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Introduction

Cancer remains one of the leading causes of death 
worldwide, prompting intense research into more 
effective and tailored therapeutic approaches. 
Conventional cancer treatments such as chemical 
treatment have limited selectivity, resulting in poor 
bioavailability at tumor sites and systemic toxicity 
[1, 2]. The emerging field of nanomedicine offers 
promising solutions through advanced nanoengi-
neering and nanodelivery systems. Recent innova-
tions in nanotechnology have enabled the develop-
ment of nanoscale platforms that can preferentially 

accumulate in tumors while avoiding healthy tis-
sues. By leveraging the unique pathophysiological 
traits of malignancies, nanotherapeutics provide 
opportunities to overcome the limitations of tradi-
tional chemotherapy.

Recent advances in nanotechnology have led to 
the engineering of diverse nanoplatforms that can 
preferentially accumulate in tumor tissues while re-
ducing exposure to healthy cells. This tumor-target-
ing ability is achieved by leveraging unique patho-
physiological traits of malignancies. For example, 
tumors typically have leaky vasculature and im-
paired lymphatic drainage, allowing nanocarriers 
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of certain sizes to selectively extravasate from blood 
vessels and penetrate into the tumor microenviron-
ment. This phenomenon is known as the EPR effect 
[3]. NPs ranging from 10-100 nm in diameter have 
been shown to effectively exploit the EPR effect for 
passive tumor targeting after intravenous adminis-
tration [4].

Additionally, the tumor microenvironment has 
abnormal physicochemical properties, such as 
an acidic pH and high reducing capacity [5]. pH- 
or redox-responsive nanocarriers can be designed 
to release their drug payload specifically when ex-
posed to these intracellular tumor conditions [6]. 
Active targeting strategies further enhance selec-
tivity by functionalizing the nanoparticle surface 
with targeting ligands [7]. These ligands bind to re-
ceptors or antigens that are overexpressed on can-
cer cells compared to those on normal tissues [8]. 
Some examples include folate receptors, transferrin 
receptors and lectins [9]. This molecular recogni-
tion guides nanotherapeutics directly to cancer 
cells while avoiding healthy cells lacking these bio-
markers [10].

Overall, nanotechnology provides multiple 
opportunities to overcome the nonselective bio-
distribution and severe side effects associated 
with conventional chemotherapies. Engineering 
nanocarriers that leverage unique aspects of tu-
mor pathophysiology enables more personalized 
and precise drug delivery. Both passive and ac-
tive targeting mechanisms significantly improve 
nanoparticle accumulation in tumors compared to 
normal tissues [11]. This approach promises to in-
crease treatment efficacy while reducing systemic 
toxicity. By developing nanotherapeutics custom-
ized to cancer traits at the molecular level, nano-
medicine provides promising opportunities for ad-
vancing cancer treatment [12].

This review discusses the progress and prom-
ise of nanobased targeting strategies for cancer 
therapy.

Nanobased targeting strategies 
for cancer therapy

First-generation chemotherapeutics are distrib-
uted nonspecifically throughout the body, leading 
to only a small fraction of the administered dose 
being localized in the tumor [13]. NPs in the size 
range of 10–100 nm can exploit leaky tumor vas-

culature to accumulate passively via the EPR effect 
[14]. Liposomes, polymers, dendrimers, micelles 
and other nanocarriers have been optimized for 
extended circulation and tumor localization based 
on their size, charge and surface chemistry [15]. 
Ligand-mediated active targeting further improves 
nanoparticle uptake in cancer cells by facilitating 
the molecular recognition of overexpressed recep-
tors [16]. Examples of these agents include transfer-
rin, folate and aptamers, which are biomarkers that 
are upregulated in malignancies [17]. Compared 
with conventional chemotherapies, combined 
passive and active strategies enable more precise 
and personalized delivery.

Another major obstacle addressed by nanocar-
riers is the poor aqueous solubility of hydropho-
bic drugs such as paclitaxel [18]. One successful 
example of protein NPs already used in clinical 
practice is albumin-bound paclitaxel NPs, which 
are sold under the name Abraxane [19]. This drug 
was obtained by high-pressure homogenization of 
the drug and a bovine albumin solution, result-
ing in NPs approximately 130 nm in size that can 
be easily administered intravenously. As shown, 
Abraxane production can be easily scaled up to in-
dustrial levels without loss of stability or therapeu-
tic activity [20]. Therefore, methods such as simple 
pressure homogenization used in Abraxane repre-
sent a promising strategy for the development of 
other albumin-based formulations. Nevertheless, 
there is still a need to optimize advanced protein 
nanostructures for pharmacokinetic properties 
and drug release profiles.

