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Abstract

Background:  The biological  effects  and clinical  consequences of out-of-field radiation  in

peripheral organs can be difficult to determine, especially for low doses (0.1 Gy–1 Gy). In

recent  years,  Monte Carlo  (MC) methods have  been proposed to  more  accurately  predict

nontarget doses.  The aim of the present study was to assess the feasibility of using Monte

Carlo methods to predict the biological response of tissues and critical organs to low dose

radiation (0.1 to 1 Gy) based on results published in the literature.

Materials and methods. Literature review, including studies published by our group.

Results and Conclusions. It has long been assumed that radiation doses to peripheral organs

located far from the target volume are too low to have any clinical impact. In recent years,

however, concerns about the risk of treatment-induced secondary cancers, even in peripheral

organs,  have  continued  to  grow in  line  with  increasing  life  expectancy.  At  present,  it  is

difficult in routine calculations to accurately determine radiation doses to the whole body and

peripheral organs. Moreover, the potential clinical impact of these doses remains uncertain
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and the biological response to low dose radiation depends on the organ. In this context, MC

methods can predict biological response in those organs. Monte Carlo methods have become a

powerful tool to better predict the consequences of interactions between ionising radiation and

biological matter. MC modelling can also help to characterise microscopic system dynamics

and to provide a better understanding of processes occurring at the cellular, molecular, and

nanoscales. 

Key words: Monte Carlo methods; biological response; out-of-field doses; dose calculation

Introduction

A large proportion  of patients  with cancer  receive  radiotherapy as part  of  their  treatment

protocol,  with  dose  of  up  to  70  Gy  or  more.  Although  most  of  the  radiation  energy  is

deposited within the intersection of beams’ paths and along the beam path,  mainly in the

target, body regions located outside of the target volume are also exposed to radiation —

although  at  much  smaller  doses  —  due  to  the  physical  properties  of  radiation  and  the

limitations of current technologies [1, 2].

Although the dose of ionising radiation is a well-defined parameter that can be measured and

calculated,  the  response  of  living  organisms  to  a  given  dose  is  more  complex  and  more

difficult  to describe qualitatively and quantitatively.  Assessment of the effects of radiation

(both curative and adverse) requires in vitro and in vivo studies and clinical observation. The

biological response to irradiation in vitro can be assessed by examining damage to the cells

and cellular components. Response can also be assessed in vivo by observing tissue and organ

function impairment. 

Although  it  can  be  challenging  to  accurately  assess  biological  response,  the  main  factor

driving response is the dose. In this regard, the response to radiation—both on the cellular

level and in the whole organism — is much better understood at doses above a 1 Gy because

deterministic effects make the radiation effects more visible and it is easier to trace tissue

damage  and/or  impaired  organ  function.  However,  at  doses  <  0.1  Gy,  the  effects  on  the

cellular functions are unclear. While cellular damage (e.g., DNA damage) caused by low-dose

ionising  radiation  can  be  detected,  it  is  much  more  difficult  to  predict  how this  damage

influences the cell cycle and the cell's capacity to repair itself and continue dividing.
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Wang et al. showed that low radiation doses (0.25 Gy) could lead to cell growth and gene

transfer while doses > 1.5 Gy induced cell killing [3]. Those authors also showed that low

dose radiation delivered prior to higher doses can attenuate the effect of those consecutive

doses.  This  adaptive  response  to  radiation  is  characterised  by  several  effects,  including

activation  of  multiple  signalling  pathways,  augmented  DNA damage  response,  increased

antioxidant function, and modulation of mitochondrial function [4]. 

