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Summary

Studies carried out on cell lines and ovarian cancer xenografts have indicated that some disturbances of the expression of some groups

of genes in cancer cells have a role in the efficacy of chemotherapy, including the response to given groups of drugs. Cisplatin is a DNA-da-

maging agent. On the basis of the data obtained from cell lines the level of the expression of TP53, BCL and BAX proteins affects the response 

of the ovarian cancer to cisplatin, however this effect has not been confirmed in clinical studies. In the last few years, in the framework of a multi-

centre project, we have investigated a group of 233 patients with ovarian cancer treated with cisplatin regimen (cisplatin plus cyclophos-

phamide). We have shown that ovarian carcinomas with TP53 protein accumulation (TP53+) and those without accumulation (TP53-) con-

stitute separate biological groups. In our studies the TP53 status had an impact on the clinical value of other proteins such as BAX and BCL-2, 

as well as of some clinical factors, eg. residual tumor size or clinical stage. BCL-2 expression had a negative influence on complete remission 

only in the TP53(-) group. On the other hand, the risk of a relapse was lower for the higher BAX expression in the TP53 (+) group. Now we have 

embarked on similar studies on a group of patients treated with taxanes. In the future, the evaluation of molecular markers may provide a basis 

for a more individualised chemotherapy of ovarian cancer patients.
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Kliniczne znaczenie zmian molekularnych w raku jajnika

Streszczenie

Badania na liniach komórkowych i ksenoprzeszczepach raka jajnika wykazuj¹, ¿e zaburzenia ekspresji niektórych grup genów w komór-

kach nowotworowych decyduj¹ o skutecznoœci chemioterapii, w tym o odpowiedzi na poszczególne grupy leków. Cisplatyna jest lekiem 

uszkadzaj¹cym DNA. Wed³ug danych z linii komórkowych poziom ekspresji bialek TP53, BCL-2 i BAX wp³ywa na odpowiedŸ raka jajnika

na cisplatynê, jednak nie potwierdzono tego w badaniach klinicznych. W ostatnich latach opracowaliœmy w ramach projektu wielooœrodko-

wego grupê 233 pacjentek z rakiem jajnika leczonych w oparciu o cisplatynê (cisplatyna plus cyklofosfamid). Wykazaliœmy, ¿e raki jajnika

z akumulacj¹ (TP53+) i bez akumulacji (TP53-) bia³ka TP53 stanowi¹ odmienne biologiczne grupy. W tych badaniach status TP53 

determinowa³ kliniczne znaczenie innych bia³ek, takich jak BAX i BCL-2, jak równie¿ czynników klinicznych (wielkoœæ pozostawionych resztek 

nowotworu, stadium kliniczne). Ekspresja BCL-2 mia³a negatywny wp³yw na ca³kowit¹ remisjê jedynie w grupie TP53(-). Z kolei, ryzyko wznowy 

by³o ni¿sze przy wysokiej ekspresji bia³ka BAX jedynie w grupie TP53(+). Obecnie rozpoczynamy analogiczne badania dotycz¹ce grupy 

pacjentek leczonych w oparciu o taksany. W perspektywie, ocena markerów molekularnych mo¿e byæ podstaw¹ bardziej zindywidualizo-

wanego doboru chemioterapeutyków.

S³owa kluczowe: rak jajnika, TP53, BCL-2, BAX, cisplatyna.
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Introduction with adriamycin and cyclophosphamide. In the last few 

years, in the treatment for ovarian cancer the optimal re-

Postoperative treatment of ovarian cancer patients has gimen in the first line chemotherapy has been that of admi-

for many years involved the administration of cis- or carbo- nistering taxanes (drugs impairing the mitotic spindle) and 

platin together with cyclophosphamide or in combination the platinum derivatives. There have been some reports, 
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however, that this combined form of treatment is not always hand, glutathione S - transferases (GST) take part in detoxi-

efficacious. About 20-30% of patients do not respond fication by catalising the combination, among other things, 

to both platinum-based and taxane-based chemothe- of cisplatin and alkylating agents with glutathione [3,4,10]. 

rapy. In spite of the fact that these mechanisms are involved

What is decisive in the outcome of treatment, apart from in cisplatin detoxification, no direct relationship has been 

clinical and histopathological factors, is the sensitivity noted between the glutathione or glutathione S- transfer-

of the lesion to chemotherapy which may initially be low ases expressions and ovarian cancer response to therapy 

or may decrease in the course of treatment. The latter is a re- based on cisplatin [5,6,11].

sult of the defensive mechanism of cancer cells in a respon-

se to the toxicity and positive selection of clones resistant Mechanisms of non-pharmacological resistance

to the applied therapy.

