies of ionizing photons, different types
of interactions occur between photons and GNPs. The pho-
toelectric effect is the predominant process for photons with
energy from 10 to 500 keV. The result of this process is the
production of electrons, characteristic X-ray of gold atoms or
auger electrons. In photoelectric interaction, between photons
and GNPs, a vacancy in a K, or L, M shell following photoelec-
tric absorption results in a de-excitation of the atomic system,
either by characteristic X-ray or Auger-electron emission. The
relative probability of these de-excitation processes is given by
the fluorescence yield. Fluorescence yield is strongly depen-
dent on atomic number (Z), being small for light atoms and
large for heavy atoms such as gold.

For photons above 500 keV, the Compton scattering and
excitation are observed. The Compton scattering will result
in atom re-excitation and production of Compton electrons
which leads to subsequent photoelectric effect. There are cer-
tain selection rules which prohibit photon emission entirely
after atom excitation and phonon emission occurs. In phonon
emission, the excitation energy flows into the host lattice as
low grade heat. This is referred to as a quenching process.
The high energy excitation in gold, induces lots of phonons
and less photons, because the dominant transition of GNPs is
photon–phonon transition processing.12,9

For photon energies higher than 1.02 MeV, pair production
process dominates and results in positron and electron pairs.
For all of these interactions, except Compton scattering, the
cross section of photon interactions depends strongly on Z,
when the photoelectric and pair production effect probabili-
ties are proportional to Z3 and Z2 of atoms. Consequently, it is
expected that the interaction of X-and � ray with gold atoms
deliver considerable energy GNPs which are transformed to
energetic, free electrons and thermal energy.

4. Monte Carlo modeling of GNP dose
enhancement effect

Using the GEANT4 MC code a 192Ir brachytherapy source, BEBIG
was simulated and benchmarked against thee available pub-
lished dosimetric data for model validation.10 Two geometries,
including parallel beam geometry and 4� beam geometry,
were used for MC simulations. The parallel beams were used
to resemble the external beam irradiations using two paral-
lel beams. The GNP with a diameter of 100 nm was uniformly
distributed into a nanoparticle region with a grid of 450 nm.
Moreover, dose enhancement by a volume of gold–water mix-
ture with the same concentration was also simulated. For
two parallel beams with 380 keV photons, the maximum dose
enhancement of 28% and 36% were seen for gold nanoparticle
and gold–water mixture which lead to 16.2% overestimation
for gold–water mixture. However, it should be noted that as
photons pass through the nanoparticle region, the dose values

fall below those for non-gold case. Additionally, it gets more
pronounced for lower energies that have been used in majority
of previous studies on GNP dose enhancement effect. Also, the
self-absorption of the high atomic region could be a problem
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in creating a uniform dose distribution for treatments using
GNPs. According to the MC simulation for GNPs dose enhance-
ment, the GNPs effect comes mainly from higher photoelectric
interactions which are inversely proportional to the photon
energy (∝E−3). As we know from basic radiation physics, the
photoelectric interaction coefficient is significantly raised in
energies just above gold’s K-edge binding energy, i.e. 80.7 keV.
In the study of Zhang et al., they explained the enhance-
ment effect by the fact that as the energy of photoelectrons
was about 300 keV for 380 keV photon, the range of photoelec-
trons was about 85 �m, much longer than the gold diameter
of 100 nm. Consequently, the photoelectrons had the chance
to deposit their energy in the water surrounding the nanopar-
ticles.

In the study of Cho, the MC method was used to evaluate
the dose enhancement effect of GNPs-based radiation ther-
apy by 140 kVp X-rays, 4 and 6 MV photon beams, and 192Ir
gamma rays.13 The dose enhancement ratio of 2 was obtained
for the 140 kVp X-ray case with gold concentration of 7 mg Au/g
tumor assuming no gold outside the tumor. The tumor dose
enhancement ratio for the 4 and 6 MV photon beams ranged
from about 1% to 7%, depending on the amount of gold within
the tumor and photon beam qualities. For the 192Ir case, the
dose enhancement ratio of 5–31%, depending on radial dis-
tance and gold concentration were reported.

