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Summary

Aspekty kliniczne NTCP

Streszczenie

Purpose: To review medical literature data on tolerance doses for a number of radiosensitive organs and put forward some proposals of how 

to evaluate a treatment plan in terms of the normal tissue complications or how to estimate it in every-day clinical practice.

Material and methods: Studies assessing the relationship between a dose (dose distribution) and radiation injuries of the heart, liver, lung, 

rectum and parotid gland have been selected for the review.

Results: The Lyman model with Kutcher's reduction algorithm and a relative seriality model proposed by Källman as well as the literature data 

for the heart, liver, lung, rectum and parotid gland are presented. The parameters of the most often used mathematical models describing

the normal tissue complication probability are invoked. The authors' proposals for simple quantitative parameters to be used in clinical 

practice are put forward.

Conclusion: Mathematical radiobiological models should be applied with special caution. Up-to-date three dimensional CT treatment 

planning in radiotherapy makes it possible to collect data for more precise assessment of the relationship between dose and injuries

of sensitive organs.

Key words: injury of normal tissue, radiobiological models, treatment planning.

Cel: Dokonano przegl¹du literatury pod k¹tem danych dotycz¹cych dawek tolerancji dla kilku narz¹dów promieniowra¿liwych. Zapropono-

wano, jak mo¿na w stosunkowo prosty sposób oceniaæ jakoœæ planu leczenia z punktu widzenia dawek zaabsorbowanych przez narz¹dy 

promieniowra¿liwe.

Materia³ i metody: Publikacje naukowe zosta³y przeanalizowane z punktu widzenia zamieszczonych danych opisuj¹cych zale¿noœæ 

pomiêdzy rozk³adem dawki i prawdopodobieñstwem uszkodzenia dla serca, w¹troby, p³uc, rektum i œlinianek przyusznych.

Wyniki: Przedstawiono model radiobiologiczny zaproponowany przez Lymana i Kutchera oraz model opublikowany przez Källmana. 

Przytoczono liczbowe wartoœci parametrów modeli Lymana-Kutchera i Källmana. Zaproponowano proste metody oceny jakoœci planu 

leczenia w oparciu o rozk³ady dawki w narz¹dach promieniowra¿liwych.

Wnioski: Modele radiobiologiczne opisuj¹ce zale¿noœæ dawka-efekt dla narz¹dów promieniowra¿liwych powinny byæ stosowane ze szcze-

góln¹ ostro¿noœci¹. Wspó³czesne przestrzenne systemy planowania leczenia umo¿liwiaj¹ gromadzenie danych, w oparciu, o które mo¿liwe 

jest bardziej precyzyjne okreœlenie zale¿noœci pomiêdzy dawk¹ i prawdopodobieñstwem uszkodzenia narz¹dów promieniowra¿liwych.

S³owa kluczowe: uszkodzenie tkanek zdrowych, modele radiobiologiczne, planowanie leczenia.

Introduction way on the dose and the irradiated volume. Determination

of the relationship between the NTCP as well as the tumour 

The results of many reports have demonstrated that local control probability (TCP) and the dose distribution has been 

control of different malignancies increases with a radiation the subject of many research papers over the past few 

dose. By increasing the prescribed dose, the risk of develo- years. Several mathematical models describing the NTCP 

ping complications to normal structures also become and the tumour control probability (TCP) have been 

greater. For each radiosensitive organ, the normal tissue proposed [1,2,3]. Yet, they, were seldom used for quanti-

complication probability (NTCP) depends in a very complex tative plan evaluation. It is still common practice to evaluate 



and choose the best plan based upon a limited number the fraction volume is equal to V ; (usually V  represents ref ref

of dosimetric endpoints, target dose uniformity and maxi- the whole organ),

mum critical organ doses. This practice generally results m is the slope parameter which affects the steepness

from the lack of reliable mathematical models of TCP and of the S-shaped dose-response curve,

NTCP and the lack of the commercially available treatment n is the parameter which represents the “volume effect”;

planning systems, that enabled us to quantitatively evaluate (n is close to 1 for an organ in which a small volume may

treatment plans. Even if a given model is accepted, the va- be damaged without a significant effect on the function

lues of the parameters used by the model are often put of the whole organ, such organs are referred to as a parallel 

to question. It is difficult to acquire good clinical data that organ; n is close to 0 for an organ in which damaged

may be used for the calculation of these parameters. of a small volume may cause dramatic consequences, such 

