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Summary

 Background Metal spinal rods are used as fi xation devices in spinal surgery. The attenuation 
effect of these rods has not been completely studied for patients with spinal rods 
and requiring spinal radiotherapy.

 Aim The purpose of the current study was to investigate the dosimetric perturbation 
effect of metallic spinal rods in different photon beams.

 Materials/Methods Three photon beams of 6, 9 and 15MV were modelled using MCNP4C Monte 
Carlo (MC) code. The geometry consisted of two spinal rods at a depth of 4cm 
and a water phantom was used for MC calculations. The beam profi les at depths 
of 5.5, 6.5 and 7.5cm were calculated.

 Results Dose reductions of 10.2–11.2% and 5–6.2% were observed for steel and titani-
um rods respectively. The insertion of metallic rods into the photon beams did 
not change the spinal cord received dose but the effect of both types of rods on 
the target region behind the rods cannot be ignored, especially for steel rods.

 Conclusions Our results suggest that for reliable spinal radiotherapy the dose attenuation ef-
fect of spinal rods must be taken into account in treatment planning calcula-
tions.
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BACKGROUND

Metal prostheses are used widely in spinal sur-
gery as fi xation devices. Spinal rods as part of a 
spinal stabilization system are applied for fi xa-
tion purposes [1–3]. There are a small number 
of patients requiring radiotherapy for plasmacy-
tosis of the lumbar spine or who have other can-
cers and have spinal prostheses [1,3–6]. The high 
density and atomic number of these rods for pa-
tients undergoing spinal radiation therapy may 
cause some concerns about the dose inhomoge-
neities around these prostheses. The mechanical 
and biological properties of these biomaterials 
have been studied [1,2,7–9], but their dosimet-
ric effects have not been completely investigat-
ed. The most frequently used spinal rods are ba-
sically composed of two metallic alloys including 
titanium and stainless steel. Although there are 
several published data on the dosimetric effects 
of hip prostheses[10], only limited research has 
been performed on the perturbation effect of spi-
nal rods on dose distributions and their implica-
tions for treatment planning calculations. To the 
best of our knowledge there are only three pub-
lished studies on the dose perturbation effect of 
spinal implants[4–6]. On the other hand we did 
not fi nd any document on the dosimetric effects 
of steel spinal implants in the literature.

A study by Liebross et al. (2002) on the effect of 
titanium rods on spinal radiotherapy showed un-
derdosage up to 4% and 3% for 6 and 18MV pho-
ton beams respectively [4]. This underdosage in-
creased to 13% and 11% for rods with screws for 
the same photon beams. According to the results 
of this study, titanium rods did not signifi cant-
ly affect the dose delivered to the spinal cord. 
Another similar study on titanium rods showed 
the same results [6]. A recent study on titanium 
rods on spinal dose revealed a decrease of 5 to 
7% for the region behind the rods [5]. Different 
composition of prosthesis causes different effect 
on target volume dose. In a study on a hip pros-
thesis made of cobalt-chromium alloy, a dose re-
duction of 34% was reported for the target vol-
ume in the shadow of the prosthesis [11], but for 
a titanium hip prosthesis the dose reduction de-
creased to approximately 10% [12].

Investigations on the impact of a femoral head 
prosthesis on pelvis radiotherapy have shown that 
the dosimetric effect of a metal prosthesis can-
not be predicted precisely in commercial treat-
ment planning systems [11,13–18]. Monte Carlo 
(MC) methods have been applied as an alterna-

tive approach for accurate dose calculations in 
the presence of different tissue inhomogenei-
ties [19–21].

AIM

In this study the infl uences of steel and titani-
um spinal rods on dose distributions were inves-
tigated for three photon beams using the MC 
method.

