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a b s t r a c t

In radiation therapy with high-energy photon beams (E > 10 MeV) neutrons are generated

mainly in linacs head thorough (�,n) interactions of photons with nuclei of high atomic

number materials that constitute the linac head and the beam collimation system. These

neutrons affect the shielding requirements in radiation therapy rooms and also increase the

out-of-field radiation dose of patients undergoing radiation therapy with high-energy pho-

ton beams. In the current review, the authors describe the factors influencing the neutron

production for different medical linacs based on the performed measurements and Monte
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Carlo studies in the literature.
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1. Background

In spite of tremendous developments in cancer treatment
methods, radiation therapy using medical electron linear
accelerators (linac) still plays an unparalleled role in palli-
ation and treatment of tumors. In radiation therapy with
photon beams (E > 10 MeV) neutrons are generated mainly in
linacs thorough (�,n) interactions of photons with nuclei of
high atomic number materials constituting the linac head and
the beam collimation system.1–3 On the other hand, high-
energy photon interactions with patients and treatment room

wall could be the other sources of photoneutrons in radiation
therapy. Different reaction mechanisms like giant dipole res-
onance (GDR), quasi-deuteron (QD) delta resonance (DR), etc.
are involved in the production of photoneutrons.4 The neu-
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trons emitted from the GDR mechanism are similar to the
evaporation neutrons from a compound nucleus while the
QD neutrons have been compared with the pre-equilibrium
model. GDR neutrons are of low energy with an isotropic
angular distribution.4 In high-energy accelerators where the
photon energy and intensity is high compared to the neutrons,
it is difficult to experimentally measure the direct photoneu-
tron component.5,6

The NCRP 116 recommends a quality factor of 20 for pho-
toneutrons energy of 0.1–2 MeV which is produced in radiation
therapy with photon beams.7 They are highly penetrating
particles with high radiobiological effectiveness (RBE). Their
l, Attare Neishabouri Street, Tabriz, Iran.

contribution in patient out-of-field dose is smaller than scat-
tered photons but considering their quality factor of 20 gives
a significant contribution in patient effective dose and conse-
quently in radiation-induced fatal cancer risk.8,9

. Published by Elsevier Urban & Partner Sp. z.o.o. All rights reserved
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. Aim

n this article, we have tried to review the published studies on
hotoneutron production in different linacs, including Varian,
lekta and Siemens. Additionally, the effect of different factors
n photoneutrons dosimetric features has been reviewed.

. Materials and methods

.1. Photoneutron production in linac head

he main sources for photoneutrons in a linac head are high
tomic number components, including target, primary colli-
ator, secondary collimators, wedges, blocks and multi-leaf

ollimators. The tungsten (W) and lead (Pb) with high cross
ections for (�,n) reaction are major sources of photoneu-
rons in medical linacs. Although, other elements such as iron,
opper and aluminum are present, their probability for neu-
ron production is negligible. For example, only 56Fe atoms
an produce neutrons among the iron atoms. For quantita-
ive comparison, it can be said that the energy threshold of
hotoneutron production for W and Pb are 6.74 and 6.19 MeV,
espectively. Whereas respective thresholds for Cu and Fe
ave been reported to be 9.91 and 7.65 MeV.10 On the other
and, the probability of photoneutron interactions increases
teeply with photon energy and its maximum value has been
ound in the therapy range of 13–18 MeV photons for the

aterials used in the linac head including W, Pb, Cu and
e.2,11

The other noteworthy point is that the main neutron pro-
ucing materials, tungsten and lead, have very low absorption
ross sections for the energy range of neutron produced in
inac head. Therefore, photoneutrons have a great chance to
enetrate the shielding and reach the patient and bunker
alls.