However, one may expect that a more common use of CT, organs are referred to as a serial organ).

based 3D treatment planning systems will allow us to deve- For a heterogeneous dose distribution the reduction algo-

lop reliable models of normal tissue response to radiation rithm of the DVH to one step DVH is applied. The influence

or, if the models already proposed are acceptable, to esti- of the fraction dose on the cells' survival is also applied. 

mate more accurately the parameters used in these mo- Instead of the fraction volume, the following equation helps 

dels. to calculate the effective volume:

The purpose of this presentation is to discuss tools

for quantitative evaluation of a treatment plan, especially

for the calculation of the normal tissue complication proba- (5)

bility. Simple parameters describing the quality of a plan will 

be proposed. My presentation is based on a literature re-

view with respect to radiation injury of the rectum, liver, heart, 

lung and salivary glands. (6)

Methods

Dv   is the subvolume of the organ at risk, receiving the total i

Mathematical models for NTCP calculations dose D ,i
D  is the maximum dose absorbed by the organ,max

There are two most often used models: the Lyman model a/b is the parameter of the linear-quadratic model (LQ),

with Kutcher's reduction algorithm and a relative seriality N  is the number of fractions,fr

model proposed by Källman [4,5]. There are three other n is the parameter of relative seriality of the organ/tissue,

models by Fenwick, Jackson: a parallel architecture model d  is the fraction dose of 2 Gy.2Gy

and the Niemierko equivalent uniform dose model [6,7,8]. The basic idea underlying above the model is that if the veff 

The former two ones will be discussed in detail. fraction volume of the organ at risk is irradiated with the dose 

D , the NTCP would be the same as that for the real max

The Lyman model heterogeneous dose distribution. This reduction scheme 

was proposed by Kutcher [4]. 

This model aims at estimating a homogenous dose 

distribution in an organ at risk. Based on this model, the The relative seriality model

NTCP can be expressed by the following equations:

This model of a homogenous dose distribution in the organ 

at risk expresses the NTCP by the following equations [5]:
(1)

              , and (7)
(2)

      (8)
(3)

Dv , D , D , and l  have the same meaning as that in the Ly-i i 50 i

man model.
(4)

g is the slope parameter which has an effect on the steep-

ness of the S-shaped dose-response curves is a parameter 

V  is the volume of the organ, receiving the dose D, of relative seriality of the organ/tissue (serial organ: s = 1, 

TD  is the tolerance dose for 50% of the population when parallel organ s =0).50
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Results lume analysis of the RILD for the largest series of 203 

patients was performed by a group from Ann Arbor [13]. 

Assessment of heart injury Nineteen patients developed of grade 3 or 4 RILD according 

to the Radiation Therapy Oncology Group. For the NTCP 

Close attention has been drawn to heart injury as a con- calculations, the DVH was obtained in the normal liver (liver 

sequence of irradiation when it became clear that the incre- minus gross tumour). The physical dose values were con-

ase in survival in a group of irradiated breast cancer patients verted to normalized iso-biologic effective dose at 1.5 Gy

may be lost because of cardiac mortality due to an exce- /fraction using the LQ model with a/b =2 Gy. The mean do-

ssive dose to the heart [9,10]. In this group of patients, se to the normal liver was also calculated. Using the ma-

the question whether radiation can injure the heart has been ximum likelihood method parameters of the LKB model we-

discussed for many years, because the risk of the adverse re estimated. The calculated value of TD50, m and n being 

effect is relatively small, of the order of several percent, and 43.3 Gy, 0.18 and 1.1, respectively. It should be emphasized 

the injury remains latent for about 15 years. In order to settle that these values are different from the original data publi-

this long-lasting issue a study would be needed in that shed by Burman [14]. The large value of the n parameter 

would include thousands of patients so as to produce suggesst that the liver responds as a typical parallel organ, 

statistically significant results. so a strong correlation between the RILD and the mean liver 

The risk of the excess of late cardiac mortality has usually dose may be expected. It was concluded that below

been calculated with the use of a relative seriality model the mean dose of 30 Gy no patient developed the RILD, and 

[11]. The parameters of the model used by Gagliari are that the NTCP increases approximately by 4% for on incre-