MATERIALS AND METHODS

Monte Carlo modelling and dose calculations

We modelled 6 and 15MV photon beams of a 
Varian 21EX linac (Varian Medical Systems, Palo 
Alto, CA, USA) and a 9MV beam of a Neptun 10pc 
linac (Nuclear Equipment ZdAJ IPJ, Poland) us-
ing version 4C of the MCNP radiation transport 
code [22]. For each photon beam, the head com-
ponents, including the target, primary collimator, 
fl attening fi lter, and secondary collimator jaws, 
were simulated based on manufacturer-provid-
ed information. A water phantom with dimen-
sions of 50×50×50cm3 was simulated under the 
treatment head to score absolute absorbed dose 
per incident electron on the target. A mono-en-
ergetic electron beam with uniform spatial dis-
tribution and 2mm diameter was considered for 
all photon beams [23–25].

For dose calculations, an initial Monte Carlo sim-
ulation of the accelerator head was performed 
to produce the phase space (PS) fi le for differ-
ent energies of the primary electron beam. The 
PS fi le was generated by a scoring plane located 
above the secondary collimators. By running the 
PS fi le from the scoring plane the absorbed dose 
was calculated in the water phantom at a source-
to-surface distance (SSD) of 100cm.

For each photon beam, the primary electron 
beam energy was selected by comparing the 
measured and calculated percentage depth dose 
(PDD) curves for 10×10cm2 fi eld size. After pri-
mary electron energy selection, the beam mod-
el was commissioned through comparing calcu-
lated percentage depth doses and beam profi les 
with measured data. Then, PDDs and beam pro-
fi les for 5×5cm2, 10×10cm2, and 30×30cm2 fi eld 
sizes were calculated and compared with meas-
ured data. The beam profi les were calculated at 
a depth of 10 cm. Photon and electron energy 
cut-offs of 10 and 500KeV were used for optimum 
PS fi le generation. For PDD calculations in the 
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water phantom, a cylinder with radius equal to 
one-tenth of the beam diameter along the central 
axis of the beam was considered and divided into 
scoring cells with a height of 2mm. By running 
particles in the PS fi le through the water phan-
tom, the energy deposited in each scoring cell 
was calculated by *F8 tally. The same approach 
was used for the beam profi les, except that the 
central axis of the scoring cylinder was vertical 
to the central axis of the beam and the cylinder 
was at a depth of 10cm. The diameter of the cyl-
inder was 4mm and divided into cells with 2mm 
thickness along the central axis. Resolution for 
beam profi les was 2mm laterally. Statistical un-
certainty of MC results was less than 1% for PDD 
and beam profi le calculations.

MC modelling of a spinal rods-like geometry

The geometry used for MC calculations in the 
presence of spinal rods consisted of a water phan-
tom with dimensions of 30×30×30cm3 and two cyl-
inders resembling the spinal rods with diameters 
of 6mm and lengths of 20cm located at a depth 
of 4cm. There was a 4cm gap between two cylin-
ders. Pure steel is not used in implants and usually 
steel alloys are used. However, based on the infor-
mation available in the literature and provided by 
some manufacturers, we used an average density 
of 7.8g/cm3 with its materials composed of 18% 
chromium, 12% nickel, and 70% steel for steel 
rods. For titanium rods, pure titanium was used 
with density of 4.5g/cm3. The density and atom-
ic number of rods were entered into the MC in-
put fi le and considered in the calculations. Three 
rows of scoring cells at depths of 5.5, 6.5 and 7.5cm 
were used for beam profi le calculations. The di-
mensions of a dose scoring cell were 2×2×2mm3. 
The irradiation geometry is illustrated in Figure 1. 

MC calculations were performed for three ener-
gies of photons with rods made of steel alloy and 
pure titanium. Field size of 10×10cm2 with SSD 
of 100cm was used for calculations.

RESULTS AND DISCUSSION

MC modelling validations

Primary electron energies of 6.2, 9.4 and 15.2MeV 
were selected for 6, 9 and 15MV photon beams 
respectively. The MC calculated PDD curves and 
beam profi les were compared with measurements 
to validate our MC model. There was a good 
agreement between measurements and calcula-
tions for beam profi les and PDD curves. For all 
photon beams, local differences of less than 2% 
were seen for PDD values in descending part up 
to 20cm depth, but it increased up to 18% for 
the build-up region. For beam profi les, local dif-
ferences of less than 2% were seen for the fl at re-
gion, but it increased to 14% for the region locat-
ed out of fi eld. Our results were consistent with 
previous study results [23-26] and all the photon 
beam models were validated in this way.

