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Objective: To determine the optimum energy and beam arrangement for prostate intensity-

modulated radiation therapy (IMRT) delivery using an Elekta Beam ModulatorTM linear

accelerator, in order to inform decisions when commissioning IMRT for prostate cancer.

Methods: CMS XiO was used to create IMRT plans for a prostate patient. Arrangements with

3, 5, 7, 9 and 11 equally spaced fields, containing both a direct anterior and a direct posterior

beam were used, with both 6 MV and 10 MV photons. The effects of varying the maximum

number of iterations, leaf increment, number of intensity levels and minimum segment size

were investigated. Treatment plans were compared using isodose distributions, conformity

indices for targets and critical structures, target dose homogeneity, body dose and plan

complexity.

Results: Target dose conformity and homogeneity and sparing of critical structures improved

with an increasing number of beams, although any improvements were small for plans

containing more than five fields. Set-ups containing a direct posterior field provided superior

conformality around the rectum to anterior beam arrangements. Mean non-target dose and

total number of monitor units were higher with 6 MV for all beam arrangements. The dose

distribution resulting from seven 6 MV beams was considered clinically equivalent to that

with five 10 MV beams.
Conclusion: Methods have been developed to plan IMRT treatments using XiO for delivery

with a Beam ModulatorTM that fulfil demanding dose criteria, using many different set-ups.

This study suggests that 6 MV photons can produce prostate IMRT plans that are comparable

to those using 10 MV. Work is ongoing to develop a complete class solution.
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Fig. 2 – Planning structures contoured in XiO. PTV, planning
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1. Introduction

With intensity-modulated radiation therapy (IMRT), the radi-
ation intensity within each field is varied according to a
fluence map calculated by a treatment planning system (TPS)
to provide the desired dose distribution, which is specified in
terms of dose and dose-volume constraints for targets and
organs at risk (OAR).1 The increased control over dose distri-
butions achieved with optimised intensity-modulated beams
can provide a significant advantage when treating complex
geometries, for example where a target has a concave shape
around a critical organ such as the prostate around the rectum.
Studies show improved outcomes for localised prostate can-
cer following IMRT compared to three-dimensional conformal
radiation therapy (3DCRT).2–4 Dose escalation can significantly
improve prostate-specific antigen (PSA) relapse-free survival
due to improved local tumour control.5 Radiation-induced
damage to surrounding critical structures becomes a limit-
ing factor in 3DCRT techniques, with the rectum being the
principal OAR. Intensity-modulation can improve dose con-
formality, confining irradiation more closely to target volumes
to allow further increases in tumour dose while reducing the
normal tissue volumes irradiated.

IMRT is being commissioned in Leeds for the treat-
ment of prostate patients entered into the Conventional or
Hypofractionated High Dose Intensity Modulated Radiother-
apy for Prostate Cancer (CHHIP) trial,6 a study investigating
the hypothesis that shorter radiotherapy courses delivering
a higher dose per fraction may improve tumour control in
localised prostate cancer for a given level of radiation related
side effects. Prostate radiotherapy is currently delivered in
Leeds using 10 MV photons from Beam ModulatorTM (BM) lin-
ear accelerators, and plans are generated using the XiO TPS
(Computerised Medical Systems Inc., St. Louis, USA). The BM
is an innovative type of treatment head from Elekta Oncology
Systems Ltd.,7 the physical and dosimetric characteristics of
which have been described previously.8 Fig. 1 shows the head
design. The multileaf collimator (MLC) consists of 40 leaf pairs.
Each leaf projects a width of 4 mm at the isocentre rather than
the conventional 1 cm. The maximum beam size at the isocen-

tre is 16 cm × 21 cm. The leaves are capable of interdigitation,
which is not possible in the standard Elekta MLC head.9 There
is no other movable collimation, e.g. backup diaphragms, in
the MLC head of a BM.

Fig. 1 – Schematic diagram of the Elekta Beam ModulatorTM

treatment head.
target volume.

A ‘class solution’ is required for a new type of treatment,
to provide a starting point from which the majority of plans
can be created, making it possible to plan large numbers of
treatments with the minimum appropriate adjustments for
individual patients. This should specify a set of planning
parameters including photon energy, number and arrange-
ment of beams, and dose limits and penalties to be used by
the optimisation algorithm.