The fundamental assumption underlying chemotherapy Experimental studies carried out in the last few years have 

is the damage inflicted on the genetic material or structures indicated the potential importance of molecular mecha-

essential in cancer cell division, which leads to death and nisms occuring after damage of DNA or other molecular 

elimination of cells. The efficacy of chemotherapy depends structures on effects of chemotherapy. The efficacy of cell 

on many factors involved in molecular  processes . cycle checkpoints responsible for growth arrest after DNA 

Chemotherapeutic agents, since they act as cell toxins, lead damage, mechanisms of DNA-damage detection and re-

to activation of cell defensive mechanisms that involve eli- pair as well as efficacy of the programmed cell death - all 

mination of the drug from cells and its detoxification. If, ho- these factors may influence tumour response to chemothe-

wever, the cell structures are damaged, mechanisms that rapy. Disturbances in the expression of individual genes

detect the damage are set in motion. When the DNA is da- that control these processes (due to mutation or altered 

maged, cell repair mechanisms are induced. If the damage expression) make it possible to differentiate cancers

cannot be repaired (which is an expected result of chemo- as to their sensitivity to cytostatic agents or groups of cyto-

therapy), the cell is put on a programmed cell death path- static drugs.

way, referred to as apoptosis. At each of the above stages Non-pharmacological resistance to chemical therapy, 

there may appear molecular disturbances which will inevi- generally speaking, is a result of the failure in recognising 

tably impair the cancer response to chemotherapy. the damage caused by an antineoplastic agent or the tole-

The following factors may be responsible for the efficacy rance thereof, or the enhanced repair of the damage or in-

of chemotherapy: excessive elimination of the drug effective processes of elimination of damaged cells.

from the cell and its excessive detoxification, the impairment 

of DNA damage detection or excessive damage repair, Mechanism of action of some cytostatic agents

and at the last stage of cell response to chemotherapy

- apoptosis insuffciency. The two former mechanisms Cisplatin and cyclophosphamide exert a cytotoxic effect 

are referred to as pharmacological drug resistance, by damaging cell DNA [12,13]. Cisplatin forms DNA ad-

while others are called non-pharmacological drug resis- ducts, while cyclophosphamide leads to DNA damage by 

tance. alkylation. This results in the loss of DNA properties as a re-

plication matrix and, consequently, DNA strand-breaks are 

Mechanisms of pharmacological resistance formed, which leads to initiation of apoptosis. The effect

of therapy with platinum compounds and cyclophosphami-

The genes responsible for multidrug resistance (MDR1, de is reversely proportional to the  efficiency of DNA repair 

MPR and LPR) code for proteins which eliminate cystostatic mechanisms, and directly proportional to the efficacy

agents from the cell; their activation contributes to a lower of the mechanisms controlling apoptosis.

concentration of the drug in the cell. In particular, the MDR1 Taxanes (taxol, paclitaxel and taxotere) exert a cytotoxic 

gene encodes glycoprotein P (Pgp) bound to the cell mem- effect by stabilising and inactivating microtubules responsi-

brane, which acts like an effusion pump [1]. Pgp eliminates ble for the formation of mitotic spindle. This process takes 

doxorubicin, vincristin, VP16 and paclitaxel. Pgp expression place through tubuline (a component of microtubules)

seems not to affect the sensitivity to cisplatin [2-4]. In most polymerisation. By continuous administration of taxol mi-

reports on ovarian cancer patients treated with cisplatin no tosis cannot be completed, which causes cells to be be-

effect of Pgp on the cancer response to chemotherapy has come blocked in G2 and M phases and this activates 

been observed [3-7]. apoptosis.