Central axis

First row
at 5.5cm

Third row
at 7.5cm

Second row
at 6.5cm

Rod

Figure 1. Schematic representation of irradiation geometry used 
for Monte Carlo calculations.

Figure 2. The MC calculated beam profi les of a 6MV photon beam 
with the presence of spinal rods for diff erent depths.
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Effect of titanium and steel rods on dose 
profi les

The effect of the titanium and steel spinal rods on 
beam profi les for 6, 9 and 15MV photon beams 
are shown in Figures 2–4. The profi les of the 6.5 
and 7.5cm depths have been normalized to max-
imum value of the beam profi le at the depth of 
5.5cm. The maximum attenuation effect of both 
steel and titanium rods have been calculated and 
are shown in Table 1.

For both types of rods and all energies, the atten-
uation effect does not change considerably with 
depth from 5.5cm to 7.5cm under the rod. It is 

seen that the shadowing effect of rods is reduced 
with photon energy and the maximum range of 
variation is 11.2–10.4% and 6.2–5.2% for steel 
and titanium rods at the depth of 6.5cm. The at-
tenuation effect of rods averaged over the depth 
varies from 11% to 10.4% for steel and from 6% 
to 5.2% for all photon energies. However, using 
two parallel opposed or oblique wedged fi elds 
may reduce the attenuation effect of spinal rods 
[4]. The results of the current study are slight-
ly different to the results of the investigation of 
Weatherburn et al. on titanium rods in which 
they reported 4% and 3% dose decrease under 
rods for 6 and 18MV photons respectively. Our 
attenuation factor is a little higher because of 

Depth (cm)
Local dose reduction (%) 6MV Local dose reduction (%) 9MV Local dose reduction (%) 15MV

Steel Titanium Steel Titanium Steel Titanium

5.5 11.2 5.8 11.0 5.6 10.5 5.3

6.5 11.2 6.2 11.1 5.3 10.4 5.2

7.5 10.8 5.87 10.6 5.7 10.2 5.0

Table 1. Dose attenuation of spinal rods made of steel and titanium for diff erent photon beams.

Figure 3. The MC calculated beam profi les of a 9MV photon beam 
with the presence of spinal rods for diff erent depths.
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Figure 4. The MC calculated beam profi les of a 15MV photon beam 
with the presence of spinal rods for diff erent depths.
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the higher density of the titanium rods and the 
depth of dose calculations. They used depths of 
5, 10 and 15cm for dose calculations and meas-
urements but the maximum distance of calcula-
tion from the rods was 3.5cm in the current study. 
In a similar study on titanium rods by Liebross et 
al, a dose reduction of 6% was seen for the 6MV 
photon beam, which is in close agreement with 
our results. In another study by Pekmezci et al., 
a dose reduction of 5.7% was observed for tita-
nium rods. In our geometry, the received dose 
of spinal cord was not infl uenced by spinal rods 
because the spinal cord was situated in the re-
gion between the shadows of spinal rods. In oth-
er words, the distance of 4cm between two rods 
makes it possible for the spinal cord to be pre-
vented from receiving the shadowing effect of im-
plants. However, the target volume behind the 
spinal rods can be affected and underdosage will 
happen especially for steel fi xation rods in the 
absence of other compensatory techniques, such 
as adding other fi elds.

CONCLUSIONS

The high density and atomic number of spinal 
fi xation rods attenuate the photon beams approx-
imately 6% to 11% for titanium and steel rods 
respectively. The shadowing effect of these rods 
decreases slowly with photon energy. Although 
it does not change the spinal cord received dose, 
its dose reduction effect could be signifi cant for 
the target volume distal to and directly behind 
steel type stabilization rods. According to previ-
ous studies and our results, using multiple fi elds 
for treatment of the region behind the rods and 
accurate calculations of their perturbation effect 
by treatment planning systems are essential fac-
tors in effective radiotherapy of these cases.
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