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Abstract

Background: The purpose was to analyse the interrelations between planning and complexity

metrics  and gamma passing  rates  (GPRs) obtained  from VMAT treatments  and build  the

forecasting models for qualitative prediction (QD) of GPRs results.

Materials and method:  802 treatment arcs from the plans prepared for the head and neck,

thorax,  abdomen,  and  pelvic  cancers  were  analysed.  The  plans  were  verified  by  portal

dosimetry  and  analysed  twice  using  the  gamma  method  with  3%|2mm  and  2%|2mm

acceptance criteria. The tolerance limit of GPR was 95%. Red, yellow, and green QDs were

established for GPR examination. The interrelations were examined, as well as the analysis of

effective  differentiation  of  QD.  Three  models  for  QD  forecasting  based  on  discriminant

analysis (DA), random decision forest (RDF) methods, and the hybrid model (HM) were built

and evaluated. 
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Results:  Most of the interrelations were small or moderate. The exception is correlations of

the join function with the average number of monitor units per control point (R = 0.893) and

the beam aperture with planning target volume (R = 0.897). While many metrics allow for the

effective separation of the QDs from each other, the study shows that predicting the values of

the QD is possible only through multi-component forecasting models, of which the HM is the

most accurate (0.894).

Conclusion: Of the three models explored in this study, the HM, which uses DA methods to

predict red QD and RDF methods to predict green and yellow QDs, is the most promising

one.

Key words: complexity; plan metrics; PSQA; machine learning; forecasting models

Introduction

For  intensity-modulated  radiation  therapy  (IMRT)  or  volumetric  modulated  arc  therapy

(VMAT), once the parameters of beam geometry are established and the treatment energy is

chosen, the dose distribution is inversely optimised by the radiation field shaping devices,

such as multi-leaf collimator. While inverse optimisation allows for the streamlined creation

of  advanced  treatment  plans,  its  trial-and-error  nature  can  result  in  sub-optimal  and

inconsistent  treatment  plan  quality.  In  some  situations,  the  optimisation  process  leads  to

obtaining plans with a high level of complexity. This complexity can approach the limit of the

accuracy of the dose calculation model, the precision of the treatment delivery device, or both

[1].

Patient-specific  quality  assurance  (PSQA)  is  an  essential  clinical  step  to  ensure  the

treatment plans can be delivered as intended and to verify the treatment planning systems

(TPS) dose  computation.  The PSQA protocols  employ a  physical  measurement  device  to

compare this measurement with the TPS-calculated dose. The gamma index, which combines

criteria of both per cent dose difference (DD) and distance-to-agreement (DTA), is the most

common method of evaluating the concordance of the measured and calculated dose [2]. The

prevalent method for evaluating PSQA is assessing the gamma passing rate (GPR). The GPR

signifies the percentage of measurement points that successfully meet the specified gamma

index criterion. The American Association of Physicists in Medicine (AAPM) TG 218 report

recommended 95% of GPR as the tolerance limit under a 3%|2 mm gamma criterion checked

globally [3]. While the AAPM recommendations concern conventional fractionation schemes

for the stereotactic or radiosurgery treatment, when the tumour sizes are significantly smaller,

and  the  higher  fraction  doses  are  delivered,  there  are  no  clear  recommendations  for  the
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gamma criterion [4, 5]. Only a suggestion to tighten the gamma criterion for verification of

this kind of treatment is posted in the AAPM report [3]. Due to this, our institute uses a 2%|2

mm criterion measured in the local mode.

Advantages of VMAT relative to traditional IMRT include significantly faster and more

efficient treatment delivery, though these advantages come at the expense of additional plan

complexity [6]. Decreasing the delivery time of treatment sessions for every patient treated by

VMAT saves extra  time on the accelerator  during the day,  thus increasing the number of

patients treated daily.  However,  the increased number of patients also means more PSQA

verifications which, in the classic form, require access to the accelerator for gathering the

measurement data to compare them with the planned data. Freeing time on the accelerator

needed for PSQA measurements  justifies  the search for software-based QA protocols  that

could replace the traditional PSQA procedures. These studies focus on searching complexity

metrics of the treatment and constructing artificial intelligence or machine learning models

containing planning and complexity data to forecast the potential failure of PSQA results [7,

8].