Encapsulation of drugs with poor solubility in 
nanoplatforms or conjugation with nanoparti-
cle matrices improves their solubility and enables 
parenteral administration [21]. Moreover, encap-
sulation increases the stability of therapeutic drugs, 
protecting them against enzymatic degradation 
and the influence of unfavourable pH conditions 
or ionic forces present in the body [2].

Multifunctionality is another key advantage of 
NPs. Theranostic nanosystems integrate imaging 
agents, diagnostic modules, and triggered drug re-
lease mechanisms to provide real-time monitoring 
of therapy [22]. Stimulus-responsive strategies trig-
ger precise drug release within the tumor microen-
vironment in response to conditions such as acidic 
pH or elevated oxidative stress levels. Such precise 
spatiotemporal control over nanobased delivery has 
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the potential to substantially improve patient out-
comes through more targeted therapy while reduc-
ing adverse effects. For example, polymeric mi-
celles were engineered to stabilize drug cargo at 
physiological pH while allowing stimulus-medi-
ated release under acidic tumor microenviron-
ment conditions. In vitro and in vivo studies have 
demonstrated that these micelles exhibit desirable 
effects, including intracellular pH-responsive drug 
release, infiltration into tumor tissue, and potent 
antitumour efficacy with minimal toxicity [23].

Biological barriers that NPs can help 
overcome

The human body contains several defensive bar-
riers that impede the delivery of therapeutics to 
target sites. NPs have shown promise in overcom-
ing these obstacles [24].

Intracellular delivery
The cell membrane acts as a selectively perme-

able barrier, limiting the uptake of exogenous ma-
terials such as therapeutic nucleic acids, proteins, 
and drug molecules into cells. Overcoming this de-
livery challenge is crucial for medical applications 
relying on bioactive intracellular agents. Cationic 
nanocarriers can facilitate intracellular access 
through electrostatic association with negatively 
charged biomacromolecules such as DNA, cou-
pled with cell entry via endocytosis and membrane 
destabilization.

For example, cationic lipids and polymers have 
been extensively utilized to enhance the intracel-
lular delivery of nucleotide therapeutics. A recent 
study demonstrated that aptamer-functionalized 
NPs effectively deliver PD-L1 siRNA to triple-nega-
tive breast cancer cells, resulting in almost complete 
suppression of PD-L1 expression within 90 minutes 
of treatment [25]. The NPs also displayed minimal 
systemic toxicity in vivo. Similarly, lipid-based NPs 
can effectively bind lapatinib and anti-survivin siR-
NA for HER2+ breast cancer treatment, potentially 
enhancing their anticancer activity [26].

Other biomolecular therapeutics have also ben-
efited from cationic nanocarrier-mediated delivery 
approaches. Recently, Lipid NPs were shown to ef-
ficiently deliver gene-editing proteins across the in-
testinal epithelial layer, proving useful for potential 
oral drug delivery [27].

Likewise, cationic micelles with shielding poly-
mers can reduce cytotoxicity and maintain cell vi-
ability for nonviral gene delivery, offering high po-
tential for in vivo applications [28].

Overall, cationic nanosystems have demon-
strated significant potential to overcome cell mem-
brane barriers and enable effective intracellular 
therapeutic delivery through charge-mediated in-
teractions and endocytic internalization. Careful 
carrier engineering to optimize physicochemical 
and biological properties can further improve 
delivery outcomes in diverse biomedical applica-
tions [29].

Delivery across epithelial barriers
Epithelial tissues found in the gastrointestinal 

tract, lungs, kidneys and other organs form highly 
selective permeation barriers essential for proper 
physiological functioning. Tight junctions between 
adjacent epithelial cells strongly limit the passive 
transport of exogenous substances due to their ex-
treme impermeability [30]. Orally administered 
drugs face additional obstacles, including enzymat-
ic degradation in the stomach and poor intestinal 
solubility. Nanoparticle carriers can overcome sev-
eral of these delivery challenges to enhance thera-
peutic uptake across mucosae.