The impact of radiation on DNA can be observed even at very small doses. For example,

double strand breaks (DSB) begin to occur at doses as low as 1 mGy to 0.5 Gy. As the dose

increases, the number of DSBs also increases, although this depends on the cell type [5]. The

exposure of normal tissue to radiation doses > 0.5 Gy can induce persistent perturbations in

molecular  and  cellular  function  [4].  High doses  can  cause  irreparable  DNA damage  and

negatively  impact  cell  cycle  progression  [6].  High  dose  radiation  can  induce  numerous

alterations  to  macromolecules,  severe  modulation  of  cell  signalling  pathways,  and

degenerative/carcinogenic effects. For these reasons, it can be difficult to accurately describe

the  quantitative  and qualitative  response  of  cells,  tissues,  organs,  and the  whole  body to

radiation. In turn, this makes it difficult to confirm theoretical models.

In clinical practice, it is particularly difficult to determine the impact of low radiation doses

(0.1–1 Gy) on peripheral organs. Although algorithms have been developed in an effort to

estimate the biological response to such doses, including early and late effects and induction

of secondary neoplasms, those algorithms are not sufficiently accurate [7]. Moreover, there is

no  agreed  value  for  the  dose  to  be  taken  as  borderline  to  distinguish  between

stochastic/deterministic;  dosimetrically  measurable  and non-measurable  and,  finally,  being

clinically relevant or not. In literature, depending on the point of view, 0.3, 0.5, 1.0, 1.5 or 3.0

Gy is used [8–11]. With this difficulty in mind, we set in our analysis a borderline at 1 Gy.

The aim of the present study was to assess the feasibility of using Monte Carlo methods to

predict the biological response of tissues and critical organs to low dose radiation (0.1 to 1

Gy) based on results published in the literature.

Nontarget doses during radiotherapy 

One of the guiding principles of radiotherapy is that the dose outside of the target volume

(“nontarget  dose”)  should  be  as  low as  reasonably  achievable  (ALARA criteria).  This  is
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important because nontarget radiation increases the risks of radiotherapy without providing

any therapeutic benefit.  According to Kry et al. [11], nontarget doses may be classified as

either “in-field” or “out-of-field”. In-field radiation refers to the doses delivered to tissues that

are not included in the treatment planning volume (TPV) but are located in the path of one or

more radiation fields. In-field doses mainly originate from the primary radiation source. The

out-of-field dose is defined as the radiation dose received by tissues located outside of the

TPV and outside of all radiation fields. These tissues absorb secondary scatter radiation from

the body, collimator, or other devices.

Physical processes leading to radiation dose in a body 

Ionising  radiation  can  be  delivered  in  different  forms,  including  electromagnetic  waves

(gamma or X-rays) or as particles that carry enough energy to ionise atoms. Electrons can

break chemical  bonds and as a result  the cellular  matter  becomes ionised.  While  ionising

radiation affects both cancerous and normal tissues, the risks of harming healthy cells can be

mitigated by modifying the beam configuration during treatment planning. The absorbed dose

refers to the energy that is deposited from ionising radiation due to interactions between the

photons and particles, and the tissue. 

Interaction of photons and high-energy electrons with structural elements of linear accelerator

(shielding, target, flattening filter, collimators, multi-leaf collimators) might cause the creation

of  secondary  particles,  particularly  neutrons  (photonuclear  effect)  [12].  The  fast  (En  >

10 keV)  and  thermal  (En  <  0.5 eV)  neutrons  may  induce  extra  doses  to  patients  during

treatment [12-14].

Neutrons are significant contributor to the out-of-field dose for photon beams of 15 MV and

their  dose component is  independent  of the distance from the treatment  field edge and is

decreasing with depth in a body [15]. The most accurate technique to calculate the parameters

of these secondary neutrons is the Monte Carlo technique [16].