While complexity metrics add to the understanding of the complexity of treatment plans,

the current perception is that PSQA scores cannot be predicted based on a single complexity

metric  [9].  The  earlier  studies  focused  on models  incorporating  planning  and complexity

metrics,  demonstrating  the  viability  of  employing  machine  learning  algorithms  to  predict

PSQA  outcomes  [10-13].  However,  each  machine  learning  model  depends  on  the

characteristics  and  quality  of  available  data,  and  each  PSQA  prediction  involves  the

combination of technologies, the choice of machine learning model, and clinical protocols

used  for  optimising  VMAT treatment  plans,  which  can  vary  across  institutions.  Current

studies where machine learning models were developed tried to forecast the GPR results of

PSQA in a quantitative form. In our opinion, qualitative information acquired in the planning

stage is also a helpful tool to inform the dosimetrist whether the constructed plan meets the

gamma  criteria  set  according  to  the  technique  used  (i.e.  conventional  or  stereotactic

fractionation) that, regarding our institutional protocols, are 3%|2 mm measured in the global

mode and 2%|2 mm measured in the local mode.

Therefore, this work explored the interrelations between planning and complexity metrics and

GPR  results  obtained  from  routinely  realised  VMAT  treatments  in  our  institution.

Additionally, three multicomponent models were tested for further modelling GPR results in

the qualitative form.
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Materials and methods

The  study  is  based  on  the  retrospective  anonymised  analysis  approved  by  the  local

Bioethics Committee at the Poznan University of Medical Sciences. All examinations have

been performed following the Committee guidelines and the Declaration of Helsinki [14]. The

study includes the original studies conducted upon patients’ informed consent in writing due

to the standard institution protocol. The study is based on unsponsored, single-institutional

studies  using  the  database  collected  from  January  to  May  2022.  All  data  have  been

anonymised, and the examined patients cannot be identified.  There were 802 treatment arcs

extracted  from 378 volumetric  modulated  arc  therapy (VMAT) treatment  plans.  Forty-six

plans contained three arcs, and 332 plans had two arcs. The plans were created and realised

for patients with cancer localised in the head and neck (HN; 192 arcs), thorax (THX; 191

arcs) and abdomen and pelvic (AP; 419 arcs) regions. Detailed locations are provided in the

supplementary data (Tab. S1).

All plans were prepared using the 6 MeV photon energy and met our institutional clinical

guidelines for dose distribution. The plans were based on conventional as well as stereotactic

fractionation  schemes.  Three  hundred  and  twenty-three  plans  (671  arcs)  were  realised

conventionally  with  a  flattening  filter  (6X),  and  the  remaining  55 plans  (131 arcs)  were

realised without a flattening filter (6X-FFF). The maximum planned dose rate (DR) was 600

[MU/min] for 6X and 1400 [MU/min] for 6X-FFF. The dose distribution calculations were

performed  on  CT  scans  (Somatom  Definition  AS  scanner;  Siemens  Medical  Solution,

Erlangen, Germany) using the analytical anisotropic algorithm (AAA) v.16.1.0 implemented

in the Eclipse v.16.0 treatment planning system (Varian Medical Systems, Palo Alto, USA).

The plans were realised on the six TrueBeams accelerators (Varian Medical Systems, Palo

Alto, USA), four of which were equipped with an electronic portal imaging device (EPID)

aS1200 and two with EPID aS1000. Patient-specific quality assurance for every plan was

performed using the gamma analysis method. The planned doses were compared with those

measured by EPIDs. In general, 521 arcs were measured by EPID aS1200 and 281 arcs by

EPID aS1000. For both EPIDs, the same performance algorithm (PDIP) v.16.1.0 was used.