NPs can encapsulate labile drugs, protecting 
them from harsh conditions in the gastrointestinal 
environment [31]. The nanoparticle surface can 
also be functionalized with tight junction modu-
lators to transiently breach paracellular pathways 
[32]. Alternatively, nanoparticle size (~100 nm) 
and surface properties may be tailored to promote 
cell-mediated active transport via transcytosis [33]. 
Through such mechanisms, NPs increase therapeu-
tic absorption by the intestinal epithelium follow-
ing oral delivery.

Similarly, for pulmonary delivery, NPs preserve 
sensitive biomolecular components from airway 
clearance mechanisms and affiliated enzymes. 
Cationic NPs strongly interact with negatively 
charged lung epithelia, triggering caveolae/clath-
rin-mediated endocytosis and transcellular mi-
gration [34]. As such, NPs significantly intensify 
the transport efficacy of respiratory therapeutics 
compared with free drugs. Appropriately engi-
neered NPs thus promote delivery across diverse 
epithelial barriers, advancing oral, nasal and inha-
lational pharmacotherapy.
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Delivery within the tumor 
microenvironment

Tumor biology limits therapeutic efficacy 
through multiple mechanisms. Angiogenesis spurs 
chaotic blood vessel development, impairing drug 
perfusion. The resulting high interstitial fluid pres-
sure further impedes nanoparticle penetration 
into the tumor core [35]. Hypoxic and acidic tu-
mor zones resist both chemo- and radiotherapy 
due to diminished mechanisms of cell death [36]. 
Overcoming these complex transport and physi-
ological barriers constitutes a major goal in drug 
delivery science.

The enhanced permeability and retention 
(EPR) effect provides one strategy to improve tu-
moritropic nanoparticle delivery. Aberrant cap-
illary fenestrations permit tumor nanoparticle 
accumulation, a phenomenon further enhanced 
by the absence of functional lymphatic vessels 
[37]. However, deeper tumor penetration neces-
sitates additional targeting and stimulus respon-
siveness [38]. Multistage NPs undergo stepwise 
size alteration to migrate through narrow tumor 
labyrinths. For example, protonation in acidic hy-
poxic regions triggers polymer expansion, facil-
itating the release of inner drug payloads [39]. 
Overall, nanovehicles enable modular solutions 
to meet the challenges presented by the hostile 
tumor microenvironment.

Delivery to target immune cells
However, targeting NPs to specific subsets of im-

mune cells is difficult but necessary for modulating 
immunity. NPs with functional groups activating 
immune cells in lymph nodes have been designed 
[40]. Additionally, antibody-coated NPs recognize 
antigens on the surface of target cells. For exam-
ple, polymer NPs coated with antibodies directed 
against CD40, DEC-205 and CD11c receptors on 
dendritic cells showed increased antigen uptake 
and the ability to stimulate T cells compared to NPs 
without such targeting [41]. Similarly, lipid NPs 
with fragments of antibodies against T-cell anti-
gens allowed for selective labelling and stimulation 
of these cells after administration to the body [42].

Recently, approaches have focused on de-
livering NPs to dendritic cells, which are 
key antigen-presenting cells. For example, 
manose-modified NPs show increased uptake by 
dendritic cells via receptor-dependent endocyto-
sis [43]. Lipid-calcium-phosphate NPs coated with 
single-chain antibodies also achieve selective tar-
geting of dendritic cells in lymph nodes [44]. This 
leads to localized delivery of antigens and adju-
vants, stimulating strong cytotoxic T-cell responses.

Thus, NPs can be used to deliver drugs or vac-
cines through surface groups that recognize an-
tigens on immune cells to enable more precise 
and effective interactions with specific types of 

Figure 1. Biological barriers that nanoparticles can help overcome
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leukocytes. The use of such targeted nanocarriers 
improves the delivery of therapy to specific effec-
tor cells and increases immune responses against 
target antigens.

In summary, the modular design and tunable 
properties of NPs make them extremely adaptable 
delivery vehicles capable of penetrating various 
biological barriers and accessing hard-to-reach 
targets.

Precisely engineered nanocarriers 
for optimized tumor targeting

The selective delivery of chemotherapeutic 
agents to tumor tissues while avoiding healthy 
organs is a major challenge in cancer therapy. 
Nanocarriers have emerged as a promising solution 
for optimizing drug accumulation in the tumor area 
through the enhanced permeation and retention 
(EPR) effect. This effect allows NPs to selectively 
extravasate through the abnormal leaky vascula-
ture of the tumor and accumulate there. However, 
the EPR effect is heterogeneous among patients 
and tumor types, limiting its reliability for precise 
drug targeting [45]. Therefore, rationally designing 
nanocarriers with optimized sizes, shapes, and sur-
face properties is essential for enhancing tumor 
selectivity.