There is a range of literature on energy selection, and
selection of other IMRT parameters such as number of beams
and beam orientations for prostate treatment,10–21 some with
conflicting conclusions or recommendations. However, there
is currently no published literature regarding IMRT planning
using XiO for delivery with a BM, and a class solution must
be determined for this specific set-up. It is possible that previ-
ous observations may be specific to particular TPSs and linear
accelerator designs. The aim of this study is to determine the
optimum energy and beam configuration for prostate IMRT
delivery using an Elekta BM by comparing achievable treat-
ment plans, in order to inform decisions when commissioning
IMRT for prostate cancer. The CHHIP protocol6 requires a
simultaneous boost technique delivering different doses to
three nested planning target volumes (PTV), while plans in
the reviewed literature involve at most two targets. In addi-
tion, results concerning the effects on dose distributions of
varying the number of fields and photon energy will add to
the knowledge base for this application.

2. Methods

2.1. Generation of treatment plans

Plans were created with XiO v4.33.02 for a prostate patient
with moderate risk of seminal vesicle involvement, using test
patient data from the CHHIP trial QA information.6 For this
patient group PTV1 is the prostate and seminal vesicles with
a 10 mm isotropic margin (see Fig. 2). PTV2 and PTV3 are
defined as prostate only plus a margin of 10 mm and 5 mm
respectively, with 5 mm and 0 mm towards the rectum. Mini-

mum and maximum doses to a structure are defined as those
received by 99% and 1% of the volume respectively. The CHHIP
conventional 2 Gy fractionation schedule was used, in which
the core high-dose region is prescribed 74 Gy. The protocol
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Table 1 – Normal tissue dose-volume constraints for the
CHHIP trial.6 Values in brackets are for guidance only.

Dose (Gy) for
2 Gy/# schedule

Dose
(%)

Maximum
volume

Rectum 30 41 [80%]
40 54 [70%]
50 68 60%
60 81 50%
65 88 30%
70 95 15%
74 100 3%

Bladder 50 68 50%
60 81 25%
74 100 5%

Femoral heads 50 68 50%
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Bowel 50 68 17 cm3

Urethral bulb 50 68 [50%]
60 81 [10%]

equires minimum coverage of PTV3 with the 95% (70.3 Gy) iso-
ose, with median dose in the range 99–101%. PTV2 requires
inimum coverage with 91% of 74 Gy (67.3 Gy), and PTV1 with

6% (56.2 Gy). Dose-volume constraints are specified for the
ectum, bladder, femoral heads and bowel, with additional
uidance levels for the urethral bulb (Table 1).

The optimiser in XiO acts to minimise an overall cost
unction, which is the sum of individual objective functions
pecified for each target and OAR to establish suitable dose
r dose-volume goals. Two parameters associated with these
bjectives can be varied in order to achieve a combination
f different goals. Increasing the weight of a particular dose
r dose-volume objective increases its relative importance
ith respect to other objectives. Power is used to increase
he magnitude of the penalty applied to voxels with doses
hat violate a structure’s objectives. Overlap priority is deter-

ined in XiO by the rank assigned to each structure, with
oxels lying inside more than one being governed by objec-

ig. 3 – Example IMRT prescription, for posterior five-field arrang
enote the three transition volumes surrounding planning targe
.0 cm respectively. Weights range from 1 to 1000 and powers fro
therapy 1 4 ( 2 0 1 0 ) 205–213 207

tives specified for the organ with the lowest number. PTV3
was therefore given the lowest rank, with increasing values for
PTV2 and PTV1. A suitable minimum dose limit was assigned
to each target to achieve the required coverage, and a maxi-
mum limit to constrain high dose. As found by others,10,11 it
was necessary to prescribe more stringent dose limits than
those required, since the optimisation algorithm cannot sat-
isfy all the demands placed on it, and segmentation degrades
plans.

In regions of high dose gradient, it can be useful to cre-
ate transition volumes to help transition the dose between
two areas with different prescriptions.22 Additional structures
were contoured around PTV1 as shown in Fig. 2, to aid the
transition from high dose within the targets to low dose in sur-
rounding tissue, to make dose fall off more rapidly outside the
prostate. After investigating various combinations of margins,
PTV1 was grown in three dimensions by 0.3 cm, 0.6 cm and
1.0 cm. By requiring the optimisation algorithm to treat these
as OARs, each with a maximum dose limit equal to the mini-
mum dose of the structure immediately inside, conformity of
the 76% isodose to PTV1 was considerably improved.