Each arc has been verified twice: in the global mode with criteria of dose differences (DD)

equal to 3% and the distance-to-agreement (DTA) 2 mm and in the local mode with DD = 2%

and DTA = 2 mm. For both verifications, the threshold was 5% and was normalised to the

maximum planned dose. Based on the gamma passing rates (GPR) from both verifications, a

three-level qualitative descriptor (QD) was established to score the result of verification (Tab.

1).
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Figure 1 shows examples of the comparisons for which, as a result of gamma analysis, three

different QDs were granted, i.e. (a) green, (b) yellow and (c) red. Regarding Figure 1, each

comparison was performed between the predicted  dose (from the treatment  plan)  and the

delivered dose, gathered on the same type of portal, i.e. aS1200. Moreover, every comparison

was performed for the doses obtained from the 6X arcs with a 600 [MU/min] dose rate, and

the  examples  included  patients  with  the  same  location  of  the  treatment  area  (PA)  and

comparable planning target volume (PTV). 

Figure 2 shows the relations between the GPRs obtained through gamma analyses based on

two different criteria for the DD and DTA and realised in two different modes (global and

local).

The study’s first phase includes an analysis of the interdependence between the selected

metrics of the treatment plans, the selected plans' complexity metrics, and the results of its

dosimetry verification presented in the form of qualitative descriptors (QD). Mann-Whitney,

Kruskal-Wallis with Dunn multiple pairwise comparisons and Spearman tests were used to

check these relations with a 0.05 significance level.

The plan metrics included in the study were:

— Darc [Gy] — the part of the fraction dose delivered during the arc irradiation;

— PTV [L] — planning target volume in litres;

— energy (6X or 6X-FFF) — energy, type of radiation and beamforming technology;

— area — the PTV location: HN, THX and AP.

The complexity metrics used in the study were:

— BA, BI and BM — beam aperture, intensity, and modulation, respectively [15];

— MU/Gy – monitor units [16];

— aMU/CP and sdMU/CP — the average number of monitor units in Gy per control point

during  the  arc  irradiation  (aMU/CP)  and  the  corresponding  standard  deviation

(sdMU/CP) [17];

— aDR and sdDR — the average normalised dose rate during the arc irradiation (aDR)

and the corresponding standard deviation (sdDR) [18]; 

— aGS and sdGS — the average normalised speed of the gantry movement during the arc

irradiation (aGS) and the corresponding standard deviation (sdGS) [18];

— Join  function  ()  — empirically  determined  function  representing  the  relationship

between aDR and aGS.
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All plan and complexity metrics listed above were extracted automatically from the plans

dicom files by our script written in Python using the SciPy library [19].

In contrast to complexity metrics listed from (a) to (e) that were first introduced by other

authors [15–18], the join function () is our empirically determined function by the nonlinear

estimation method that describes the relation between the dose rate and the gantry speed for

volumetric modulated arc therapy.

The relations visualised in Figure 3 may be expressed by the formula: 

ϑ=[aDR+( 1
aGS )

1
2.6 ]−1

The join function ranges from 0 to 2. For the values from 0 to 1 of the function, aGS is near

the maximum available speed (~1), and aDR that ranges from 0 to 1 plays a predominant role

in the function. When aDR obtains 1, which is equal to the maximum available planned dose

rate, the proper dose delivery starts to be controlled by aGS, decreasing from 1 to 0, and as a

result, aGS starts to play a predominant role in the function.