Size and shape modulation
The size and shape of nanocarriers directly im-

pact their circulation time and penetration through 
tumor tissues. It has been shown that the nanopar-
ticle size should be approximately 100 nm to ben-
efit from both extended blood circulation times 
through reduced renal clearance and good tumor 
penetration [46]. Furthermore, compared with 
spheres, nonspherical nanocarriers, such as na-
norods, have demonstrated enhanced tumor tar-
geting owing to their superior margination toward 
vessel walls and improved diffusion inside tumor 
tissues [47].

Surface functionalization
Actively targeted nanocarriers can more pre-

cisely deliver their drug payload to cancer cells by 
exploiting ligand‒receptor interactions. Specific re-
ceptors tend to be overexpressed on the membranes 
of cancer cells compared to healthy cells. Thus, dec-
orating nanocarriers with ligands that bind these 

receptors allows preferential uptake into tumor tis-
sues via receptor-mediated endocytosis [48].

A variety of ligands, including peptides, anti-
bodies, aptamers and small molecules, have been 
investigated for the active targeting of nanocarriers 
[49]. These ligands bind to receptors such as trans-
ferrin, folate, epidermal growth factor and inter-
leukin receptors, which are commonly upregulated 
in cancer cells. Receptor–ligand binding triggers 
endocytosis of the nanocarrier, directing it into 
endosomes and lysosomes, where the encapsulated 
drugs are released. This leads to enhanced intracel-
lular drug accumulation and cytotoxicity in cancer 
cells [50].

Moreover, since ligand‒receptor binding is sat-
urable, drug uptake can be optimized by tuning 
the density of ligands on the nanocarrier surface. 
Multivalent nanocarriers with multiple copies of 
targeting ligands have been shown to augment 
the targeting specificity and further improve drug 
delivery [51].

A combination of passive and active target-
ing strategies is designed to maximize selectivity 
through enhanced permeability, optimized parti-
cle geometry, and specific cancer cell recognition. 
Tailoring NPs by leveraging cancer pathophys-
iology and molecular profiles significantly im-
proves specificity compared to untargeted vehi-
cles and conventional chemotherapies [52]. These 
advances have brought the field closer to realizing 
truly targeted nanotherapeutics.

Multifunctional nanosystems 
for cancer therapy

Multifunctional nanosystems are promising 
platforms for cancer diagnosis and therapy. They 
combine multiple functions, such as the detec-
tion of cancer cells, drug delivery, photodynamic 
therapy and gene therapy [53]. NPs are modified 
with appropriate ligands to target their action on 
cancer cells and elements of the tumor microen-
vironment [54].

One example is gold NPs coated with folic 
acid and monoclonal antibodies directed against 
the HER2 receptor [55]. This allows these nano-
systems to selectively bind to breast cancer cells 
and subsequently release the drugs they contain 
[56]. Additionally, gold NPs generate heat under in-
frared radiation, causing hyperthermia and leading 



Szymon Roszkowski et al. Targeted nanodelivery systems for personalized cancer therapy

781https://journals.viamedica.pl/rpor

Figure 2. active and passive targeting of nanoparticles to cancer cells. A. Nanoparticles (NPs) — NPs are shown as small, 
rounded objects that can transport drugs or other therapeutic agents; B. Ligands — ligands are shown as small molecules 
attached to the nanoparticle surface that can recognize and bind to receptors on cancer cell surfaces; C. Passive targeting 
— NPs accumulate in the tumor via the enhanced permeability and retention effect. They do not have targeting ligands; 
D. Active targeting — NPs have ligands on their surface that selectively bind to receptors on cancer cells. This leads to 
enhanced nanoparticle accumulation in the tumor
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to the destruction of cancer cells [57]. Therefore, 
these NPs have two functions — they deliver drugs 
and induce hyperthermia.

Another type of promising nanocarrier is mes-
oporous silica NPs, which, in addition to drug 
delivery, can be surface modified to obtain addi-
tional diagnostic functionalities. For example, by 
introducing iron oxide nuclei into the structure of 
these carriers, these NPs gain superparamagnetic 
properties that enable their use as contrast agents 
in magnetic resonance imaging [58].