Over recent three decades, many studies have reported
eutron dosimetry using different types of dosimeters.8,12–22

owever, the experimental methods have not been able to
nalyze the origin of neutrons reaching the dosimeter. The
roposed method of choice to tackle this problem have been
he Monte Carlo methods.23 By modeling different compo-
ents of a linac and initiating the primary electron striking on
arget and then following the history of all particles includ-
ng photons, electrons and neutrons in different parts of a

inac until its death, all information about the interactions and
umber of generated particles as well as deposited energies in
ifferent parts or any defined volume can be tallied and pro-
ided at the end of simulation.24 In several MC studies the

Table 1 – MC calculation of component contribution in photone

Component 20 MeV

Target 17.2% (W,Cu)
Primary collimator 36% (W)
Flattening filter 10.4% (Fe,Ta)
Jaws 36% (W)
Others (magnet, shielding, etc.) 1%
therapy 1 5 ( 2 0 1 0 ) 138–144 139

contribution of different parts of a linac in neutron fluence
received by patient or at the isocenter has been calculated for
some commercial linacs.5,10,23,25,26

MC methods have been employed extensively to evaluate
the photoneutron characteristics in radiation therapy.26–30 MC
studies have shown that neutron source strength or Q value
varies with linac model, location of scoring cell, field size and
modeling geometry.

Using the MC methods, Pena et al. calculated the contribu-
tion of different components of a Primus linac operating in its
15 MeV photon beam for 10 cm × 10 cm field size.26 The con-
tribution of different components in neutron source strength
were reported as primary collimator 52%, secondary collima-
tor jaws 21%, target 12%, Multi-leaf collimator (MLC) 6.6%,
shielding 5%, flattening filter 0.41%. A recent study by Becker et
al.13 on the same linac showed results consistent with the pre-
vious study of Pena et al. Comparing the results of both studies
with the results obtained on a Varian 2100C/2300C linac by Mao
et al., Zanini et al. and Howell et al. reveals that in both linacs
the overall trend of contribution are identical but there are
small discrepancies for different components.30–32 The results
were summarized in Table 1. As seen in Table 1, the target and
flattening filter in Varian linac shows higher contribution of
25% and 75% relative to Primus. However, it can be concluded
from different MC studies that the primary collimator which
is made from tungsten alloys has the highest contribution
among different components.26,32,33 The second contributor
is secondary collimator jaws and then target, multi-leaf colli-
mator, shielding and flattening filter as other contributors.

The commonly used quantity for neutron production in dif-
ferent linacs is neutron source strength, Q, which is defined
as the number of neutrons at the isocenter coming from
linac head per X-ray dose delivered at the isocenter.2 Neu-
tron source strength of a linac is an important factor used in
the neutron dose calculations for both shielding purposes and
patient out-of-field dose calculations. A most complete data
set of neutron source strength was provided by an experimen-
tal study of Followill et al.17 The results of different studies
on neutron source strength of commercially used linacs were
summarized in Table 2. A review of Table 2 indicates that the
neutron strength for different linacs depends on the photon
energy and linac head structures as well as a model. Fur-
thermore, it should be noted that a wide range of Q values
reported for a specific model and photon energy result from
large uncertainties in neutron measurement methods. Differ-
ences in MC modeling and application of different codes for

MC calculations could also account for the observed discrep-
ancies.

In the study of Mao et al. the neutron strength of Var-
ian Clinac 2100C/2300C for different energies was estimated

utrons from Varian 2100C/2300C linac.32

18 MeV 15 MeV 10 MeV

16% (W,Cu) 9% (W,Cu) 0.01% (Cu)
41% (W) 38% (W) 45% (W)
9% (Fe,Ta) 22% (W) 0.03% (CU)
35% (W) 29% (W) 56% (W)
1.4% 1.2% 1%

dx.doi.org/10.1016/j.rpor.2010.08.003
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Table 2 – Comparison of neutron source strength for various medical linacs.