Others who have developed class solutions for prostate
IMRT have found it necessary to define artificial structures
in order to achieve a conformal dose distribution.5,10 Fig. 2
illustrates all the structures that were used for planning in
this study. The rectum was divided into two separate struc-
tures to provide greater control over isodose shaping around
PTVs in the region of overlap. A maximum dose limit of 70 Gy
for the part overlapping the targets (rectum + PTV1) pushes
areas of high dose within the targets away from the rectum.
A more stringent maximum dose (corresponding to the mini-
mum PTV1 dose) was applied to the part of the rectum outside
PTV1 (rectum − PTV1), together with a dose-volume constraint

to control the rectum dose-volume histogram (DVH). Similarly,
a maximum dose limit was applied to the part of the blad-
der inside the targets (bladder + PTV1), to reduce the bladder
volume receiving high dose. It was not necessary to specify

ement at 10 MV. PTV1 + 0.3, PTV1 + 0.6 and PTV1 + 1.0
t volume 1, formed by adding margins of 0.3 cm, 0.6 cm and
m 2.0 to 5.0. OAR, organ at risk.
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constraints for the femoral heads or bowel in the prescription,
as doses were well within CHHIP limits for all plans.

An initial treatment plan was generated using five equally
spaced fields including a direct posterior beam, since several
centres use arrangements very similar to this,5,10,11 with 10 MV
photons. The rank and dose and/or dose-volume objectives
for each target and OAR were varied, together with weights
and powers, to determine a combination that satisfied all the
CHHIP requirements. Fig. 3 shows the resulting prescription.
The beam arrangement and energy were then varied to gen-
erate a series of plans with 3, 5, 7, 9 and 11 equally spaced
fields, containing both a direct anterior and a direct posterior
beam, using both 6 MV and 10 MV photons. DVHs were used
to compare doses to targets and OARs with the criteria laid
out in the CHHIP protocol, to determine whether dose distri-
butions were acceptable. In most cases some constraints were
no longer met, and slight modifications to one or more dose
limits and/or penalties in the original prescription were usu-
ally necessary (optional CHHIP constraints were not always
met). Forward planning was also performed for comparison,
using a conventional 10 MV four-beam box (FBB) technique
with an additional coned-down boost field entering from each
direction.

The impact of a number of IMRT planning parameters on
dose distributions was investigated for a 10 MV plan with a
five-beam posterior arrangement, to decide on suitable val-
ues to be used in all the plans for this study. A conformity
index was calculated for each PTV in order to compare plans
(defined as the ratio of the total volume covered by 95% of
the prescribed dose to the target volume enclosed by that iso-
dose). Step increments (beamlet size in the direction of leaf
travel at the isocentre) in the allowed range of 0.3–2.0 cm
were investigated. To produce a deliverable plan, each beam is
divided into a number of smaller segments. The ideal inten-
sity maps are quantised into a user-defined number of discrete
intensity levels. A minimum segment size is also specified; any
segments with an equivalent field size below this value are
deleted. Plans resulting from segmentation with minimum
square segments across the allowed range of 0.0–3.0 cm, and
4–10 discrete intensity levels were compared. A maximum of
60 iterations in the optimisation was found to achieve the
objectives for all structures. Final dose calculations were per-
formed on a 0.2 cm × 0.2 cm × 0.2 cm grid.

2.2. Comparison of treatment plans

A number of figures of merit were used to quantitatively eval-
uate treatment plans using values measured from DVHs, in
addition to a visual assessment of isodose distributions. A
clinical oncologist who specialises in radiotherapy of urologi-
cal cancers viewed the dose distributions, to see whether the
ranking of plans using objective measures supported clinical
opinion.