Growing input of Monte Carlo simulation in dose determination during radiotherapy 

The radiation dose is the key value that must be accurately known during radiotherapy. The

dose  can  be  calculated  prior  to  treatment  based  on measurements  and known interaction

formulas. The dose can also be measured during radiotherapy. In any case, the dose must be

determined with an accuracy of 3–5% [17], which is feasible for the dose from the primary
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beam. This  level  of  accuracy is  sufficient  to  ensure tumour eradication  and to accurately

predict  the  early  and  late  side  effects  in  normal  tissues.  However,  the  situation  in  the

peripheral body parts is more complex. The doses there are much smaller (0.1–1 Gy) and their

exact  determination  is  influenced  by  much  more  complicated  processes  due  to  the

contribution of scattered radiation. From a clinical point of view, achieving the 3-5% level of

accuracy is  not  important  for  these  low doses,  because  3-5% deviation  will  have neither

clinical manifestation nor a significant effect on the cell viability. The reality is that in the

peripheral body parts the dose uncertainty increases by tenfold while the does decrease to 0.1

Gy. Obviously, such low accuracy has virtually no clinical implications in altered cell killing.

However, such a high uncertainty can modify the likelihood of inducing mutations, which are

associated with these small doses and which can lead to carcinogenesis. At present, it is hardly

possible to determine accurately low doses (up to 1 Gy) in peripheral organs attributable to

scatter, particularly when using non-coplanar beams [18].  

Dose can be measured using various types of  detectors which can accurately measure the

dose, but only if the calibration factors are known. It is substantially more difficult to measure

radiation doses located outside the primary beam (out-of-field radiation) because the scattered

spectral energy level is unknown and much lower than that caused by in-field radiation. As a

result,  there  is  no reference  condition  (no known calibration  factor)  that  can be used for

comparison  with  the  actual  measurement.  This  implies  that  it  is  much  more  difficult  to

accurately measure doses to peripheral organs that only receive scattered radiation [19]. 

In addition to ionisation chambers, several other detectors can be used to measure out-of-field

radiation, including thermoluminescent detectors, semiconductor detectors, and radiochromic

films. Certain  types  of  detectors  (i.e.,  ionisation  chambers  constructed  using  low-atomic

number (Z ≤ 13) materials, gafchromic films, thermoluminescent dosimeters) are much less

dependent on changes in energy spectrum of radiation, thus, the determination of calibration

factors  for  such detectors  is  associated  with  lesser  error  (over-  or  under-response  to  low

energy radiation is less than 5–12%) [11].

The  dose  distribution  is  calculated  prior  to  starting  the  course  of  radiotherapy.  Several

different types of algorithms (i.e., correction‐based, model‐based, and Monte Carlo) are used

in computerized treatment planning systems (TPS). 

The  limitations of pencil  beam algorithms  in heterogeneous media are well known. These

algorithms use a one-dimensional density correction, which does not accurately imitate the
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distribution  of  secondary  electrons  in  media  with  different  densities  [20–22].  These

limitations  can  be  overcome  by  using  MC  algorithms,  a  model‐based  dose  calculation

algorithm widely considered to be the most accurate treatment planning method. Although

MC algorithms are more accurate  than pencil  beam algorithms,  MC is a  time-consuming

method,  which  may  make  its use  in  routine  clinical  treatment  planning  impractical.

Nevertheless, due to recent advances in computing capacity, the use of MC methods continues

to grow. 

The  convolution/superposition  approach  (model-based  algorithm)  is  not  specific  for  dose

calculation in homogenous media, but it is clinically acceptable in heterogeneous media. The

convolution algorithm requires a significantly shorter calculation time than the more accurate

superposition  method.  In  tissues  with  large  inhomogeneities,  the  superposition  method

provides exact dose distributions in the target volume. The superposition method, a variant of

the convolution method, can determine the dose with an accuracy that is only a few percent

lower than that achieved by Monte Carlo methods, but an order of magnitude faster [23].

Due  to  the  emergence  of  ever  more  powerful  computers,  Monte  Carlo  techniques  are

increasingly being used to perform dose calculations [24]. MC models may be particularly

useful to calculate low doses in peripheral organs [25]. 

Our group has carried out several studies to investigate the feasibility of using Monte Carlo

simulations  for  dose  determination  in  peripheral  organs  [26,27].  However,  assessing

biological response with MC methods is much more complex [28]. 