Manufacturer Model Energy (MeV) Q (n Gy −1) Study

Siemens KD 20 0.92 × 1012 McCall (1987)2

Siemens Primus 15 0.20 × 1012 Lin et al. (2001)47

Siemens Primus 15 0.17 × 1012 Pena et al. (2005)26

Siemens Primus 15 0.136 × 1012 Becker et al. (2007)13

Siemens MD2 10 0.08 × 1012 Followill et al. (2003)17

Siemens MD 15 0.2 × 1012 Followill et al. (2003)17

Siemens KD 18 0.88 × 1012 Followill et al. (2003)17

Siemens Primus (with MiMIC) 10 0.02 × 1012 Followill et al. (2003)17

Siemens Primus (with MiMIC) 15 0.12 × 1012 Followill et al. (2003)17

Siemens Primus (with MLC) 15 0.21 × 1012 Followill et al. (2003)17

Varian 1800C 18 2.9 × 1012 McCall (1987)2

Varian 20C 15 0.93 × 1012 McCall (1987)2

Varian 18C 10 0.059 × 1012 McCall (1987)2

Varian 1800C 18 2.27 × 1012 McGinley and Landry (1989)56

Varian 1800C 15 1.23 × 1012 McGinley and Landry (1989)56

Varian 1800C 10 0.06 × 1012 McGinley and Landry (1989)56

Varian 2100C/2300C 20 1.2 × 1012 Mao et al. (1997)32

Varian 2100C/2300C 18 1.2 × 1012 Mao et al. (1997)32

Varian 2100C/2300C 15 6.8 × 1011 Mao et al. (1997)32

Varian 2100C/2300C 10 3.8 × 1010 Mao et al. (1997)32

Varian 2100C 18 0.96 × 1012 Followill et al. (2003)17

Varian 2100C (with MLC) 18 0.87 × 1012 Followill et al. (2003)17

Varian 2300 CD 18 0.95 × 1012 Followill et al. (2003)17

Varian 2500 24 0.77 × 1012 Followill et al. (2003)17

GE Saturne 43 25 2.4 × 1012 Fenn and McGinley (1995)58

GE Saturne 43 18 1.5 × 1012 Fenn and McGinley (1995)58

GE Saturne 41 15 0.47 × 1012 Fenn and McGinley (1995)58

GE Saturne 41 12 0.24 × 1012 Fenn and McGinley (1995)58

Elekta SL-20 17 0.69 × 1012 McGinley et al. (1993)57

Elekta SL-25 22 2.37 × 1012 McGinley et al. (1993)57
Elekta SL-20 18
Elekta SL-25 18

for closed jaws.32 The neutron strength was increased sig-
nificantly from 10 to 18 MeV and it reached from 3.8 × 1010

to 1.2 × 1012 neutrons per Gy at the isocenter. While in the
other study on Primus linac for the 15 MeV photon beam, the
neutron source strength was calculated at 0.17 × 1012 n Gy−1.26

Flattening filters are often made of medium atomic num-
ber materials such as iron and copper which do not have
considerable cross sections for photoneutron production.34,35

Removal of flattening filters from linacs has been proposed
and studied in several investigations as a way to increase the
dose rate for radiosurgery and intensity-modulated radiation
therapy (IMRT) treatments.25,36–40 It was shown that neutron
fluence for a 18 MeV beam of Varian linac was about 69%
lower for a flattening filter free beam measured by gold foil
activation in neutron moderators.39 Another MC study by Mes-
bahi on Elekta SL-25 showed results very close to those of
a Varian linac. It was found that removing a flattening filter
decreases the number of photons produced in the target which
is required for a given dose at the isocenter. So, the neutron
fluence for a flattening filter free beam was on average 54%
lower compared to the original beam. It is believed that by
decreasing the photon produced in the target, the interactions
between photons and upper stream components are dimin-

ished. Consequently, the number of neutrons per monitor unit
(MU) is reduced because of the decrease in the number of (�,n)
interactions in the primary collimator and other contributing
components.25
0.46 × 1012 Followill et al. (2003)17

0.46 × 1012 Followill et al. (2003)17

3.2. Photoneutron fluence and dose equivalent around
a medical linac

Radiation protection calculations and measurements for pho-
toneutrons around medical linacs are aimed to protect both
patients and staff from unwanted radiation. In addition to
photoneutrons generated in linac head, when the photon
beam of a linac is irradiating the patient, primary, scat-
tered and leakage photons inside the therapy room have
the chance for photoneutron production through interactions
with patient and concrete wall of the room. The energy spec-
tra of photoneutrons are characterized by two components:
a peak around 1 MeV, due to the nucleus evaporation, and a
bump in higher energy region due to direct reaction. The mean
energy of photoneutron is around several MeV. Meanwhile,
neutron spectra shape is changed into more complex distribu-
tion due to transmission through the head components and
shielding at the patient plane.5

According to IAEA 47, the neutron fluence at the isocenter
˚ (n cm−2) per 1 Gy of X-ray is as follows:41,42

˚ = ˚dir + ˚sc + ˚th = aQ

4�d2
+ 5.4aQ

S
+ 1.26Q

S
(1)
The ˚dir denotes the direct neutron fluence, ˚sc,the scat-
ter neutron fluence, ˚th, the thermal neutron fluence, Q, the
neutron source strength per Gy of X-ray at the isocenter, a, the

dx.doi.org/10.1016/j.rpor.2010.08.003
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ransmission factor for linac head which is 1 for Pb and 0.85 for
. In addition, d is the distance (cm) between the measured

oint and the target and S is the area of the treatment room
cm2).