In another study by Cho et al.,14 the feasibility of gold
nanoparticle-aided radiation therapy (GNRT) using low energy
photons was studied by MC calculations. Brachytherapy
sources of 50 kVp X-rays, 125I and 169Yb were used to calculate
macroscopic dose enhancement factors (MDEF), defined as the
ratio of the average dose in the tumor region with and with-
out the presence of gold nanoparticles during the irradiation of
the tumor. A significant tumor dose enhancement was found
of more than 40%, using 50 kVp X-rays, 125I, and 169Yb sources
and gold nanoparticles. For a tumor loaded with 18 mg Au g−1,
the respective MDEFs of 116%, 92% and 108% were reported for
125I, 50 kVp and 169Yb at the distance of 1.0 cm from the center
of the source. Whereas, for the concentration of 7 mg Au g−1,
it decreased to 68%, 57% and 44%, respectively, for the same
sources. They concluded that GNRT using the clinically used
brachytherapy sources is feasible and could be exploited for
brachytherapy with low energy photons, especially with a high
dose rate 169Yb source.

5. GNP sensitization in cell line and animal
models

In the first study by Hainfeld, GNPs were employed to enhance
radiotherapy toxicity for cancerous cells in mice.6 Mice with
subcutaneous breast cancers were divided into three groups.
The first one received GNP injection prior to 250 kVp X-ray
radiotherapy. The second group received radiation only, and
the last group received GNPs only. The one-year survival rates
were found to be 86% for the GNP and radiation group versus
20% for the radiation alone and 0% for the gold alone groups.

The increased radiosensitivity was attributed to high-Z radio-
enhancement by GNPs.

In the study by Chang et al. the increased apoptotic and
dose-enhancing effects of GNP in combination with single
iotherapy 1 5 ( 2 0 1 0 ) 176–180

dose clinical electron beams on tumor-bearing mice were
reported.5 Murine B16F10 melanoma cells lines were cultured
and then also transplanted into mice leg. The cell lines and
tumor-bearing mice were irradiated with a single dose of 25 Gy
using 6 MV electron beam in combination with GNPs. More-
over, the accumulation of GNPs in cell lines and mice were
detected and quantized. The cell survival results showed that
GNP radiosensitized B16F10 melanoma cells in the colony
formation assay meaningfully, with P value of 0.02. For tumor-
bearing mice it was revealed that the tumor growth was
retarded more considerably comparing to the control and radi-
ation only group (P less that 0.05). Additionally, the extent of
apoptosis was found (almost two times) higher for the GNP
plus radiation group relative to the radiation alone group. They
suggested the application of GNP-based radiation therapy with
electrons for melanoma treatments. Chang et al.5 used GNP
with an average size of 13 nm to benefit from higher sensitiza-
tion effect, according to the previous study of Chithrani et al.15

In study of Burn et al., DNA plasmid solution combined
with GNP was irradiated to investigate the response of this
key molecule for GNP radiation therapy. GNPs with diame-
ters of 8.1, 20.2, 37.5, 74, and 92 and photon effective energies
from 15 to 70 keV were used.4 With a GNP:DNA ratio of 1:5 and
49 keV effective energy, a linear relationship was observed for
enhancement factor in terms of loss of supercoiled DNA and
GNP diameter. For diameters from 8 to 92 nm, the enhance-
ment factor raised to 3 for the largest GNP diameter in their
study.

Zhang et al. studied the enhancement in radiation sensitiv-
ity in prostate cancer by gold nanoparticles.8 Human prostate
carcinoma DU-145 cells were exposed to 200 kVp X-rays and
15 nM TGS–GNPs, or 15 nM Glucose–GNPs, or GNPs plus irradi-
ation. The cytotoxicity induced by GNPs, irradiation, or GNPs
plus irradiation was measured using a standard colorimetric
MTT assay. The results indicated that either TGS–GNPs or X-
ray induced an inhibition of cell growth by approximately 14%
or 16% individually. However, a combination of TGS–GNPs and
X-ray produced an inhibition of cell growth of 30.57%, while
the combination of Glucose–GNPs plus X-ray induced an inhi-
bition of cell growth by 46%.