The  successful  implantation  of  Monte  Carlo  methods  to  routine  dose  calculation  and

treatment  planning  is  both  a  prerequisite  and  an  incentive  to  use  this  approach  also  for

simulation of normal organ and tissue side effects caused during radiotherapy [29].

Radiation-induced damages to be mathematically modelled 

The dose is  the main parameter  that  determines  the clinical  and biological  (cells,  tissues,

organs, whole body) response to radiation. However, in addition to the radiation dose, other

factors  like  cell  cycle  phase  can  significantly  modify  the  biological  effects  of  radiation.

Consequently, many factors must be considered to accurately assess the effects of ionising

radiation [4].  Numerous studies, including several by our group, have been carried out to

better  characterise  the  effects  of  ionising  radiation  in  different  situations,  including  the

biological response to radiation in peripheral organs during radiotherapy, the involvement of
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DNA  damage  repair  mechanisms  induced  by  various  radiotherapy  techniques  (e.g.,

hypofractionated stereotactic body radiation therapy) [30] and cellular response measured in a

quasi-humanoid phantom [31–33].

Even small  doses  can  cause  tissue  toxicity  leading  to  long-term complications,  including

secondary cancers (carcinogenesis).  In organs, the damaging effects  of radiation generally

depend on tissue structure. During radiotherapy, doses > 0.5 Gy to healthy tissues can damage

DNA, lipids, and endoplasmic reticulum. In turn, this damage may lead to cell senescence or

death through apoptosis, mitotic catastrophe, necrosis, pyroptosis, and/or autophagy [34]. At

lower doses (< 0.5 Gy), the probability of cell death is quite low and generally attributable to

apoptosis or senescence. Nevertheless, low dose radiation can damage the DNA of surviving

cells, potentially inducing dangerous mutations and, eventually, carcinogenesis [31]. 

Radiation damage to the DNA and the following erroneous repair can lead to gene mutations,

frequency of which increases in proportion to the dose. However, these mutations are highly

dependent on the cell  type,  the gene,  and radiation quality.  Some studies suggest that the

frequency of mutations and genomic instability plateaus at radiation doses of 1 to 3 Gy [35].

Other studies have found that the number of mutations increases up to doses of 7 Gy [36],

plateauing around 10–20 Gy [37]. For some genomic effects, the plateau can be explained by

increased cell killing at higher doses [38].

Irradiation  can  induce  cell  death  in  a  multifactorial  manner,  depending  on  the  cell  type,

radiation dose, oxygen tension, and DNA repair capacity. Cell death, which is defined as the

loss of replicative capacity (i.e.,  replicative or reproductive death),  is usually measured in

vitro by a clonogenic assay. The three major types of morphologically distinct cell death that

are most relevant to radiation response are as follows: apoptosis (type I), autophagy (type II),

and necrosis (type III) [39].

Although biological response can be assessed experimentally, it is difficult to do so with high

accuracy [40]. MC methods take a different approach to assessing radiation effects, offering

the potential for more accurate predictions of biological response. Many such MC approaches

have been tested [41, 42]. The main challenge of predicting the biological response to ionising

radiation is related to the uncertainty of the relative biological effectiveness (RBE). Empirical

radiobiological models commonly used in clinical practice do not incorporate the radiation

response  of  individual  cells  and  do  not  predict  the  sensitivity  of  an  individual  tumour.

However, such information could play an important role in response given that clinical data
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suggest that even tumours of the same type can present vastly different responses to radiation

due to differences in their molecular makeup. Unfortunately, models that include molecular

markers are scarce, in large part due to the lack of parameters that link biological response to

genetic pathways or tumour characteristics. Additionally, data quality is highly dependent on

mathematical  formulas,  which  means  that  large  volumes  of  data  are  needed  to  fully

parameterize empirical models. The complicated nature of biological response means that we

must use population-based approaches, which have significant shortcomings and often result

in dose under- or overestimation [40]. 