Dose conformality to each PTV was assessed using a con-
formity index (CI), defined for a reference isodose (RI), taken

to be the minimum dose covering the target, as:

CI = PTVRI

VRI
(1)
iotherapy 1 4 ( 2 0 1 0 ) 205–213

where PTVRI and VRI denote the target volume and total tissue
volume receiving at least the reference dose. The conformal
index (COIN) defined by Baltas et al.23 was used to incorporate
a measure of normal tissue avoidance. COIN values were cal-
culated for the minimum isodose covering each PTV using Eq.
(2):

COIN = PTVRI

PTV
× PTVRI

VRI
×

NCO∏
i=1

(
1 − VCO,RI,i

VCO,i

)
(2)

where NCO is the number of critical organs and VCO is critical
organ volume. COIN combines the quality of target coverage
with irradiation of both non-critical healthy tissues and crit-
ical organs in a single parameter, each component of which
tends towards 1 in the ideal case. Although this index was
originally proposed for brachytherapy, Feuvret et al.24 discuss
its application to external beam radiotherapy, where it can
be useful in high-precision techniques associated with a very
high dose gradient.

Another avoidance measure, a comprehensive quality
index (CQI) made up of individual quality indices (QI) for sur-
rounding critical structures based on their maximum dose
Dmax, used by Sheng et al.25 to compare techniques for treat-
ing sinus tumours, was applied to this comparison of 6 MV and
10 MV plans for N OARs:

CQI = 1
N

N∑
i=1

QIi = 1
N

N∑
i=1

D6
max i

D10
max i

(3)

An inhomogeneity index26 was used to compare dose uni-
formity within the targets:

∏
= Dmax − Dmin

Dmean
(4)

where Dmax, Dmin and Dmean are the maximum, minimum and
mean PTV dose.

Mean and maximum doses received by the whole body,
non-target tissue, and tissue more than 1 cm away from the
boundary of PTV1 were assessed for all plans. The total num-
bers of segments and monitor units (MU) were also compared,
as measures of plan complexity.

3. Results

3.1. IMRT planning parameters

Fig. 4 shows the variation of PTV conformity indices with IMRT
planning parameters. PTV1 dose conformity improved with
decreasing step size (Fig. 4a), with a smaller improvement
observed for PTV2. Step increments above 0.8 cm led to sig-
nificant degradation of dose distributions. An increment of
0.3 cm provided only a very small improvement compared to
0.6 cm, while calculation time approximately doubled. For seg-
mented plans (with 5–10 intensity levels, minimum segment

size 1.6 cm), the total number of segments increased by 10–14
per centimetre decrease in leaf increment.

Dose conformity improved for all three PTVs with a smaller
minimum segment size, as shown in Fig. 4b. Conformity
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Fig. 4 – Effect of varying IMRT planning parameters on planning target volume (PTV) conformity indices (defined for each
PTV as the ratio of the total volume covered by 95% of the prescribed dose to the volume of the target enclosed by that
isodose). (a) Step increment (no segmentation). (b) Minimum segment size (step increment 1.0 cm, 10 discrete intensity
l t 1.0
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evels). (c) Number of discrete intensity levels (step incremen
alues before segmentation.

ndices for PTV2 and PTV3 began to diverge significantly from

alues before segmentation for a minimum segment size
bove 1.6 cm. Target doses increased when this parameter was
ncreased above 1.6 cm. Although increasing the number of
iscrete intensity levels does not necessarily improve a dose

ig. 5 – Transverse dose distribution through the isocentre for fiv
0 MV. (b) Posterior beam arrangement at 6 MV. (c) Anterior beam
MV.
cm, minimum segment size 1.6 cm). Dashed lines indicate

distribution, conformity generally improved with an increas-

ing number of levels (Fig. 4c), as did target dose homogeneity.
Dose conformity was considered inferior with fewer than six
or seven intensity levels. On average, the total number of seg-
ments increased by eight per centimetre decrease in minimum

e-field IMRT plans. (a) Posterior beam arrangement at
arrangement at 10 MV. (d) Anterior beam arrangement at
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Fig. 6 – Examples of graphs comparing quantitative figures of merit between treatment plans. (a) Planning target volume
ludi
num
(PTV) 1 conformity index (CI). (b) Conformal index (COIN) inc
inhomogeneity index. (d) Mean dose outside PTV1. (e) Total

segment size, and by six or seven with each additional inten-
sity level.