The early measurements using indium activation foil
howed that for a 24 MeV of a Clinac 2500 photon beam, the
ffective energy of neutrons were from 0.28 MeV at the isocen-
er under closed collimators to 0.016–0.024 MeV in the maze
ntrance.43

In a study on the neutron dose equivalent at the maze
ntrance on different rooms for 15 and 18 MeV photon beams
y indium foil measurements, it was reported that the neu-
ron dose equivalent ranged from 0.79 to 1.6 (mSv n/Gy x) for
arian linacs, 0.17 to 1.24 for Siemens linacs. It was also found
hat for 13 studied linacs the neutron dose rose by 13% with
ecreasing the field size from maximum to zero.1

Different studies have reported controversial results con-
erning the effect of a field size on neutron doses around
edical linacs. Garnica-Garza pointed out in his study that

eutron yield increases with field size and the difference
etween the smallest and largest field size was in the order
f 25%. In another study, Kim et al. reported that the neu-
ron dose decreases with field size for field sizes greater than
0 cm × 20 cm. They compared their calculated fluence and
ean energy with the early work of Kase et al.44 with EGS4

ode. Their calculated fluence and mean energies were almost
times higher. It can be attributed to the cross section files

sed in EGS4 code and renewed cross section files (LA150U)
sed in MCNPX code. According to Kim et al. neutron yield
as higher in 20 cm × 20 cm and they suggested using neutron

ield of this field size for design and calculation of door shield-
ng for medical accelerator facilities. The study of Chibani et
l. showed that the neutron fluence increased with increas-
ng field size for Primus 18 MeV, Varian 15 and 18 MeV photon
eams.45 However, the field sizes greater than 20 cm × 20 cm
ere not studied and it seems that the statistical uncertainty
f more than 5% have influenced their final conclusion.

A study on photoneutrons of 10 and 15 MeV photon beams
f the Varian 2100C/2300C linac, showed that for the middle
ize of the irradiation fields, a 20 cm × 20 cm, maximum dose
quivalent was seen and neuron dose decreased with field
izes higher than 20 cm × 20 cm.46 Additionally, another study
ound that the neutron yield increases linearly as the field size
ecreases.32

Chibani et al. showed that for a 18-MeV Siemens linac the
aximum neutron-to-photon ratio was 1.4 × 10−4 at the sur-

ace. They concluded that the neutron flux and dose at the
iven depth increases with increasing field size. Their reason
as that the bulk of neutrons come from the upper part of a

inac not from jaws and the neutrons produced within jaws
re likely to be stopped locally because of jaw thickness. The
eutron dose equivalent (Sv/Gy) of 2.82 × 10−3 and 6.96 × 10−3

ere calculated for 5 × 5 and 20 × 20 field sizes, respectively.
he neutron dose equivalent for Varian was 4 times higher

han linacs for 18 MeV photons. They related these differ-
nces mainly to primary electron energy, which was 14 MeV

or 18 MeV photon beam of a Siemens linac, and to a smaller
xtent to differences in linac geometries and materials.