In contrast to empirical models, mechanistic models incorporate the underlying mechanisms

of radiobiological response and include the known determinants of radiosensitivity (i.e., DNA

repair processes and the cell cycle). More complex mechanistic models may be used to predict

the role of genes involved in DNA repair without requiring extensive preclinical trials [43].

Some models appear capable of predicting  radiation  response based on cell  phenotype or

genotype characteristics, but more evidence is needed to confirm the predictive capacity of

those models [44]. 

The biological response to low dose radiation is stochastic, which means that artificial neural

network could potentially be used to predict the response in the complex setting of healthy

tissues  and  organs.  Objective  methods  are  required  for  dose  determination.  However,

numerous variables can influence biological response, which is why modelling methods, such

as Monte Carlo or models based on artificial intelligence (AI), have been proposed [45,46].

Clearly, AI-based methods require large amounts of data. In this regard, collecting data on the

biological  response  to  low  dose  radiation  in  a  simple  setting  would  provide  valuable

information,  but  response  still  needs  to  be  modelled  in  a  more  complicated  setting  (e.g.,

organs).

Monte Carlo codes used in radiobiology to predict biological processes in cells and tissues

Three approaches are used to simulate early DNA damage caused by radiation: 1) clustering

algorithms,  2)  explicit  geometrical  modelling  of  the  DNA double  strand  and  associated

biological structures, and 3) a combination of the above. The clustering algorithm, developed

by Francis et al. [47], is based on experimental data on DSBs and survival rates in GEANT4-

DNA. Those authors simulated energy deposition from several types of radiation with the

same linear energy transfer (LET),  thus obtaining the ratio of clustered and single energy

depositions for each type using the Geant4-DNA toolkit. Clustered depositions are especially
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significant in terms of biological effects because they are more likely to produce multiple

strand breaks, which are more lethal.  Due to limitations  in the physicochemical  stages of

simulation, another approach to simulation was developed. This approach uses a geometrical

model of the biological target, with the DNA volume assumed to be cylindrical [48]. This

model develops a high-resolution atomistic description (up to 30-nm chromatin strand) of the

biological target [49]. The third approach — the mixed approach based on GEANT4-DNA —

was proposed by Dos Santos et al.  [50]. That model simulates direct damage from proton

irradiation  (range,  0.5–50 MeV) using a  clustering  algorithm to quantify potential  single-

strand breaks (SSB) and DSBs.  Those authors  found that  the quantity  and complexity  of

potential direct damage is higher in the nucleus of endothelial cells than in fibroblast cells,

primarily  due  to  chromatin  condensation.  Moreover,  compared  to  alpha  particles,  proton

irradiation  induced  more  complex  clustered  damage.  Meylan  et  al.  [51]  described  the

generation and management of complex DNA geometrical models by representing DNA as

spherical volumes for the phosphate groups, the deoxyribose, and the bases. Based on the

findings of that study, it is possible to calculate the direct and indirect DNA strand break

yields for a primary particle [52].

Sakata et al. [25] found that the increase in LET due to the proximity of ionisation increases

the DSB yield, which surpasses the SSB yield. In that study, the indirect SSB yield revealed a

strong LET dependence; that is, the number of indirect breaks decreases as the LET increases.

Compared to indirect SSBs, the number of direct SSBs is proportional to LET. The extent of

DNA damage increases as LET values increase (> 40 keV/µm).  The probability  of direct

SSBs  after  each  simulation  of  the  tracking  of  an  incident  particle  can  be  calculated  by

assigning energy deposition to the closest strand molecule, with the probability of a break

occurring being a function of the energy. An earlier study by that same group showed that

indirect damage depends mostly on the probability of a chemical reaction between a hydroxyl

radical  and  the  sugar  phosphate  backbone,  thus  leading  to  SSB.  It  is  expected  that  the

GEANT4-DNA model  will  soon allow users to  simulate  indirect  damage by merging the

atomistic approach with radiolysis simulation [25]. 