D50=52.4 Gy, g=1.28, s=1. In the paper two organs at risk ment of 1 Gy of the mean dose. The first conclusion is very 

were drawn in CT slices separately: the heart and myo- important for the practice of radiotherapy. When planning

cardium. As the authors stated: “The cranial limit of the heart a treatment, if the treated volume includes parts of the liver, 

included the infundibulum of the right ventricle, the right the biological mean dose should be kept below 30 Gy. It is 

atrium and the right atrium auricule and excluded the pul- worth reminding that in the paper by Dawsan the physical 

monary trunk, the ascending aorta and the superior cava. doses were converted to normalized biological doses

The myocardium was defined with the same external at 1.5 Gy/fraction using a/b =2 Gy [13]. The authors also 

contour as the heart. The wall thickness of the left ventricle confirmed Jackson's results [15]. When the irradiated volu-

was assumed to be between two and three times that me of the liver is kept below the threshold volume, the risk

of the right ventricle. The volume of the myocardium thus of the RILD is estimated as being close to 0 regardless

defined was of the order of about 65% of the heart…” of the dose delivered to this volume. If approximately one-

As usual, physical doses were converted to biologic doses third of the whole liver is irradiated with a dose larger than

by means of a linear-quadratic model with a/b value of 3 Gy. 80 Gy the risk of RILD is negligible.

For typical treatment of breast cancer with two tangential 

beams, with a prescribed dose of 50 Gy, 2 Gy/fraction, Assessment of lung injury

the mean estimated excess of the long-term cardiac 

mortality was about 5%. In another work by Hurkmans For many sites within the chest, the lungs limit the total 

the correlation between the Maximum Heart Distance dose delivered to the target. This problem was seen as par-

(MHD) for a tangential technique and the NTCP was cal- ticularly important for breast patients and for patients under-

culated [12]. The MHD is the maximum distance of the heart going dose escalation protocols for lung cancer. Many 

contour to the medial field end, as can be seen in the beam's papers have been published, but the data substantiating 

eye view (in the simulator radiograph) of the medio-lateral conclusions were questionable. The improvement in ma-

tangential field. For a tangential technique the NTCP values thematical models of photon beams and CT-based treat-

were less than 2% for the MHD smaller than 2 cm. If the MHD ment planning made it possible to obtain a better data col-

exceeds 2 cm the NTCP increases by about 2% for each lection. Some interesting articles concerning this problem 

1 mm increase in the MHD. The results for the dose-volume have been published in the last few years. The early effect 

dependence for the heart injury and the prediction ability associated with radiation energy absorbed by the lungs is 

of models should be treated with high caution. The para- radiation pneumonitis observed over a period of 1-8 months 

meters of these mathematical models were estimated after radiotherapy. The symptoms include fever, dyspnoea, 

on the basis of a small number of mortalities events so cough or even death from respiratory failure. The late sequel 

the error limits are high. is fibrosis appearing 6 months later. Fibrosis causes a re-

duction in pulmonary function. The clinical diagnosis of nor-

Assessment of liver injury mal tissue complications is generally based on whole-organ 

toxicity classified very often according to the Southwest On-

Radiation-induced liver disease (RILD) is a dose-limiting cology Group criteria. Grade 1 (mild) radiation pneumonitis 

complication of liver irradiation. The prospective dose-vo- applies when radiographic changes are observed (diagno-
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sis based on chest X-rays or CT), Grade 2 (moderate) is surement of the influence of the radiation dose on the saliva 

assigned when steroids are required, Grade 3 (severe) secretion is difficult and very time consuming. The relation-

when oxygen is needed, and Grade 4 (life threatening), ship between the 3D dose distributions in the parotid glands 

assisted ventilation is required. The whole-organ toxicity is and the production of saliva was determined in the work

usually mathematically described by means of the Lyman of the group from Ann Arbor [23]. The parotid glands appe-

model or by the relative seriality model. Another approach is ared as a typical parallel organ, for which the mean dose is

to model local changes in function. The cumulative effect a very good predictor of injury. If, the glands receive a mean 

of these changes on both lungs represents a whole-lung dose below 24-26 Gy, a substantial preservation of flow 

change in function. For example, the diffusing capacity rates is observed. If this is the case, a lasting improvement is 

of carbon monoxide is used as an objective index of the pul- observed over time. The authors' data revealed very high 

monary function [16,17,18]. degree of steepness of the NTCP. Glands receiving a mean 