3.2. Comparison of treatment plans

3.2.1. Visual inspection of isodose distributions
Fig. 5 shows dose distributions in a typical slice for the five-
field plans. In general as the number of beams increased,
isodoses conformed slightly more tightly to PTVs and high
dose was constrained in a smaller region around the prostate,
with improvements in target dose homogeneity. More accu-
rate shaping of the 56.2 Gy (76%) isodose around PTV1 where

it overlaps the rectum, in terms of both target coverage
and rectum sparing, was achieved with a posterior beam
arrangement. For a given beam set-up, 10 MV photons gave
comparable or better target dose homogeneity and conformity
ng all organs at risk (OAR) at dose level of PTV1. (c) PTV1
ber of monitor units. FBB, four-beam box.

than 6 MV, with lower doses outside the prostate. High-dose
regions arose near the patient surface in plans using three
or five 6 MV beams; Fig. 5b and d shows tissue in poste-
rior/anterior oblique beams receiving 44 Gy.

3.2.2. Conformity
A clear advantage in both target volume CIs and COIN values
was demonstrated from using more than three beams, with
only small improvements observed as the number of fields
was increased above five. Fig. 6a and b illustrates this for the
minimum dose covering PTV1. For a given beam arrangement
there appears to be some advantage in the use of 10 MV pho-

tons. At the dose level of PTV3, CI improved by an average of
7% compared to 6 MV plans, and COIN values were higher, on
average by 10% when all OARs were considered. The FBB pro-
vided better dose conformity than three-field plans, but IMRT
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ith five or more beams was superior in terms of CI and COIN
alues. QIs for the rectum and bladder lay within 1.5% of 1.0
n all cases. Considering maximum rectal doses, 10 MV plans
ere slightly superior for five beam arrangements and 6 MV

or four. For the bladder, eight beam arrangements were bet-
er for 10 MV and only one for 6 MV, although the bladder will
e full during treatment so most of this dose will actually be
elivered to urine. Combined CQIs for both OARs lay in the
ange 0.991–1.012; eight beam arrangements were better with
0 MV and two with 6 MV.

.2.3. Homogeneity
ose uniformity within the targets generally improved with
n increasing number of beams, as shown in Fig. 6c for PTV1.
or a posterior beam arrangement, homogeneity was found
o improve with up to seven or nine beams. In many cases
0 MV plans showed better homogeneity than 6 MV; within
TV3 10 MV was superior in all cases except the three-beam
nterior arrangement. The FBB provided superior target dose
niformity compared to IMRT with even the highest numbers
f beams.

.2.4. Body dose
he mean dose to non-target tissues decreased substantially
hen five or more fields were used (Fig. 6d). It was consistently
igher in 6 MV plans, by an average of 6% across the differ-
nt beam arrangements. The maximum dose in tissue more
han 1 cm away from PTV1 showed a similar drop between
hree and five beams, with much smaller changes with addi-
ional fields. This was higher at 6 MV for all but one beam
rrangement, with the difference between the two energies
ecreasing as the number of fields increased.

.2.5. Plan complexity
ach intensity-modulated beam used approximately the same
umber of segments. Therefore the total number of segments
equired to deliver a treatment increased in proportion with
he number of fields (on average by 11 or 12 with each addi-
ional beam). The total number of MU was higher for 6 MV
hotons by up to 19% (Fig. 6e). A posterior beam arrange-
ent required more MU in all but one case. The range of

otal MU between plans decreased with an increasing num-
er of beams, converging to approximately 600. The forward
lan used only eight segments and required less than half the
verage number of MU for IMRT plans.

. Discussion

.1. IMRT planning parameters

he increase in number of segments (and therefore treatment
elivery time) with decreasing leaf increment or minimum
egment size, and increasing number of intensity levels, must
e weighed against the improvements in dose distributions.

step increment of 0.6 cm was chosen as a compromise

etween achieving desired dose distributions and limiting the
alculation time. This is in line with the recommendation of
u.27 A smaller leaf movement between segments increases

exibility in controlling individual beamlet intensities. A min-
therapy 1 4 ( 2 0 1 0 ) 205–213 211

imum segment size of 1.6 cm was chosen, since no significant
improvement was observed when smaller segments were per-
mitted, and dosimetry becomes less reliable for very small
fields. Eight intensity levels were used for this study, as this
was found to provide acceptable dose distributions in all cases.