The radiation-induced bystander effect (RIBE) also plays a role in the number of DSBs. RIBE

depends on cellular communication (through gap junctions and secreted factors), by which

irradiated cells spread radiobiological effects to neighbouring cells [53]. Given that RIBE can

damage DNA, adding this process to simulations could be of value. The observed biological

effects of RIBE, such as reduced cell survival and mutations, are due to DSB induction. The
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Monte Carlo model developed by McMahon et al. [54] described the radiation response of

cells by simulating their internal conditions (cell cycle, radiation damage, cell motility). Those

authors used data from a study by Butterworth and colleagues who irradiated fibroblasts and

prostate cancer cells in partially shielded flasks [55]. That in vitro experiment showed that

RIBE mediates radiation effects to unirradiated cells and that it  mainly contributes to cell

response  at  low radiation  doses  (<  1  Gy).  The  aforementioned  MC model  developed  by

McMahon et  al.  [54]  described RIBE as  a  soluble  signal  dispersing from irradiated  cells

through the medium. Based on that model, the authors showed that the bystander effect might

significantly  contribute  to  cell  killing  of  uniformly  irradiated  cells  at  doses  below 2  Gy

(killing up to 80% at low doses). 

The aforementioned examples show that Monte Carlo models can be successfully used to

simulate  complex  molecular  effects  caused  by  different  types  of  radiotherapy.  Moreover,

different  models  may  consider  different  biological  processes,  depending  on  their  target

application. 

Mathematical modelling has been applied in radiobiology since the 1920s [56]. Although the

first  models  were relatively  simple,  over  time,  more reliable  models  of  radiation-induced

DNA damage  have  been  developed.  Monte  Carlo  simulation  is  a  valuable  method  to

understand and characterise radiation effects. As an example of a stochastic model, Monte

Carlo methods allow for the visualization of radiation interactions on an event-by-event basis,

including the tracking of scattering, excitation, and ionisation generated by the particles. This

tool ensures modelling of radiation transport  by simulating early events that induce DNA

damage [57]. Monte Carlo methods used for these simulations include track structure codes,

Monte Carlo damage simulation (MCDS) codes, and Geant4-DNA codes.

Track structure code 

Radiation  damage  to  biological  structures  at  the  DNA level  can  be  evaluated  by  using

dedicated  MC  codes  known  as  track  structure  (TS)  codes  [41,58].  The  specific  spatial

resolution of  TS codes  makes them particularly  suitable  to  calculate  energy deposition at

molecular and subcellular levels for a wide range of energies, and to estimate clustered DNA

damage and repair. TS codes provide detailed information about excitation and the energy

released by atomic ionisation along the ionising particle's path. They can also simulate the

process of free radical diffusion, which is crucial in the chemical stage of the radiation effect.

In  1997,  Nikjoo  et  al.  [57] published  a  parameter  study  of  mechanistic  DNA damage
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simulations. In that study, TS codes were used to calculate the initial DNA damage yields

caused  by  low energy  electrons  (range,  100  eV –  4.5  keV).  Diffusing  hydroxyl  radicals

substantially contributed to DNA breakage. 

Monte Carlo damage simulation (MCDS) code

Tracking codes are useful but time-consuming, which limits their application. Semenenko et

al. [59] proposed a faster, quasi-phenomenological MCDS model as an alternative to the TS

simulations  proposed  by  Nikjoo  et  al.  [58].  The  re-parametrized  algorithm  can  estimate

cellular DSBs, SSBs, and multiple base damage. This model presents the total spectrum of

damage generated by electrons, protons, α particles, and can provide detailed estimates of the

number of lesions per gigabase pair. This model showed that the main difference between

energetic electrons, protons, and α particles was the degree of lesion clustering. New MCDS

parameter values can be used to estimate cluster yields for a wide range of particle types,

kinetic energies, and oxygen concentrations [60]. In that study, the observations obtained by

MCDS were in line with the TS simulations, which suggests that MCDS parameter values can

help to characterise the relative effectiveness of radiation type, which is useful in particle-

based cancer therapy. The authors concluded that the most complex, difficult-to-repair DNA

damage occurs at the end of a charged particle's track, a finding that can also be useful for

radiotherapy.