With regard to the problem of lung injury, a methodolo- dose higher than 26 Gy produced little saliva with no reco-

gical question arises, whether to treat both lungs as a single very over time. The parameters of the NTCP Lyman model 

organ or the left and right lung as separate organs. Both were TD50=28.4 Gy, n=1 and m=0.18. These parameters 

answers have their merit, however more often the lungs are were fitted to the clinical data that were converted into binary 

treated as a single organ. In all the recently published pa- values of “severe complications” or “no complications”

pers physical dose distributions were corrected for fractio- for each gland. The authors have defined severe com-

nation, using a linear quadratic model, with an a/b ratio plication as a reduction of stimulated salivary output to less 

of 2.5 - 3.0 Gy. The mean dose to the normal lungs was also than 25% of the pre-radiotherapy output. This is grade

calculated. Using the maximum likelihood method parame- 4 parotid gland toxicity according to the RTOG/EORTC Late 

ters of the LKB model were estimated [19]. The calculated Effects Consensus Conference. Recently, much more pro-

TD50, m and n were 30.8 Gy, 0.37 and 0.99, respectively. mising data for patients irradiated in the head-and-neck 

These values are different from the original data published region were published by Roesnik et al. [24]. Their results 

by Burman. The value of the n parameter of almost 1 sup- confirmed that the parotid gland is a parallel organ. They 

ports the idea that the lungs may be considered as a parallel showed that one year after completion of the treatment

organ. As for the liver, a strong correlation between the ra- the NTCP for the parotid gland is not a very steep curve with 

diation pneumonitis and the mean dose to the lungs was TD50=39 Gy and m=0.45.

observed. If this dose is smaller than about 15 Gy (using nor-

malized biological doses) the incidence of Grade 3 or hig- Assessment of rectum injury

her radiation pneumonitis is near nil. Another single para-

meter may be used as a predictor for the incidence of lung Several papers have dealt with the problem of injury

injury, which is the volume of the lung receiving more than to the rectum and bladder after external beam irradiation. 

the threshold dose. In the paper of Seppenwoolde and Assessment of the adverse effects was mostly based

Gopal, the volume of the lungs receiving a dose exceeding on the RTOG/EORTC or SOMA/LENT scales [24,25]. Late 

13 Gy (using normalized biological dosse) is strongly asso- radiation effects were also assessed by a mailed ques-

ciated with lung injury [20]. In the paper written by Graham tionnaire completed by patients. The NTCP were calculated 

et al., very often cited by other authors, the strongest using the DVHs of the whole rectum including the cavity and 

correlation was found for the volume of lungs received more the rectal wall using the Lyman-Kutcher model and the para-

than 20 Gy [21]. This paper describes the investigation ba- meters published by Burman and his colleagues – n=0.12, 

sed on the physical dose so both results might not differ m=0.15, D50(1)=80 Gy [14,26]. It must be emphasized 

greatly. Gagliari et al. applied the relative seriality model that the parameters apply for endpoints specified as “Seve-

for lungs injury. In her study both lungs were treated as se- re proctitis/necrosis/fistula/stenosis”. Absolute rectal and 

parate organs [17]. The parameters of the model were de- bladder volumes were investigated additionally, irradiated 

termined with the maximum likelihood method. The log like- to various dose levels in correlation with the observed ac-

lihood was even a little higher for this model than for the Ly- tuarial incidence of the gastrointestinal (GI) and genitouri-

man model applied by Seepenwoolde, for which parame- nary (GU) complications. The review of the literature does 

ters were D50=30.1 Gy, g=0.97, s=0.01. not give a clear answer concerning the dose-volume re-

lationship for the rectum and bladder [27,28,29,30,31]. 