In the study’s second phase, based on the treatment plans and the complexity metrics, the

predictive models of the qualitative descriptors of the dosimetry verifications were created

and  examined.  Two  methods  were  chosen.  The  first  was  a  probabilistic  parametric

classification  technique  called  discriminant  analysis  (DA), and the second was a machine

learning, random decision forest (RDF) model. The DA is a popular statistical technique to

classify observations into nonoverlapping groups based on determining a linear or quadratic

equation constructed from one or more continuous or categorical predictor variables to predict

which group the case belongs to [20]. The RDF is a classifier that evolves from the decision

trees model - a predictive model expressed as a recursive partition of the feature space to

subspaces that constitute a basis for prediction. A random forest is an ensemble method that

combines multiple decision trees through bagging. Bagging involves creating multiple subsets

of the original dataset through random sampling (with replacement) and training a decision

tree on each subgroup. The final prediction is an average or majority vote of predictions from

individual  trees.  It  is  used  to  overcome  the  overfitting  problem of  one  decision  tree  by

reducing variance. The RDF enables many weak or weakly correlated classifiers to form a

robust classifier [21]. 

All plan and complexity metrics explored in the study's first phase were included to build

DA,  RDF,  and  hybrid  models.  The  hybrid  model  assumed  two  steps  of  the  prediction
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procedure - the first, where the DA model was used to predict red QD and the second, where

the RDF model predicted green and yellow QD. The models were compared by accuracy and

the number of correct classifications and misclassifications. The proper classification related

to  the  different  QD  values  for  every  model  was  studied,  including  the  sensitivity  and

specificity  of  the  models  to  forecast  specified  QD.  The  accuracy  of  the  models  and the

sensitivity/specificity of the models to forecast specified QD were computed by the formulas

[22]: 

Accuracy = (TP+TN)/(TP+TN+FP+FN), 

Sensitivity = TP/(TP+FN), 

Specificity = TN/(TN+FP),

the TP, FP, TN, and FN are true and false positive observations and true and false negative

observations, respectively. Both models were constructed and tested using XLSTAT software

(Addinsoft, New York, USA). Training and validation groups used for models were the same

and contained 642 and 160 treatment arcs, respectively (i.e. 80%/20% split). Data were split

using a stratified technique based on the distribution of QD of GPRs to guarantee that the

testing set was representative of the overall population of QD of GPRs (Fig. 4).

Results

Figure 5 shows the percentage of observations grouped by QDs (green, yellow, and red) and

related  to  (a)  the  area  of  the  irradiation,  (b)  detector  type,  and  (c)  energy  used.  The

distribution of the QDs was different for the pelvis and abdomen (PA) area from that for the

thorax (THX) or head and neck (HaN) areas (Kruskal-Wallis, p < 0.001). Better results of the

QDs distribution were observed for the newest EPID type (aS1200) than for the aS1000 type

(Mann-Whitney, p < 0.001). Almost all QDs for 6X-FFF were classified as green. Different

distribution was for 6X (Mann-Whitney, p < 0.001), where yellow and red QDs were noted,

too.

The 6X-FFF arcs were characterised in general by a high fraction dose per arc (Darc) and

were used mainly in stereotactic treatment (75.5% of all 6X-FFF arcs). The requirements of

the  stereotactic  treatment  link  these  results  with  the  records  where  small  PTV  and,

consequently,  small beam apertures (BA) and a high number of monitor units per control
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point (aMU/CP) were used.  Examining the interdependence  between plan and complexity

metrics shows many statistically significant correlations. Nevertheless, it should be noted that

many of them are small, fair, or moderate [23]. Almost perfect correlations were observed

between PTV and BA (R = 0.897, p < 0.001), and aMU/CP and results of the joint function

() (R = 0.893, p < 0.001). The rest of the detailed results are presented in supplementary data

(Tab. S2).

Figure 6 shows the interdependence between aMU/CP and . The data are presented as two

trend lines determined by the energy parameter (6X or 6X-FFF).