Geant4-DNA code

Geant4-DNA, an extension of the Geant4 MC code, is a promising tool for the radiobiological

evaluation of DNA damage events and nanodosimetry [41]. Geant4-DNA, which was first

released  in  2007,  has  been  applied  to  describe  the  interaction  between  electromagnetic

particles and liquid water at the nanoscale [2]. The code has been improved by adding models

of free radical production/diffusion and chemical processes, and can be used to simulate water

radiolysis up to one microsecond after irradiation. 

Several research groups have developed simulation codes to model ionising radiation damage

to sensitive biological targets such as DNA molecules [61–63]. Geant4-DNA implementations

include  external  beam  radiotherapy,  hadron  therapy  based  on  proton  and  heavy  ions,

radiotherapy using nanoparticles, and targeted therapies [7, 64].

In  conventional  models,  DNA  damage  yield  and  lethality  are  estimated  empirically.

Consequently, there is a clear need to develop and improve these models. The inclusion of
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bystander effect models can improve existing models, especially in the context of low dose

radiation  processes,  as  suggested  by  the  developers  of  some  MC models.  For  example,

Douglass et al. [63] developed a stochastic MC cell death model that simulates the spatial

distribution of ionisation events and clusters them into DSBs. This model also simulates the

biochemical process of DSB repair. The model can predict individual cell death and thus the

cell  surviving  fraction.  Those  authors  developed  an  algorithm that  clusters  the  ionisation

events into two categories (simple or complex DSBs) present in each cell.  This approach

demonstrated that it was possible to accurately evaluate the radiobiological effects of different

types of LET radiation on DSB formation. The two-lesion kinetic (TLK) model has been used

to calculate cell survival probability for each cell in a geometric tumour, an approach that

differs  from  standard  calculations,  which  only  calculate  the  average  probability  of  cell

survival. Douglass and colleagues [65] observed that the cell’s capacity to effectively repair

and overcome radiation-induced damage depends on several factors, including the volume of

the nucleus occupied by the DNA, the ability of neighbouring DSBs to interact and cause

lethal damage, and on the accuracy of repair processes.

Zhang  et  al.  developed  a  new  multi-scale  MC model  [66]  to  estimate  radiation-induced

cellular  death  in  clinical  radiotherapy.  This  model,  which  is  based  on  the  Geant4  code,

performs  simulations  at  various  levels,  ranging  from  the  macroscopic  (organs)  to  the

microscopic (cells). Radiation damage is calculated at the cellular level. The repair process

was modelled by an expanded reaction-rate, TLK model. The model was compatible with the

linear-quadratic  (LQ)  model  in  terms  of  the  relationship  between  the  macro  dose  and

radiation-induced cell  killing.  The modelled  radiobiological  effects  demonstrated  that  low

energy electrons had a greater dose effect, causing relatively more local cancer cell killing

than higher doses. This type of low-energy radiation is found in gold nanoparticle (GNP)-

enhanced  radiotherapy,  in  which  the  probability  of  tumour  control  is  increased  by  the

presence of low energy electrons in close proximity to nanoparticles during irradiation [67].

MC methods can also be used to simulate the interactions of low-energy radiation particles.

The energy spectrum is a pivotal factor in radiobiological mechanisms and can be used to

identify volumes likely to respond better to an individualized, patient-specific treatment plan. 

Relativistic Ion Tracks (RITRACKS) code

The Monte Carlo simulation code RITRACKS (Relativistic Ion Tracks) is used to simulate the

radiation  track  structure of heavy ions  and electrons  [68].  The code simulates  the energy

deposition events and the position of all radiolytic species generated of all tracks in a pre-

12



defined irradiated volume. RITRACKS can simulate DNA damage at the atomic scale, DNA-

associated proteins, and resulting DNA damage events. Using RITRACKS codes, Plante et al.