Assessment of parotid gland injury There is general agreement that the Lyman-Kutcher model 

with parameters published by Burman does not estimate 

The salivary glands are highly sensitive to radiation [22]. the probability of developing GU and GI complications 

The secretion of the saliva is significantly reduced following reliably. For the bladder it can be explained by a very unre-

10-15 Gy delivered to the largest part of the gland. If the do- liable dose distribution. The bladder volume depends direc-

se is smaller than about 30-40 Gy, some recovery of the fun- tly on the amount of urine it contains. For the rectum it is 

ction of the salivary glands is possible. The precise mea- explained by different endpoints used by Burman and
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the authors of other articles. In several articles the correla- on radiobiological models should be handled with particular 

tion between late rectal injuries, e.g. bleeding, and the par- caution.

tial volume of the rectum receiving a dose higher then D - VD It must be strongly emphasized that in almost all the latest 

were investigated. Storey et al. found that there is a signi- publications, the physical DVHs are converted to the equi-

ficant increase in late rectal complications when more than valent biological dose (EBD) by means of a linear-quadratic 

25% of rectum received 70 Gy or greater [32]. Very recently model. On one hand there is no doubt that cell survival de-

similar results were obtained by two Italian groups. Cozza- pends on the dose per fraction, so this effect should be 

rini and coworkers showed that the V50 is very predictive accounted for but on the other hand the recalculation

for late bleeding [33]. In their study if V50 is less than 63% of the DVHs to the EBD is an additional source of uncertainty 

there were only 7% of late bleeding (Grade 2-3), if larger than in the NTCP calculations (it is easy to notice that for all nor-

63% the late bleeding increased to more than 25%. Fiorino mal organs the same a/b value is taken into calculations). 

and the others showed that if V50 is less than 60-65% it Another problem is that there is no commercially available 

enables to keep the rate of rectal bleeding (Graden2-3) treatment planning system which enables the EBD calcula-

below 10% [34]. tions. In most cases, however, it is possible to export the da-
TMta to a spread sheet, such as Microsoft Excel , and convert 

Conclusions physical data to biological data.

The lack of reliable, quantitative data on normal tissue 

The NTCP for each organ results from a complex in- pro-bability results mainly from the lack of a precise 3-D do-

teraction between the dose and the irradiated volume. se distribution based on CT calculation and from the lack

Moreover, the probability of injury to a normal tissue may of reliable clinical data. It seems that the first problem is 

depend in each patient on many individual factors. One slowly disappearing due to increased accessibility of CT

should always keep in mind that the uncertainty of the quan- 3-D treatment planning. The other one still remains serious 

titative evaluation of the irradiation risk based on the publi- because of the lack of good clinical practice regarding data 

shed data may be quite high. In clinical practice, it means acquisition. There is an urgent need of a good and precise 

that the quantitative evaluation of the treatment plan based follow up. Simple forms of injury records, based on interna-

Table 1. The tolerance doses (proposals).

organ dose
single quantitative
parameter - tolerance dose

radiobiological model remarks

heart

lung the mean EBD < 15 Gy LKB model

TD50=30.8 Gy, n=0.99,

m=0.37

most often the lung is

treated as a single organ
the volume of the lung

receiving more than

EBD=13 Gy < 30%

liver the mean EBD < 30 Gy LKB model

TD50=43.3 Gy, n=1.1,

m=0.18

NTCP increases of about

4% for 1 Gy increase over

the mean EBD=30 Gy

rectum the physical dose the volume of the rectum

receiving more than

50 Gy < 35-50%,

70 Gy < 25%

there were no reliable data

for any model

the data were acquired

for the treatment with 2 Gy

dose per fraction; many

articles but give inconsistent

conclusions

salivary

glant

the physical dose the mean dose < 30 Gy LKB model

TD50=39 Gy, n=1.0,

m=0.45

only few data in the literature

there is no good single

parameter

for tangential technique the NTCP values were smaller than 2% for the MHD less than 2 cm; if the MHD exceeds 2 cm

than the NTCP increases by about 2% for each 1 mm increase of the MHD

the model should be used

with special caution

Review paper



266 Rep Pract Oncol Radiother 9(6)2004

Kuko³owicz P. NTCP

the Lyman NTCP model. Int J Radiat Oncol Biol Phys 2002;tionally accepted scales should be used in each radiothera-
53:810-21.py centre.