Another mechanism of pharmacological resistance in- Thus, cisplatin and taxanes cause damage to other cell 

volves the increase of the activity of glutathione and gluta- structures and activate other biochemical pathways. Any 

thione S-transferases. Glutathione is tripeptide tiole, which damage resulting from the administration of cisplatin leads 

plays an important role in cell detoxification from various to the activation of the TP53 pathway which, in its turn, is not 

xenobiotics such as platinum derivatives [8,9]. On the other activated by taxanes.
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Enhanced DNA repair nion is that in microsatellite sequences there exists an incre-

ased risk of errors in replication. These errors, however, are 

In response to DNA injury the cell sets in motion, among repaired when the mismatch repair system is sufficiently 

other things, a direct repair or  nucleotide-excision or base- effective [25]. In tumours, where the mismatch repair sys-

excision mechanisms. The direct repair involves breaking tem is disturbed, microsatellite sequences are considerably 

the link between DNA and the damaging agents (alkyl heterogenous as compared with those in normal tissues. 

groups) through the action of alkyltransferase [14]. The re- This effect is referred to as microsatellite instability or RER+ 

pair by base-excision consists in the elimination of the da- (replication error) phenotype [26].

maged base and replacing it by a normal one. Large injuries The mismatch repair system also plays a leading role

(27 to 29 nucleotides) are repaired by removing nucleoti- in the detection of DNA adducts that are formed as a result 

des. The latter process is quite complicated. It includes se- of cisplatin treatment and in inducing signals that eventually 

veral stages such as recognition, incision and removal lead to cell death. The loss of the DNA mismatch repair sys-

of the strand, gap stabilisation, initiation of the repair repli- tem, eg. by mutations inactivating the system's genes or by 

cation and linkage with the rest of the strand. A very large their lower expression level, makes it more likely that neo-

number of enzymes participate in this process. The repair plastic cells resistant to chemical treatment are formed and 

of DNA damage caused by alkylating agents is a direct selected. If the DNA repair enzymes are unable to recognise 

process or it is made by excising nucleotides or bases, injury, persistent adducts (tolerance for damage) may ap-

while that caused by cisplatin is made by excising nucleo- pear. Increased tolerance for the presence of adducts (to-

tides [15]. gether with DNA replication bypassing adducts) has been 

Among the main factors that contribute to the efficacy obseved in ovarian cancer cases resistant to cisplatin.

of chemotherapy with cisplatin is the extent of DNA dama- In the cohort of 233 ovarian carcinomas studied in the Po-

ge. This damage is usually considerably  bigger for the cell lish multicentre project (later in the text) we did not find any 

repair mechanisms to eliminate. However, some ovarian loss of expression of MLH1 and MSH2 genes. Also, the ana-

cancer lines resistant to cisplatin treatment indicate enhan- lysis of 66 ovarian cancers for microsatellite instability

ced DNA repair, which is revealed by increased elimination in 12 loci has not revealed such molecular changes, whe-

of adducts and greater synthesis of DNA repair enzymes reas other authors report instability in 6-30% of ovarian 

[3,4,16-18]. It has been reported that the patients, whose cancer cases [Plisiecka-Ha³asa et al. unpublished results, 

malignancies respond to cisplatin treatment have more 27]. It seems, therefore, that the loss of the mismatch repair 

cisplatin adducts in normal tissues than the patients with system is not in fact a cause of resistance in ovarian cancer 

carcinomas resistant to treatment [19]. Pilot studies have cases observed in Poland.