4.2. Comparison of treatment plans

Both photon energies were able to provide adequate target
coverage and OAR sparing to satisfy the requirements of the
CHHIP protocol with all the beam arrangements investigated.
It was more difficult to meet all the criteria when using fewer
fields, and this took many attempts with only three beams. It
was possible to achieve an acceptable dose distribution using
forward planning, although this irradiated more healthy tis-
sue than IMRT with five or more beams (shown by lower CI and
COIN values). The greater dose heterogeneity within targets
observed in IMRT plans compared to a FBB is generally recog-
nised as a trade-off for the increased OAR sparing achieved
with IMRT.10

Energy selection is critical for conventional external beam
radiotherapy. Lower photon energies have traditionally been
used to treat superficial tumours, while higher energies pro-
vide greater penetration, enabling delivery of maximum dose
at depth without injuring shallow tissues when irradiating
deep-seated tumours. However, high energies introduce prob-
lems including increasingly diffuse beam boundaries due to
the greater lateral range of secondary electrons. Laughlin et
al.12 showed that the narrower penumbra of lower-energy
megavoltage X-ray beams results in a tighter dose distribu-
tion around a target, minimising irradiation of nearby OARs,
although regions near beam entry ports receive higher dose.

Observations that IMRT treatment planning depends much
less on energy optimisation, such as a study by Söderström
et al.13 suggesting that 6 MV photons can provide effec-
tive treatments in most cases, have led to the manufacture
of IMRT-dedicated single intermediate energy linear accel-
erators, the advantages and disadvantages of which have
been discussed by Subramanian and Gibbons.14 Subramanian
argues that IMRT should be performed using 6–8 MV photons,
for which dosimetry characteristics are better understood in
heterogeneous media and shielding is less expensive. Bene-
fits of low energies include minimising total body dose from
head leakage, internal scatter and secondary neutrons. Advo-
cating the use of 10 MV or above, Gibbons points out that
low-energy treatments deposit high dose in regions periph-
eral to the target, and generally require a more complex plan
containing a greater number of fields, beam segments and
MU. This increases treatment delivery times, integral dose and
irradiation of surrounding organs.

Prostate cancer has conventionally been treated using X-
rays at 10 MV or above, but a lower energy may be sufficient
with IMRT. A number of studies have compared 6 MV prostate
IMRT with higher energies. Lu et al.15 found that 6 MV beams
can achieve comparable dose distributions and DVHs to those

resulting from 15 MV. De Boer et al.16 demonstrated no clinical
benefit from the use of 18 MV compared to 6 MV, and Sun and
Ma17 showed that 6 MV photons can produce equivalent plans
to 18 MV even for exceptionally large patients.
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The clinical oncologist consulted in the present study
would be equally satisfied using either photon energy. High
entrance dose at 6 MV gave rise to superficial high-dose
regions in anterior/posterior oblique beams. This effect
decreased with an increasing number of beams, since fewer
MU entered through each. Although five beams provided an
acceptable dose distribution at 10 MV, additional fields are
likely to be necessary if 6 MV is to be used; with seven beams
the high-dose regions disappeared. This supports the obser-
vations of Pirzkall et al.18, who argue that IMRT does depend
on energy for deep-seated targets. While plans at 6 MV, 10 MV
and 18 MV had comparable dose distributions surrounding the
prostate, a significant increase was observed in the volume
of tissue further than 1 cm from the target boundary receiv-
ing dose when using either low energy or few fields. However,
that study indicated that a minimum of nine fields is likely to
be necessary for 6 MV prostate plans, while at 10 MV six fields
should be acceptable.

Adverse skin reactions are therefore a concern for low-
energy treatment of deep-seated targets, particularly in large
patients. Thermoluminescence dosimetry measurements per-
formed on the surface of a phantom19 have shown that
although skin doses during prostate IMRT treatments are
higher with 6 MV than 18 MV, they are significantly reduced
for both energies compared with 3DCRT, and doses from 6 MV
IMRT are substantially lower than 18 MV 3DCRT. Chow et al.20

performed phantom measurements using metal oxide semi-
conductor field effect transistor (MOSFET) detectors, which
showed that for a given number of fields surface doses are
higher at 6 MV than 15 MV, but the difference decreased from
approximately 30% to 5% as the number of IMRT beams was
increased from five to nine.

More MU are needed to deliver the required target dose
with 6 MV photons due to their lower penetrability, resulting
in higher whole body doses. The FBB gave a significantly lower
mean non-target dose than all the IMRT plans as it delivered
fewer MU, although the maximum dose was higher than IMRT
plans using five or more fields due to large regions in the lateral
beams receiving up to 48 Gy.