14. Burman C, Kutcher GJ, Emmami B, Goitein M. Fitting of normal Table 1 shows the author's proposals for a simple evalu-
tissue tolerance data to an analytic function. Int J Radiat Oncol ation of the NTCP, the aim of which is to introduce dose 
Biol Phys 1991;21:123-35.

distribution parameters that would make the NTCP evalu-
15. Jackson A, Ten Haken RK, Robertson JM, Kessler ML, Kutcher 

ation available to all who have access to a 3-D CT based 
GJ, Lawrence TS. Analysis of clinical complication data for ra-

treatment planning system with DVH calculation capabili- diation hepatitis using a parallel architecture model. Int J Radiat 
ties. Up-to-date 3D CT treatment planning of radiotherapy Oncol Biol Phys 1995;31:883-91.
enables collecting the data for more precise assessment 16. Boersma LJ, Damen EM, de Boer RW, Muller SH, Valdes Olmos 
of dose relationship for sensitive organs injuries. RA, van Zandwijk N, et al. Estimation of overall pulmonary 

I call these "my proposition" not because I want to get all function after irradiation using dose-effect relations for local 

functional injury. Radiother Oncol 1995;31:883-91.the credit. Quite the contrary: I would like them to be consi-
17. Gagliari G, Bjohle J, Lax I, Ottolenghi A, Eriksson F, Liedberg A, dered in confrontation with other propositions, especially 

et al. Radiation pneumonitis after breast cancer irradia-those published in highly regarded journals.
tion: Analysis of the complication probability using the rela-

tive seriality model. Int J Radiat Oncol Biol Phys 2000;46:

373-81.

Hamilton CS, Chan LY, McElwain DLS, Denham JW. A practical 18. Gopal R, Tucker SL, Komaki R, Zhongxing L, Forster KM, 

evaluation of five dose-volume histogram reduction algorithms. Stevens C, et al. The relationship between local dose and loss 

Radiother Oncol 1992;24:251-60. od function for irradiated lung. Int J Radiat Oncol Biol Phys 

  2. Seppenwoolde Y, Lebesque JV, De Jaeger K, Belderbos JS, 2003;56:106-13.

Boersma LJ, Schilstra C, et al. Comparing different NTCP 19. Sanchez-Nieto B, Nahum AE. Bioplan: A software for the bio-

models that predict the incidence of radiation pneumonitis. Int J logical evaluation of radiotherapy treatment plans. Med Dosim 

Radiat Oncol Biol Phys 2003;55:724-35. 2000;25:71-6.

  3. Webb S, Nahum AE. A model for calculating tumour control 20. Seppenwoolde Y, Lebesque JV, De Jaeger K, Belderbos JSA, 

probabilities in radiotherapy including the effects of inho- Boersma LJ, Schilstra C, et al. Comparing different NTCP 

mogeneous distributions of dose and clonogenic cell density. models that predict the incidence of radiation pneumonitis.

Phys Med Biol 1993;38:653-66. Int J Radiat Oncol Biol Phys 2003;55:724-35.

  4. Kutcher GJ, Burman C. Calculation of complication probability 21. Graham MV, Purdy JA, Emami B, Harms W, Bosch W, Lockett 

factors for non-uniform normal tissue irradiation: The effec- MA, et al. Clinical dose-volume histogram analysis for pneu-

tive volume method. Int J Radiat Oncol Biol Phys 1989;16: monitis after 3D treatment for non-small cell lung cancer 

1623-30. (NSCLC). Int J Radiat Oncol Biol Phys 1999;45:323-9.

  5. Källman P, Agren A, Brahme A. Tumour and normal tissue res- 22. Eisbruch A, Ten Haken RK, Hyungijn M, Marsh LH, Dhip J Dose, 

ponses to fractionated non-uniform dose delivery. Int J Radiat volume, and function relationships in parotid salivary glands 

Biol 1992;62:249-62. following conformal and intensity-modulated irradiation of the 

  6. Fenwick, Fenwick model, Phd Thesis, London; 1999. head and neck cancer. Int J Radiat Oncol Biol Phys 1999;45:

  7. Jackson A, Kutcher GJ, Yorke ED. Probability of radiation- 577-87.

induced complications for normal tissue with parallel archit- 23. Roesnik JM, Moerland MA, Battermann JJ, Hordijl GJ, Terhaard 

ecture subject to non-uniform irradiation. Med Phys 1993;20: HJ. Quantitative dose-volume response analysis of changes

613-25. in parotid gland function after radiotherapy in the head-and-

  8. Niemierko A, Goitein M. Modeling of normal tissue response neck region. Int J Radiat Oncol Biol Phys 2001;51:938-46.

to radiation: The critical volume model. Int J Radiat Oncol Biol 24. Cox J, Stetz J, Pajak TF. Toxicity criteria of the radiation therapy 