Moreover, the surface of silica NPs can be mod-
ified with fluorescent probes whose signal depends 
on the local pH. Owing to this approach, these 
nanosystems can be used not only for monitoring 
drug release but also for imaging the tumor micro-
environment and assessing therapeutic response 
[59].

A separate class of promising nanocarriers for 
theranostic applications in oncology is made up 
of superparamagnetic iron oxide NPs (SPIONs). 
The magnetic core allows precise monitoring 
of biodistribution via magnetic resonance im-
aging methods. Moreover, through appropriate 

surface modification, SPIONs can selectively de-
liver drugs to cancer cells and tumors [60]. These 
properties make superparamagnetic iron nano-
structures attractive, multifunctional therapeutic 
and diagnostic platforms [61].

Here are some additional examples of multifunc-
tional nanosystems used in cancer theranostics:

Cancer theranostics are currently using increas-
ingly advanced nanoparticle systems that combine 
the possibilities of cancer diagnostics and thera-
py [62]. The main advantage of these materials is 
the integration of many functions in one nano-
structure, which allows for the achievement of 
a synergistic effect and increased effectiveness of 
treatment [63].

One example of such systems is graphene NPs 
coated with platinum compounds and the fluo-
rescent label nigrosin [64]. They can simultane-
ously detect cancer cells via fluorescence and de-
stroy them by local tissue heating with graphene 
and platinum [65, 66].

Another type of multifunctional nanocarrier 
consists of mesoporous silica NPs with anticancer 
substances trapped in the pores [67]. They release 

Figure 3. Nanoparticle-mediated targeted drug delivery to cancer cells
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drugs gradually and directly into cancer cells [68]. 
Additionally, by adapting the surface of these NPs, 
they can be actively targeted to cancer tumors [69].

Another solution is to modify liposomes 
with hyaluronic acid, which facilitates their accu-
mulation in tumors [70]. In addition to chemical 
drugs, these liposomes may contain contrast agents 
that enable magnetic resonance imaging [71]. This 
allows real-time monitoring of the distribution of 
liposomes containing the drug into the tumor.

The possibilities of cancer theranostics are also 
expanded by polymer NPs with specific surface 
ligands that direct them to cancer cells [72]. They 
can deliver interfering RNA molecules directly to 
these cells, enabling the silencing of selected genes 
involved in the progression of the disease [73].

In turn, after entering the cell, lipid NPs with 
recombinant fusion proteins release the embedded 
genetic material [74]. This process facilitates can-
cer gene therapy by providing factors that regulate 
gene expression or DNA editing complexes [75].

The integration of various diagnostic and treat-
ment methods within single NPs significantly in-
creases the effectiveness of oncological therapies 
[76]. Importantly, the properties of these nano-
systems can be precisely tailored individually to 
the patient’s profile, enabling a personalized ap-
proach to therapy [77]. Multifunctional nanother-
anostics create new perspectives in cancer therapy.

Reversing multidrug resistance

Multidrug resistance (MDR) is the main cause 
of chemotherapeutic failure in cancer patients. 
The process involves the ability of cancer cells to 
actively remove various anticancer drugs from in-
side the cell, which significantly reduces their con-
centration and effectiveness [78]. However, there 
are several promising strategies for reversing MDR 
resistance in cancer cells.

Due to their unique physicochemical properties, 
NPs are a promising platform for drug delivery 
and overcoming MDR resistance in cancer cells 
[79]. They can be functionalized by adding ap-
propriate ligands recognized by receptors on can-
cer cells to their surface [80]. This leads to active 
uptake of NPs from the circulation and targeted 
transport to the tumor [81].

Moreover, the electrical charge and hydropho-
bicity of NPs can be masked by the addition of 

biopolymer or PEG coatings. This prevents their 
detection and removal by ABC transport pumps 
[82]. ABC transporters are proteins located in 
the cell membrane that use energy from ATP to ac-
tively transport various substrates across the mem-
brane to the outside of the cell [83]. The family of 
ABC transporters includes P-glycoprotein (P-gp), 
breast cancer resistance protein (BCRP), and mul-
tidrug resistance protein (MRP) [84]. They are pro-
duced in excess in the membranes of cancer cells. 
They capture anticancer drugs from inside the cell 
and actively remove them from the cell [85]. This 
leads to a decrease in the intracellular concentra-
tion of these drugs, preventing them from achiev-
ing a therapeutic effect [86]. ABC transporters are 
therefore responsible for the development of MDR 
through the pumping out of chemotherapeutic 
drugs from cancer cells [87]. Their inhibition or by-
pass via NPs is a promising strategy for overcoming 
cancer resistance during treatment [88].