Analysis  of  the  proportion  of  the  QDs of  dosimetry  verification  results  related  to  the

complexity and quantitative plan metrics values shows that BA, aMU/CP, MU/Gy, aDR, and

 effectively  differentiate  all  three  QDs.  The PTV,  aGS,  sdGS and  sdMU/CP effectively

separate green from the yellow and red QDs and do not differentiate the yellow from red. The

BI and BM allow separating green from yellow QDs. For the rest of the parameters, the QD

differentiation was ineffective. Figure 7 shows the results of QD differentiation for selected

parameters.  Table  2  shows  the  p-values  obtained  from  the  Dunn  multiple  pairwise

comparisons  performed  during  the  Kruskal-Wallis  analysis  of  qualitative  descriptor

differentiation by plan and complexity metrics.

Higher accuracy of the model was observed when the RDF method was used rather than

the DA method (0.875 vs. 0.550). The wrong prediction of the green and yellow QDs caused

the relatively weak accuracy of the DA model. As many as 70 green QDs (from all 108 green

QDs in the validation set) were classified by the DA model as yellow. It causes weak results

in the  sensitivity of the green QD prediction (0.352) and the  specificity  of the yellow QD

prediction (0.381). While the prediction of the green and yellow QDs by the RDF model was

better than the DA model, the prediction of red QD was better for the DA model. While the

DA model correctly predicted all five red QDs, the RDF model did it only for two, which

strongly affected the sensitivity of prediction for these QDs (1.000 for DA vs. 0.400 for RDF).

We introduce a hybrid model in which, in the first phase, the DA model is used to predict red

QDs, and then, in the second phase, the prediction of green and yellow QDs is based on the

RDF model.  The constructed hybrid model has the highest accuracy and the best average

sensitivity  and  specificity  values  (Table  3).  The  confusion  matrices  obtained  for  training

validation sets are presented in the supplementary data (Tables S3-S7).

 

Discussion
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It  is  known that  the quality  of dose distributions  in  plans is  frequently independent  of

planning  complexity  [24],  and  comparable  dose  distributions  can  be  attained  through

treatment  plans  of  varying  levels  of  complexity  due  to  the  potential  introduction  of

unnecessary intricacy through inverse optimisation [25, 26]. For these rationales, numerous

researchers  have  advocated  the  integration  of  complexity  metrics  into  the  cost  function

utilised by optimisation algorithms [26–28]. In this study, we selected complexity metrics that

are easy to extract from the TPS at the dose optimisation and calculation stage. By examining

the  correlations  between  the  complexity  metrics,  plan  metrics  and  the  PSQA scores,  we

confirmed  previous  literature  findings  [29,  30]  that  many  complexity  metrics  correlated.

Multiple metrics can account for different uncertainties and sources of plan complexity. As we

have  shown,  the  complexity  metrics  also  correlated  with  the  plan  metrics,  e.g.,  the

intercorrelations presented in Figure 4, between the join function, average monitor units per

control point and the energy/beamforming technology that is strictly related in our data to the

fractionation  scheme (stereotactic/conventional)  that  is  represented  by Darc — the fraction

dose delivered during the arc irradiation. Nevertheless, as we have shown, predicting PSQA

results based on one specified predictor is impossible. Therefore, in contrast to the ideas that

assumed the usage of these indices on the optimisation stage to reduce plan complexity, we

used  them with  plan  metrics  to  construct  the  forecasting  model  that  provides  qualitative

information on the planning stage on further results of PSQA. While other works that focused

on the forecasting models show the results of quantitative model development [10–13] that

are intended to  replace  the  PSQA procedures,  our  concept  assumes  the  introduction  of  a

support tool that will provide qualitative information during the treatment plan preparation

about  its  feasibility  by  the  treatment  machine.  Our  study  shows  that  the  most  effective

forecasting of the QD of the GPR results was obtained for the hybrid model based on the DA

and RDF models. When implemented commercially, such a solution will enable the effective

use of information generated during the treatment planning process to finally create a plan

that  can  be  implemented  on  the  therapeutic  machine  with  the  accuracy  adopted  in  the

institution. This solution should be pre-configured and dependent on the institution-specific