In the in vitro study of Kong et al., two functional molecules
of GNPs, including cysteamine (AET) and thioglucose (Glu),
were synthesized and cell uptake and radiation cytotoxicity
enhancement in a breast-cancer cell line) MCF-7) versus a
nonmalignant breast-cell line (MCF-10A) were studied. Trans-
mission electron microscopy (TEM) results showed that cancer
cells take up functional Glu-GNPs significantly more than
naked GNPs. The results showed that these functional GNPs
have little or no toxicity to these cells. Different radiations
such as 200 kVp X-rays and gamma-rays were applied to radi-
ation therapy of the cells, with and without functional GNPs.
The results showed that the radiotherapy in association with
GNPs killed significantly more breast-cancer cells compared
to those without GNP.16
6. Impact of radiation energy

The beam energy is one of the major factors influencing the
radiation therapy effectiveness. In radiation therapy of tumors

dx.doi.org/10.1016/j.rpor.2010.09.001
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ig. 1 – The variation of relative mass attenuation
oefficient of gold to water with photon energy.

oaded with high-Z elements the physical concepts of pho-
oelectric interaction has been employed for photon energy
election. In other words, it is physically obvious that the pos-
ibility of photoelectric interaction is raised when the photon
nergy is just above the k-edge of high-Z elements. Addi-
ionally, the release of photoelectrons and Auger electrons
eads to a great energy deposition in the vicinity of nanoparti-
les. However, this pure physical concept was not completely
ealized in practice. Biston et al. used a combination of syn-
hrotron irradiation and cis-diamminedichloroplatinum (II)
n rat F98 glioma cells below and above the K-edge of plat-

num (78.4 keV). Surprisingly, the results were identical for
oth cases. The suggested reason for such a strange event
as that for an incident photon with the energy of K-edge,

ll the energy is spent to eject K-electron and the photoelec-
ron would not receive enough energy to result in excessive
amage to surrounding material.

Another influencing factor which should be taken into
ccount to explain the observed discrepancies is absorp-
ion differences between high-Z element and surrounding

edium. In Fig. 1, the variation of relative mass energy absorp-
ion coefficient of gold to water is presented. The data was
erived from National Institute of Standards and Technology

NIST). As can be seen, the maximum value locates around
0–50 keV, which means that the highest achievable enhance-
ent factor with GNPs could be realized with the photon

nergy of 40–50 keV. The finding of Burn et al. was in accor-
ance with the theoretical assumption on optimum energy of
hotons suggested for radiation therapy with GNPs. On the
ther hand, the application of low energy photons for radi-
tion therapy is associated with the problem of high skin
ose and rapid drop off of absorbed dose with depth. In the
eV energies used for the current radiation therapy, the ratio

f absorption between gold and water becomes theoretically
egligible, as can be seen in Fig. 1. However, as other studies
ave shown, the enhancement effect can be seen also with
eV range of photons. In higher energies, the photon interac-
ion with matter produces Compton electrons with a spectrum
f energy which have higher absorption coefficient with GNPs
ompared to the surrounding biological matter. It can be sug-
ested that some refinement in photon energies and more
therapy 1 5 ( 2 0 1 0 ) 176–180 179

studies on sensitizing effect of GNPs with higher energy pho-
ton may help to overcome the keV range photon problems
in radiation therapy with GNPs. Another approach to avoid
higher dose to skin with low energy photons is to use GNPs
with newly developed miniature X-ray sources which can be
inserted into the body and located beside or inside the tumor
using laparoscopic and endoscopic techniques.4

7. Conclusion

The concept of using GNPs for radiation therapy has been stud-
ied by several experimental and MC simulation investigations
during last years. Although the enhancement of radiation dose
in tumors loaded with high-Z materials have been attempted
for several decades, the emergence of new gold nanoparticles
with biocompatible characteristics has motivated scientists
to investigate their applications in conjunction with radia-
tion therapy. The results of all aforementioned studies are
agreed in that GNPs can enhance the dose deposition phe-
nomenon in GNP loaded tumors. But there are controversial
results about the impact of photon energy and GNP size in
recently published articles. To optimize the technique of GNP-
based radiation therapy for clinical application, some studies
should be carried out to address the effect of photon energy
and GNP size separately. Also, more biological experiments
on cell lines and animal models are required to clarify the
observed differences in dose enhancement effect concerning
the magnitude of enhancement effect and impact of cell type
in GNP-based radiation therapy.
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