[69] have shown how the histone protection is significant in the DNA damage process. They

reported, that the presence of histones reduced the number of DNA breaks by about 50%. The

breaks have been observed in the periphery of the nucleosome when histones were present. 

PARticle TRACks (PARTRAC) code

The PARTRAC code is one of the most advanced track-structure tools [70, 71]. It is set up on

cross-section  databases  for  photons,  electrons,  protons  and ions  over  wide  energy ranges

relevant  for medical,  biological  and technical  applications.  The tool enables  simulation of

water radiolysis, diffusion and reactions of chemical species. Comparing with TS code, the

PARTRAC is less accurate but considerably faster in calculating damages in structures [59].

The PARTRAC was used to reproduce both the physics of the passage of a particle inside the

matter and the biological target (the DNA) at different spatial levels.

Artificial intelligence for Monte Carlo

Artificial neural networks can be used for deep learning and to simulate scattered radiation.

Sarrut et al. [72] discussed the application of artificial neural networks for dose prediction.

Neural networks might also be used to simulate biological response based on a dataset of

results.  The advantage of this  approach is that  no prior knowledge of the nature of these

processes is necessary. MC methods are widely considered the gold standard for radiation

dose  calculations  because  they  provide  an accurate  and highly  detailed  simulation  of  the

physical processes involved in the interaction of radiation with matter. The radiotherapy TPS

determines  the  optimal  dose  distribution  needed  to  achieve  the  therapeutic  goals  while

minimizing damage to surrounding healthy tissue. The division of treatment planning into

knowledge-based, expert-based, and AI-based categories reflects the different approaches and

technologies that can be used at this stage of radiotherapy. Combining AI-based treatment

planning with MC dose calculations  could provide a  powerful  framework to  improve the

accuracy and effectiveness of radiotherapy [73]. AI techniques, including machine learning

algorithms, can be used to optimize treatment planning [74]. The integration of AI and MC

methods in radiotherapy would increase the precision of dose calculations and the predictive

accuracy with regards to biological response. Combining these two tools would streamline

both planning and treatment, thereby ensuring better patient outcomes.
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Conclusion 

Until  recently,  radiation  doses  in  peripheral  organs  located  far  from the  target  were  not

routinely determined as part of the planning process because it was assumed that low doses

(0.1–1 Gy) were unlikely to have any adverse effects. Moreover, there is no clinical evidence

to support the need for further treatment optimization, even in sensitive organs, such as the

thorax, which can receive doses of up to 1 Gy during prostate irradiation. 

Even if  the doses in  the entire  body are known,  the impact  on clinical  response remains

uncertain. The biological response to low dose radiation depends on the organ. The response

to low doses on the cellular level can be detected using experimental methods. DNA damage

is the dominant mechanism by which ionizing radiation causes biological response. However,

the determination of whether or how these cellular damages impair specific organ function

remains not well evidenced. On the other hand, induction of secondary neoplasm has been

extensively documented. Further study should investigate more in-depth the processes that

occur within the range of 0.1–1 Gy and probably analyse these effects separately in smaller

dose sub-ranges. 

Monte Carlo methods can be used to predict response. Monte Carlo simulation is a potentially

powerful  tool  to  predict  the  consequences  of  interactions  between  ionising  radiation  and

biological matter. These simulations can reveal the microscopic system dynamics and provide

a deeper understanding of cellular, molecular, and nanoscale processes. We analysed different

approaches  to  predict  early  DNA  damage  and  application  of  various  Monte  Carlo

codes. Monte  Carlo  methods  are  a  highly  promising  tool  for  radiotherapy,  offering  the

potential to more accurately predict the biological effects of low radiation doses in peripheral

body parts.
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