Differences in conformity and inhomogeneity indices
between 6 MV and 10 MV plans were not considered clini-
cally significant. This supports previous studies that have
demonstrated no significant variation in conformity or criti-
cal structure doses between prostate IMRT plans using photon
energies between 6 MV and 18 MV.16,18 In these IMRT stud-
ies, lower energies do not provide the improvement in dose
conformity observed with non-modulated beams.12 The mod-
ulation of beam intensities to achieve desired target and
OAR doses works independently of beam energy. The small
improvements in CI and COIN values seen with 10 MV photons
compared to 6 MV for a given beam arrangement do appear to
contradict a study in which conformal index values were the
same or slightly better for 6 MV prostate IMRT plans compared
to 18 MV.17 However, results will depend on the particular def-
initions adopted for indices, and none of the previous studies
used a BM where the different leaf size may affect conformity.
To minimise the time required to plan and deliver treat-
ments and perform dosimetric verification, it is desirable to
use the minimum number of beams that can achieve a satis-
factory treatment plan. Stein et al.21 found that the optimum
iotherapy 1 4 ( 2 0 1 0 ) 205–213

number of equispaced coplanar intensity-modulated 15 MV
photon beams to treat a typical prostate tumour increases
with prescription dose, ranging from 3–5 for 70 Gy to 7–9 for
81 Gy. Optimisation of beam orientations was found to signif-
icantly improve dose distributions compared to equiangular
arrangements only with five or fewer fields.

Increasing the number of beams provides greater con-
trol, and others have reported similar improvements in
conformality20 and target dose homogeneity.21 No significant
advantage was perceived from the use of more than five beams
for 10 MV or seven beams for 6 MV, while three-field plans
were inferior, in agreement with Mott et al.10 An arrange-
ment containing a direct posterior field was preferred due
to the increased rectum sparing achieved through improved
conformity around the concave posterior PTV boundaries.
This supports the prediction of Stein et al.21, that intensity-
modulated beams entering from the direction of an OAR
partially enclosed by a target allow greater control over dose
distributions in this region. The variations in MU and body
dose support observations that energy becomes less impor-
tant as the number of IMRT beams increases, suggesting that
the value of using high energy to treat deep-seated targets
decreases with an increasing number of beams.18,20

4.3. Future work

The development of a class solution requires further inves-
tigation to determine an optimal set of inverse planning
parameters and prescription for the chosen beam arrange-
ment and photon energy. In order to perform a meaningful
comparison between treatment plans, the values used in this
study were not optimised for any particular set-up, so that dif-
ferences between prescriptions were minimised and all other
parameters could remain constant. This will need to be tested
on a number of additional patient datasets, in order to estab-
lish a robust class solution that provides a good starting point
in most cases. Dosimetric verification measurements have
been performed using a Semiflex 0.125 cm3 ionisation cham-
ber and films. These gave good agreement with XiO following
remodelling of the BM data specifically for the small fields
associated with IMRT.

5. Conclusion

IMRT treatments with a Beam ModulatorTM linear accelerator
have been successfully planned, and delivered to a phantom.
Planning methods have been developed with the XiO TPS to
generate acceptable plans fulfilling the demanding dose cri-
teria of the CHHIP trial, using many different set-ups. This
involved varying planning parameters in a systematic way
to determine appropriate values. A number of plan evalua-
tion parameters have been explored for comparing treatment
plans, and these have been related to clinical decisions.

6 MV photons can achieve an equivalent dose distribution
to 10 MV for prostate IMRT, provided a sufficient number of

treatment fields is used to avoid high-dose regions near beam
entry points. This study suggests that seven beams are nec-
essary with 6 MV while only five are required with 10 MV. The
clinical oncologist who reviewed the plans considered that the
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osimetric differences observed between a seven-field 6 MV
lan and a five-field 10 MV plan for this patient would be
nlikely to be clinically significant. A beam arrangement con-
aining a direct posterior field provided superior conformality
round the rectum compared to an anterior arrangement.
lthough using 6 MV slightly increases treatment calculation
nd delivery times and the number of QA measurements
equired, it will avoid the need to commission a second energy
or IMRT, and is therefore preferred. Work is ongoing to develop
complete class solution and carry out all necessary dosimet-

ic verification.
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