data. It means that the team developing the model should decide which DD|DTA criteria of

gamma analysis will be included to generate green, yellow, and red descriptors. Moreover, the

data on which the model will be trained should be gathered in this institution for specific dose

development  and  PSQA methods.  As  shown,  while  we  used  one  PSQA method  (EPID

dosimetry), the GPR results differed by the EPID model. Therefore, a specific characteristic

of the dosimetry tool used during the PSQA should also be included.
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The presented study is of a pilot nature. Our findings provide the basis for further model

development to increase its accuracy, which currently allows correct QD prediction at 89.4%.

Conclusion

While we found a lot of statistically significant interrelations between metrics describing

the plan and its complexity, they were small, fair or moderate. Only the correlations between

 and  aMU/CP and  the  BA and  PTV were  almost  perfect  (R  =  0.893  and  R  =  0.897,

respectively).

Analysis of the proportion of the QDs related to the values of the complexity and plan

metrics shows that a lot of these features allow for the effective separation of each of the

descriptors (BA, aMU/CP, MU/Gy, aDR and ) or to separate one descriptor from two other

descriptors (PTV, aGS, sdGS, sdMU/CP, BI, BM). 

The  study  shows  that  predicting  GPR  results  based  on  one  specified  predictor  is

problematic. However, multi-component forecasting models became possible. Analysis of the

efficacy of the DA, RDF and hybrid models shows that  a  hybrid model,  which uses DA

methods to predict red QD and RDF methods to predict green and yellow QDs, is the most

accurate (0.894 compared to 0.875 for the RDF model and 0.550 for the DA model).
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Figure 1. The examples of the comparisons for which, as a result of gamma analysis, three different QDs were

granted, i.e. green (A), yellow (B) and red (C). GPR — gamma passing rate; DD — dose difference; DTA —

distance-to-agreement
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Figure 2. Relation between the gamma passing ratios (GPRs) obtained through gamma analyses based on two

different criteria for the DD and DTA and realised in two different modes (global and local). 3|2 G — the results

of GPRs for the gamma analysis based on criteria DD = 3% and DTA = 2 mm and realised in a global mode; 2|2

L — the results of GPRs for the gamma analysis based on criteria DD = 2% and DTA = 2 mm and realised in a

local mode

Figure 3. Relation between the average normalised dose rate (aDR) and the average normalised speed of the

gantry movement (aGS) during the arc irradiation
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Figure 4. The number of observations grouped by qualitative descriptors and related to the training set (grey)

and validation set (black)

Figure 5. The percentage of observations grouped by qualitative descriptors (green, yellow, and red) and related

to area of the irradiation(A), detector type (B), and energy used (C)
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Figure 6. Relations between average monitor units (MU) per control point and the join function (). The data

relating to 6X-FFF presented as a triangle and 6X as a circle. The qualitative descriptor of dosimetry verification

is determined by the colours green, yellow and red

Figure 7. Relation between cumulative frequency of the qualitative descriptors of the dosimetry verification

results and the values of join function () (A), beam aperture (BA) (B), planning target volume (PTV) (C) and

beam modulation (BM) parameter (D)
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Table  1. Three-level  qualitative  descriptor  based  on  the  gamma passing rates  results  obtained  for  different

criteria of gamma analysis.

Qualitative Descriptor
Gamma Passing Rate for specified gamma analysis criteria

3% | 2 mm | Global mode 2% | 2 mm | Local mode

Green > 95% > 95%

Yellow > 95% < 95%

Red < 95% < 95%

Table 2. The p-values obtained from the Dunn multiple pairwise comparisons performed during the Kruskal-

Wallis analysis of qualitative descriptor differentiation by plan and complexity metrics. Analysis performed at

0.05 significance level.