In a study by Lin et al.47 on a Primus linac the neutron
ource strength was measured with cone size of 25 × 25 for
therapy 1 5 ( 2 0 1 0 ) 138–144 141

15, 18 and 21 MeV electron beams. The neutron dose for
12 MeV electrons was not detected and neutron strength of
100, 262, 349 �Sv Gy−1 electron dose was measured for 15,
18 and 21 MeV beam, respectively. Comparing the neutron
source strength for photon and electron beam revealed that
for the 15 MeV energy the neutron strength for a photon beam
is almost 18 times higher than that of electron beams. In
the study, neutron production from a mobile linac used for
intraoperative radiation therapy was evaluated.48 The neu-
tron dose equivalent was measured using bubble detector for
12 MeV electron beam of a Mobetron linac. It was reported
to be 0.33 �Sv Gy−1 at the accelerator head, 0.18 �Sv Gy−1 in
the patient plane and 0.31 �Sv Gy−1 at the floor plane, on
the beam axis and under the beam stopper. They concluded
that neutron dose equivalent from a Mobetron linac was at
least one order of magnitude lower than that produced by a
conventional linac operated at the same energy in electron
mode.

3.3. Photoneutron spectra

Photoneutron spectra in different points around the linac
can be calculated by MC methods. But the neutron spectra
measurements are sophisticated and vulnerable to differ-
ent measurement inaccuracies. In study by Ongaro et al.,
a commercial passive neutron spectrometer was used to
obtain the neutron energy spectra in patient plane.5 The
spectrometer consisted of several bubble detectors with dif-
ferent energy thresholds ranging from 10 keV to 10 MeV. Each
detector included a polycarbonate vial filled with elastic
tissue-equivalent polymer and superheated freon drops were
dispersed inside the gel. Because of metastable state of freon,
neutron interactions with dosimeter generates bubbles in
which the number of bubbles trapped in polymer is propor-
tional to the neutron fluence. The neutron spectrum can be
obtained by the unfolding process.

In the study of Garnica-Garza, it was found that the spectra
and mean energy were insensitive to field size and it differed
within 1%.49 They concluded that the photoneutron produc-
tion takes place in the components above the movable jaws
and opening the jaws enables more neutrons to reach the
isocenter.

Some studies stated that linac elements which do not take
part in therapeutic beams can be important sources in neutron
production.26,46,47 In a Mc study on photoneutron production
for a 15 MeV Primus linac, the neutron spectra was calcu-
lated at different locations in the treatment room (Fig. 1).26

The detailed geometry of linac head including the shielding
and other components which was not routinely simulated in
photon beams in other studies was considered in their study;
they also simulated a conventional treatment room to study
the effect of walls on the neutron spectra. The approximate
results can be seen in Fig. 1. Neutron spectra at the isocenter
and room corner represent two peaks. There is a peak from 0.1
to 5–10 MeV with its maximum on 0.7 MeV for fast neutrons.
Another peak also exists below 1 eV and is centered on 0.05 eV.

It is seen that the epithermal neuron fluence does not vary sig-
nificantly inside the treatment room as well as maze. While for
fast neutrons the neutron fluence is more than 7 times higher
for isocenter relative to the other locations in treatment room.

dx.doi.org/10.1016/j.rpor.2010.08.003
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Fig. 1 – Neutron spectra at different points of a typical

treatment room for 15 MeV photon beam of Primus linac
(the spectra was derived from the study of Pena et al.).26

Several studies on photoneutron spectra in a treatment
room have shown that the thermal neutron spatial distri-
bution is homogenous, while epithermal neutron fluence
reaches its maximum value in the vicinity of the target, pri-
mary collimator and magnet. Additionally, fast neutrons are
predominant part of neutron spectra at the isocenter and are
decreased with the inverse square of distance from the linac
head.17,50

3.4. Depth dose equivalent of neutrons produced in
radiotherapy

The neutron attenuation is faster outside the photon beam.
For photon beams from 10 to 18 MeV the depth of 50% max-
imum dose equivalent,dH50, range is from 7.5 to 8.5 cm. If
the dH50 values are compared to those calculated for mono-
energetic neutrons, the effective neutron energy can be
calculated. d’Errico et al. found the effective neutron energy of
1.8–2.1 MeV for their studied photon energy.15 When the neu-
trons transmit through head shielding they degraded and their
mean energy dropped to the range of 0.3–0.8 MeV.5,14,15,25,26,46

Kim et al. worked on a 2100C/2300C Varian linac and found
that mean energy of neutrons are from 0.38 to 0.45 MeV for 10
and 15 MeV beams considering 0 cm × 0 cm field size.