shown increased mRNA expression for some enzymes par-

ticipating in DNA repair such as ERCC-1 and XPA in ovarian Impairment of the apoptosis pathway

cancer cases resistant to chemotherapy [20,21]. On the ot-

her hand in various malignancies resistant to the therapy Irrespective of the mechanism of the action of a chemo-

with alkyl drugs and in some ovarian tumours high alkyl- therapeutic drug the anticipated biological effect is to eli-

transferase expression has been noted [22,23]. minate the cell by apoptosis. When the mechanisms re-

gulating apoptosis are impaired the resistance to treatment 

DNA mismatch repair system defects may be increased. The programmed cell death is controlled 

by a large number of proteins such as TP53, BCL-2 family, 

A separate group of genes the damage of which pre- IAP family, some proteins of the STAT family, phosphatidylo-

disposes to resistance to chemotherapy belongs to the sys- inositole kinase pathway (PI3K, PKB), RAS-MEK-ERK path-

tem referred to as mismatch repair. Among the most im- way and others. Detailed data on the role of these proteins

portant genes in this system are MLH1, MSH2, PMS1 and in the control of apoptosis and impairment of the response 

PMS2. Under normal conditions in the cell there may appear to chemotherapy together with a list of relevant literature has 

errors in DNA replication. Proteins encoded by these genes been published in previous reports [28,29].

are responsible for the repair of random errors in replication An important role in the induction of apoptosis in DNA 

and for elimination of some changes in DNA sequence damage is played by TP53 protein, which causes the cell 

induced by carcinogens. During repair by this system long cycle arrest in the G1 phase. At the same time the DNA 

DNA units, sometimes up to 1000 bases are removed. repair mechanisms are initiated [30]. TP53 protein induces 

Defects or disturbances in the expression of mismatch transcriptional activation of the WAF1/CIP1 gene, which co-

repair genes result in the formation and accumulation of ge- des for the protein of 21kD (p21) molecular weight [31-33]. 
WAF1netic changes in the whole genome and thus in the genes P21  exists in the quarternary complex with a cyclin 

responsible for the phenotype of resistance, and particu- (proteins controlling each phase of the cell cycle), cyclin-

larly in the so-called microsatellite sequences that is repli- dependent kinase and a proliferating-cell nuclear antigen 
 WAF1cations of the same DNA sequence [24]. The general opi- (PCNA). P21  inhibits both the activity of kinase (arrest of 
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the cell cycle) and PCNA (arrest of DNA replication) [30,34]. nes is a decisive factor in the efficacy of apoptosis induced 

If the DNA repair fails, then TP53 protein initiates program- by chemotherapeutic drugs. Increased levels of the BCL-2 

med cell death (apoptosis) [35-37]. protein or disturbances in the proportion of apoptosis

It has been shown in ovarian cancer cells that normal promoters and inhibitors (e.g. lower BAX expression

TP53 protein is required for the cell cycle to be arrested - the BCL-2 inhibitor) are likely to unfavourably affect

in the G1 phase after the administration of cisplatin. This the apoptotic index [52]. Studies on the ovarian cancer cell 

effect has not been observed after the transfection lines have revealed that there is a relationship between

of the mutant TP53 protein [12] nor in the cells lacking TP53 the high BCL-2 expression and the resistance to cisplatin 
 WAF1or its P21 effector protein [38,39]. Cell lines resistant [40,41,53], although contradictory results have also been 

to cisplatin treatment feature no arrest in the G1 phase after observed [54]. In experimental investigations BAX expre-

cisplatin administration [39]. Other reports have also shown ssion increased cell sensitivity to cisplatin or was found

that impairment of TP53 protein has an impact on the resis- to have no such effect [41,54].

tance to cisplatin in ovarian cancer cell lines [40-42]. One of BCL-2 functions is to maintain the integrity of mi-

Apoptosis caused by taxole (in therapeutic doses) is in- crotubular cell structures in the G2 and M phases. Antican-

dependent of TP53 protein and the majority of published cer drugs which impair mitotic spindle structures (including 
WAF1reports seem to indicate that defects in TP53 and P21  taxol) induce BCL-2 phosphorylation and thus nullify its anti-

genes do not lead to diminished sensitivity to the treatment apoptotic effect, whereas cytotoxic drugs that impair DNA 

with taxanes and other drugs which impair the cell tubular fail to exert such an effect [55].

system in the G2 and M phases [41,43-45]. Some data, Taxanes phosphorylate BCL-2 protein in serine 70 locus. 