Paramete
r

Green  vs.
Yellow

Green  vs.
Red

Yellow  vs.
Red

Darc 0.655 0.966 0.899

PTV < 0.001 < 0.001 0.537

BA < 0.001 < 0.001 0.042

BI 0.011 0.084 0.474

BM < 0.001 0.271 0.233

aMU/CP < 0.001 < 0.001 0.027

sdMU/CP < 0.001 < 0.001 0.213

MU/Gy < 0.001 < 0.001 0.033

aDR 0.003 < 0.001 0.021

sdDR 0.058 0.141 0.477

aGS < 0.001 < 0.001 0.484

sdGS < 0.001 < 0.001 0.458

 0.001 < 0.001 0.022

Darc — the part of the fraction dose delivered during the arc irradiation; PTV — planning target volume; BA —

beam aperture; BI — beam intensity; BM — beam modulation; aMU/CP — the average number of monitor units

in Gy per control point during the arc irradiation; sdMU/CP — the corresponding standard deviation; aDR — the

average normalised dose rate during the arc irradiation; sdDR — the corresponding standard deviation; aGS —

the average normalised speed of the gantry movement during the arc irradiation; sdGS — the corresponding

standard deviation;  — join function

Table 3. Descriptive statistics for the models of discriminant analysis (DA), random decision forest (RDF) and

hybrid  model,  and  the  values  of  sensitivity  and  specificity  from the  model  related  to  specified  qualitative

descriptors (green, yellow, red)

 DA RDF Hybrid

General models statistics

Accuracy 0.550 0.875 0.894

Correct class 88 140 143
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Misclass 72 20 17

Sensitivity | Specificity of Qualitative Descriptors  

Green 0.352 | 0.981 0.944 | 0.808 0.944 | 0.808

Yellow 0.957 | 0.381 0.766 | 0.929 0.766 | 0.947

Red 1.000 | 0.994 0.400 | 0.987 1.000 | 0.994

Averaged 0.770 | 0.785 0.703 | 0.908 0.903 | 0.916

Supplementary File

Table S1. Treatment plans localisations

Region Localization Number of arcs
Abdomen and Pelvic Bladder 12

Gynaecology 59

Prostate 228

Rectum 64

Stomach 2

Adrenal 2

Metastasis to bones 26

Metastasis to soft tissues 26

TOTAL 419
Thorax Lung 136

Oesophagus 29

Metastasis to bones 26

TOTAL 191
Head and Neck Laryngopharynx 135

Oropharynx 45

Nasopharynx 2

Metastasis to bones 4

Brain 6

TOTAL 192

Table  S2. Spearman  correlation  coefficients  between  plan  and  complexity  metrics. Results  in  bold  are
statistically significant at a = 0.05 
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Table S3. Confusion matrices for the training sample for the DA model

from \ to Green Yellow Red Total % correct

Green 160 273 1 434 36.87%

Yellow 7 175 5 187 93.58%

Red 0 0 21 21 100.00%

Total 167 448 27 642 55.45%

Table S4. Confusion matrices for the training sample for the RDF model

From\to Green Yellow Red Total % correct

Green 412 21 1 434 94.9

Yellow 38 142 7 187 75.9

Red 4 8 9 21 42.9

Total 454 171 17 642 87.7

Table S5. Confusion matrices for the validation sample for the DA model

From\to Green Yellow Red Total % correct

Green 38 70 0 108 35.19%

Yellow 1 45 1 47 95.74%

Red 0 0 5 5 100.00%

Total 39 115 6 160 55.00%

Table S6. Confusion matrices for the validation sample for the RDF model

from \ to Green Yellow Red Total % correct

Green 102 6 0 108 94.4

Yellow 9 36 2 47 76.6

Red 1 2 2 5 40.0

Total 112 44 4 160 87.5

Table S7. Confusion matrices for the validation sample for the hybrid model.

From\to Green Yellow Red Total % correct

Green 102 6 0 108 94.4

Yellow 10 36 1 47 76.6
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Red 0 0 5 5 100.0

Total 112 42 6 160 89.4
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