3.5. Effect of multi-leaf collimator in IMRT

Recent studies have revealed that using newly developed col-
limation systems including MLC and other beam collimating
accessories influences the neutron fluence in photon beams
depending on their position in the beam.30,51 For MLC-based
treatments to account for the increase in MU relative to con-
ventional treatments, modulation scaling factor (MSF) has
been used.45,52 Neutron increase in these techniques is pro-

portional to increase in MU and so in MSF. Also it is related to
neutron leakage dose in comparison with conventional treat-
ments assuming that both treatment modalities deliver the
same dose to the target.
iotherapy 1 5 ( 2 0 1 0 ) 138–144

It is assumed that for both IMRT and conventional treat-
ments the tumor dose is almost the same. But for IMRT,
it is required that the dose be delivered in small segments
which are formed by MLCs and in spite of the conventional
treatments, many segments were used to deliver dose to
a large treatment volume. So the number of MUs in IMRT
is inevitably increased. It has been shown that higher MU
results in increased photoneutron compared with conven-
tional treatments. In the measurements by TLD and Bonner
sphere system for a prostate treatment, neutron dose equiv-
alent for IMRT was approximately 6 times higher than that of
four field conventional beams. This can be related directly to
the increased MU of 6 times for the IMRT treatment.31

3.6. Effect of wedge filter on photoneutron fluence

Recently, there have been several studies on the effect of
wedge filter on the photoneutron contamination of photon
beams and its spatial distribution around a linac head.53–55 In
the study of Hashemi et al. using polycarbonate film dosime-
ters it was found that for 18 MeV photon beam of an Elekta
linac, the neutron dose equivalent (NDE) of wedged beam was
3–5 times higher than open beams depending on field size.
Also they showed that NDE increases with field size for both
open and wedged beams.54 In the MC study of Mesbahi et al.
on the same linac, the results revealed that the NDE is on
average 6.5 times higher for wedged beams.55 The effect of
field size on neutron dose was different for open and wedged
beams. The neutron dose decreased with field size for open
beams while it increased with field size for wedged beams at
the patient plane. For the point on the central axis, the NDE
decreased from 1 to 0.6 mSv Gy−1 X-ray with field size varia-
tion from 5 cm × 5 cm to 30 cm × 40 cm. But for a wedged beam,
it raised from 4 to 7 mSv Gy−1 X-ray for the same field sizes. It
was pointed out that introducing the high Z wedge filter into
the pathway of high-energy photons would lead to an increase
in the number of photoneutrons. On the other hand, using the
wedge filter, the photon fluence reaching the dmax is decreased
by a rate which equals to the wedge factor. So, to compen-
sate for the attenuation effect of the wedge filter, the MUs
required to produce a constant dose at the dmax are increased
and cause more photoneutron production for wedged beams.
Another effect could be the increase of backscattered photons
and their interactions with head shielding and components,
which causes more leakage of photon and neutron through the
head shielding. It is recommended that the presence of higher
photoneutron fluence for wedged beams should be taken in
account when the patient received dose and secondary can-
cer risk from radiation therapy are calculated. Moreover, it is
required to establish more conservative design of accelera-
tor room and door shielding for neutrons to meet radiation
protection guidelines.53,55

4. Conclusion

In the current study the neutron production in high-energy

photon beams used in radiation therapy was reviewed. A num-
ber of studies have reported different neutron source strength
for different linacs and in some cases for the same model
and photon energy. It can be accounted for by uncertainties

dx.doi.org/10.1016/j.rpor.2010.08.003
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ssociated with measurement methods and difference in MC
odeling of medical linacs with different MC codes. Studies

lso showed that application of MLC and wedge filter increases
eutron production in high-energy photon beams. Moreover,
emoving the flattening filter from photon beams caused a
ignificant decrease in neutron production.

International guidelines on shielding against photoneu-
rons are based on the developing knowledge on the
hotoneutrons characteristics. However, the current knowl-
dge on neutrons produced in linacs is in increasingly using
ew neutron dosimetry techniques which will overcome the
ncertainties associated with neutron dosimetry. On the other
and, application of Monte Carlo methods provides more
recise information about the photoneutron properties in
adiation therapy. In the current review, we have considered
he new published information on photoneutron character-
stics which might have direct impact on calculating the
equired shielding barriers and patient out-of-field dose in
adiation therapy.
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