however, suggest that the presence of the normal TP53 Phosphorylation in this position makes it impossible

protein has an unfavourable effect on the action of taxol [46]. for BCL-2 protein to bind with BAX, which in turn, leads 

TP53 protein plays a role in the mitotic spindle check-point: to apoptosis [56]. The proteins which inhibit BCL-2 pho-

it becomes associated with microtubules of the division sphorylation, eg. endotheline-1, protect ovarian cancer cells 

spindle. After taxol treatment cancer cells lacking TP53 were against paclitaxel-induced apoptosis [57]. It is not only im-

arrested in the G2/M phase and underwent apoptosis, paired phosphorylation, but also excessive BCL-2 expre-

whereas cells with normal TP53 were able to overcome G2/M ssion that cause higher resistance of cancer cells to taxa-

arrest and accumulated in the G1 phase, in which they are nes, which has been shown in studies on cell lines [58].

not susceptible to taxol. Thus, the presence of normal TP53 In addition, it has been noted that ovarian cancer cells re-

protein facilitates cycle progression through the mitotic sistant to paclitaxel reveal low BAX expression in contrast to 

phase after taxanes had become active. On the other hand, sensitive cell lines [59]. Stimulation of BAX expression leads 

the loss of TP53 function, as well as TP53 mutations sensitise to enhanced ovarian cancer cell  sensitivity to taxol by a fac-

cancer cells to taxanes - dissociation of TP53 and tubulins tor of 500-1000, which is shown by massive apoptosis [60].

has been noted, which probably facilitates polymerisation

of tubulins by taxanes; the cycle is arrested in the G2/M pha- TP53, BCL-2 and BAX in ovarian cancer clinical studies

se, after which the cells yield to apoptosis.

The process of programmed cell death in its effector Despite the essential role of TP53 protein in the response 

phase is controlled by genes of the BCL-2 group. The BCL-2 of neoplastic cells to cisplatin and the high frequency

family includes both the promoters of apoptosis, such as of TP53 gene mutations in ovarian cancer impairing the pro-

BAX protein, and apoptosis inhibitors, of which the most tein function, clinical studies have not revealed unequivo-

important agent is BCL-2 protein [47,48]. BCL-2 family plays cally the existence of a link between TP53 status and the res-

a key role in the effector phase of apoptosis [49,50]. ponse of ovarian carcinoma to chemotherapy [61-68]. 

The BCL-2 protein family is characterised by the presence Similarly, most clinical investigations have not confirmed

of homology domains (BH), which make possible the inter- the prognostic value of BCL-2 and BAX expressions in ova-

action among BCL-2 family proteins and with other  proteins rian cancer treated with cisplatin.

structurally unrelated with BCL-2 [49,51]. The presence However, the analyses of molecular markers in large ho-

of domains allows for the formation of homodimers (e.g. mogenous clinical groups of ovarian cancers cited in world 

BAX/BAX) and heterodimers (e.g. BAX/BCL-2), which have medical literature are rare. Among a few such reports con-

a decisive role in the fate of the cell. Enhanced BCL-2 cerning TP53 only two teams have studied the predictive 

expression inhibits apoptosis, which in turn, may be modu- value of TP53 accumulation [61, 64-66]. It was only 

lated by proteins of the BAX group that nullify the antiapo- Ferrandina et al.[65] who found a better response to che-

ptotic effect of BCL-2 due to the formation of heterodimers motherapy in lesions without accumulation of TP53. 

with BCL-2. The predominance of BCL-2 homodimers Hartmann et al. [61] and Eltabbakh et al. [64] did not 

supports proliferation and survival, whereas the predomi- observe any clinical significance of TP53 accumulation.

nance of BAX homodimers leads to cell death. No predictive value of BCL-2 and BAX expressions was 

The balance between the products of BCL-2 and BAX ge- noted in ovarian cancer cases, either [40,66,69-73]. Only 
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Mano et al. [70] found higher frequency of total remissions to determine a TP53 - negative group, in which major ef-

in patients with lesions without BCL-2 expression in single fort should be made to completely extirpate the tumour 

factor analysis. mass [76].
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