Phys 1993;25:135-45. oncology group (RTOG) and the European Organization

  9. Cuzick J, Stewart H, Rutqvist LE, Houghton J, Edwards R, for Cancer Research and the treatment of Cancer (EORTC).

Redmond C, et al. Cause-specific mortality in long-term sur- Int J Radiat Oncol Biol Phys 1995;31:1341-6.

vivors of breast cancer who participated in trials of radiotherapy. 25. LENT SOMA scales for all anatomic sites. Int J Radiat Oncol Biol 

J Clin Oncol 1994;12:447-53. Phys 1995;31:1049-92.Leslie MD, Dische S. The early changes 

10. Early Breast Cancer Trialists' Collaborative Group. Effects in salivary gland function during and after radiotherapy given

of radiotherapy and surgery in early breast cancer. An overview for head and neck cancer. Radiother Oncol 1994;30:26-32.

of the randomized trials. N Engl J Med 1995;333:1444-55. 26. Emmami B, Lyman J, Brown A, Coia L, Goitein M, Munzenrider 

11. Gagliari G, Lax I, Sodestrom S, Gynes G, Rutqvist LE. Prediction JE, et al. Tolerance of the normal tissue to therapeutic irradia-

of excess of long-term cardiac mortality after radiotherapy tion. Int J Radiat Oncol Biol Phys 1991;21:109-22.

of stage I breast cancer. 1998;46:63-71. 27. Boersma LJ, van den Brink M, Bruce AM, Shouman T, Gras L,

12. Hurkmans CW, Borger JH, van der Horst A, Pieters BR, te Velde A, et al. Estimation of the incidence of late bladder and 

Lebesque JV, Mijnheer BJ. Cardiac and lung complication rectum complications after highe-dose (70-78 Gy) conformal 

probabilities after breast cancer irradiation. Radiother Oncol radiotherapy for prostate cancer, using dose-volume histo-

2000;55:144-51. grams. Int J Radiat Oncol Biol Phys 1998;41:83-92.

13. Dawsan LA, Narmolle D, Balter JM, McGinn CJ, Lawrence TS, 28. Dale E, Olsen DR, Fossa SD, Normal tissue complication 

Ten Haken RK. Analysis of radiation-induced liver disease using probabilities correlated with late effects in the rectum after 

References

  1.

Review paper



267Rep Pract Oncol Radiother 9(6)2004

Kuko³owicz P. NTCP

prostate conformal radiotherapy. Int J Radiat Oncol Biol Phys Complications from radiotherapy dose escalation in prostate 

1999;43:385-91. cancer:preliminary results of a randomized trial. Int J Radiat 

29. Fenwick JD, Khoo VS, Nahum AE, Sanchez-Nieto B, Dearnaley Oncol Biol Phys 2000;48:635-42.

DP. Correlation between dose-surface histograms and the in- 33. Cozzarini C, Fiorino C, Ceresoli GL, Cattaneo GM, Bolognesi A, 

cidence of long-term rectal bleeding following conformal Calandrino R, et al. Significant correlation between rectal DVH 

or conventional radiotherapy treatment of prostate cancer. and late bleeding in patients treated after radical prostatectomy 

Int J Radiat Oncol Biol Phys 2001;49:473-80. with conformal or conventional radiotherapy (66.6-70.2 Gy).

30. Franson P, Bergstrom P, Per-Olov L, Widmark A. Prospective Int J Radiat Oncol Biol Phys. 2003;55:688-94.

evaluation of urinary and intestinal side effects after BeamCath 34. Fiorino C, Sanguineti G, Cozzarini C, Fellin G, Foppiano F, 

stereotactic dose escalated radiotherapy of prostate cancer. Menegotti L, et al. Rectal dose-volume constraints in high-dose 

Radiother Oncol 2002;63:239-48. radiotherapy of localized prostate cancer. Int J Radiat Oncol 

32. Storey MR, Pollac A, Zagars G, Smith L, Antolak J, Rosen I, et al. Biol Phys 2003;57:953-62.

Review paper


	Strona 1
	Strona 2
	Strona 3
	Strona 4
	Strona 5
	Strona 6
	Strona 7
	Strona 8