Another strategy is gene therapy, which involves 
introducing specific genes into cancer cells to com-
bat MDR resistance [89]. The main challenge is 
the efficient and selective transfer of genetic mate-
rial to cancer cells [90]. NPs provide an ideal car-
rier platform in this case [91]. They provide genes 
encoding enzymes that metabolize drugs, increas-
ing their intracellular concentration, or genes that 
inhibit apoptosis [92]. This restores the sensitivity 
of cancer cells to treatment and reverses multidrug 
resistance by modulating key signalling pathways 
[93].

Another method is photodynamic cancer thera-
py (PDT), which involves the activation of a pho-
tosensitizer using light of a specific wavelength, 
which leads to the production of reactive oxygen 
species that destroy cancer cells. The main obstacle 
is the low solubility and nonselective distribution 
of photosensitizers in the body [94,95]. NPs can 
increase the effectiveness of PDT in several ways.

First, photosensitizers are immobilized, and their 
solubility is increased. Photosensitizing molecules 
often have low solubility in water, which makes 
them difficult to use. The use of polymers (PLGA) 
or lipid nanocarriers allows for increased solubility, 
improved release kinetics and modified distribu-
tion routes of these compounds from the blood-
stream to tissues [96].

Another mechanism is to target PDT by func-
tionalizing the surface of NPs with ligands rec-
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ognized by receptors overexpressed on cancer 
cells, such as transferrin or folic acid. This leads to 
the selective uptake of nanocarriers from the cir-
culation, mainly to the target tissue, reducing sys-
temic toxicity [97].

NPs can also help photosensitizers overcome 
MDR mechanisms and accumulate in cancer cells 
by masking their charge or hydrophobicity, which 
prevents them from being pumped out by trans-
port systems [98].

Conclusions

The presented literature review indicates that 
precisely targeted drug delivery systems using 
nanotechnology are a promising therapeutic strat-
egy for cancer treatment, allowing us to over-
come the limitations of conventional cytotoxic 
chemotherapy.

The developed nanotherapeutics can selectively 
accumulate in cancer tumors through enhanced 
permeability and retention (EPR) and functional-
ization of the surface of nanocarriers with ligands 
recognizing receptors overexpressed on cancer 
cells. This results in improved bioavailability of 
drugs at the target site while minimizing systemic 
toxicity.

Additionally, remarkable progress has been made 
in designing nanoplatforms that exploit unique 
features of cancer pathophysiology for targeted 
transport of therapeutics. Both passive and active 
targeting strategies significantly improve nanopar-
ticle accumulation in tumors compared to normal 
tissues.

The combined approaches further enhance se-
lectivity through optimized particle geometry, sur-
face functionalization, and cancer cell recognition. 
These advances have brought us closer to develop-
ing truly personalized nanomedicine.

Additionally, reversible modulation of multi-
drug resistance in tumors using precisely designed 
therapeutic nanocarriers allows us to overcome 
the key limitations of conventional chemotherapy. 
This enables high concentrations of intracellular 
therapeutics to be achieved. Thus, owing to the pre-
cise adaptation of the structure to the specificity of 
the tumor microenvironment, nanotherapeutics 
can bypass the barriers that prevent the effective-
ness of typical cytostatics.

Perspectives

In the future, continued innovations in nano-
carrier designs and targeting mechanisms prom-
ise more precise spatiotemporal control over 
drug release in the tumor microenvironment. 
Stimulus-responsive and theranostic strategies also 
enable real-time monitoring of nanobased thera-
pies. Such integrated diagnostic and therapeutic 
functions within multifunctional NPs will be cru-
cial to improving patient outcomes. Importantly, 
the modular and tunable properties of these nano-
systems enable continuous improvement to maxi-
mize treatment personalization on the basis of can-
cer molecular profiles.

Given the rapid progression of anticancer nano-
medicine, even more sophisticated and patient-tai-
lored therapeutic methods based on precise drug de-
livery nanosystems are expected in the near future.
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