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Introduction

Head and neck cancers are one of the most com-
mon malignancies in the world and their global 
burden is increasing [1]. For many years, radio-
therapy (RT) has had an established position in 
the treatment of head and neck cancers, especially 

as an adjuvant treatment. However, despite signif-
icant progress in oncological RT, complication in 
the form of radiation-induced skin injury (RISI), 
also known as radiation dermatitis or radioder-
matitis, continue to represent a serious, nearly un-
avoidable problem. There are many controversies 
or inconsistencies regarding RISI, from molec-
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ular aspects and therapy to terminology [2, 3]. 
However, it is recognized as the most common side 
effect of RT [4]. Moreover, the risk of RISI appears 
to be higher and the severity is greater in patients 
with head and neck cancers, reaching as high as 
100%, while it is observed in lower rate in patients 
with other neoplasms [5]. One explanation is that 
skin at the neck area is exposed to various expo-
somes, such as ultraviolet radiation (UVR), pollu-
tion, cigarette smoke, which are well known factors 
that disrupt the function of the skin barrier [6], 
while other locations are protected from everyday 
direct exposure. It should also be noted that there 
are two forms of RISI: acute (aRISI) and chronic 
(cRISI). The former occurs during treatment (ap-
proximately 2–3 weeks following the initial irra-
diation), and the latter months (at least 90 days) 
or even years after RT [7–9]. Both forms of RISI 
can significantly reduce patient’s quality of life, 
but more dangerously, an acute reaction can result 
in at least temporary discontinuation of treatment 
reducing effectiveness of RT [10–12].

Radiotherapy of head and neck 
cancers

RT is one of the mainstays of multidisciplinary 
treatment of head and neck cancers, together 
with surgery and systemic treatment. It can be 
used alone or in combination with chemotherapy 
and has an important role for every stage of head 
and neck cancer treatment - ranging from de-
finitive and adjuvant treatment to palliative set-
ting. Definitive RT is used in early stages of head 
and neck cancers, including oropharyngeal cancer 
[13], and is the primary treatment of nasopha-
ryngeal cancer [14]. In adjuvant setting, for more 
advanced tumors, RT or chemoradiation enables 
eradication of residual microscopic spread of 
cancer in tumor bed and regional lymph nodes, 
which allows for decreasing risk of local and re-
gional failure and prolongs progression free sur-
vival and overall survival after surgery [15–17]. 
For patients who are not eligible for surgery, RT or 
concomitant chemoradiation is the main method 
of treatment for both definitive [18] or palliative 
purposes. In a palliative setting RT eliminates or 
diminishes pain caused by tumor, as well as bleed-
ing, obstruction of upper airways and digestive 
tract, thus improving quality of life of patients.  

Immune and molecular signaling 
in radiation induced skin injury 

The precise cellular and molecular mechanisms 
underlying acute and chronic RISI have not yet 
been completely elucidated [3]. Exposure of skin 
cells to radiation results in various cell death pro-
cesses, including necrosis, necroptosis, apoptosis, 
autophagy, and accelerated senescence, as well as 
signaling pathways [19]. It is known that RT may 
induce DNA damage leading to cell-cycle arrest 
and cell death. DNA damage is probably a major 
triggering mechanism in the development of RT 
toxicity [20]. Additionally, the release of cytokines 
is thought to initiate biological responses in multi-
ple cell types, causing late toxicity progression [21].

The heterogeneous occurrence and different 
degrees of RISI in individuals suggest that ge-
netic variation may play a significant role in RISI 
development. The possible link of DNA modi-
fication affecting the sensitivity to RT involves 
the single-nucleotide polymorphisms (SNPs) as 
a response to RT. Thus, SNPs may function as 
a prognostic biomarker concerning the frequency 
and intensity of RISI [22].

The occurrence of RISI is partly related to in-
dividual radiosensitivity, especially the ability of 
DNA damage repair [23, 24]. The principal ge-
nome defense pathway to repair the radiation-in-
duced DNA single-strand break is base excision 
repair (BER) associated with the following en-
zymes: DNA glycosylase, AP endonuclease, DNA 
polymerase, and DNA ligase [25]. Significant 
genes for the BER pathway, which are associated 
with human tumor susceptibility and radiation 
toxicity, involved: the X-ray repair cross-comple-
menting 1 (XRCC1), 8-oxoguanine DNA glycosy-
lase (OGG1), and apurinic/apyrimidinic endonu-
clease 1 (APEX1) genes [26]. 

It is suggested that the mutation in BER may be 
linked to acute and chronic RISI in cancer patients 
through reduced DNA repair ability. The associa-
tion between SNPs of BER pathway genes and radi-
ation reaction were mainly concentrated in breast, 
prostate, and lung cancers [26]. However, there 
are limited data concerning this problem in head 
and neck cancers. Pratesi et al. [27] demonstrated 
that the development of grade ≥ 2 mucositis was 
increased in head and neck squamous cell carcino-
ma patients with XRCC1 rs25487 A allele. Alsbeih 
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et al. [28] found that XRCC1 g.28152A allele was 
significantly associated with a lower grade condi-
tion of grade ≥ 2 skin and deep tissue fibrosis in 
nasopharyngeal carcinoma [28]. Another data 
with nasopharyngeal carcinoma indicated that 
the XRCC1 rs25487 GA genotype was significantly 
associated with developing grade 3 dermatitis [29]. 
Furthermore, Chen et al. [20] detected the SNP of 
the XRCC1 codon 399 in nasopharyngeal carcino-
ma patients, suggesting that it could be an essential 
predicting factor in the risk of aRISI during RT.

Wang et al. [26] examined a total of 5 SNPs in 
3 BER pathway genes, including XRCC1 (rs25487, 
rs25489, and rs3213245), OGG1 (rs1052133), 
and APEX1 (rs1130409) in nasopharyngeal car-
cinoma. Interestingly, these researchers found no 
association between the BER gene polymorphisms 
and radiotoxicity in tested patients [26]. As these 
authors noticed, this may be because the normal 
skin radiation damage depends mainly on cell re-
generation, proliferation, and inflammation, while 
the role of DNA damage repair is relatively small.

Other genome-wide studies of SNP associated 
with RT toxicity indicated several candidate genes 
involved in DNA damage recognition and repair 
(e.g., ATM, BRCA1, BRCA2, and TP53), free radi-
cal scavenging (e.g., SOD2), and anti-inflammatory 
response (e.g., TGFB1) [21]. 

Literature data indicate that RT generates ex-
cessive levels of reactive oxygen species (ROS), 
disrupting redox homeostasis and leading to oxi-
dative stress that can result in cell death. However, 
the tumor cell microenvironment is dynamic 
and responds to RT by activating numerous cel-
lular signaling pathways [30]. Oxidative stress is 
responsible for activating signaling pathways, such 
as nuclear factor erythroid 2-related factor 2-anti-
oxidant response element (Nrf2-ARE), which play 
an essential role in the inactivation consequence 
of this stress. Thus, activation of Nrf2 covers dis-
sociation from inhibitor protein Keap1 and trans-
location of Nrf2 from the cytosol to the nucleus 
and, subsequently, binds to antioxidant response 
elements (ARE) located in the promoter region of 
genes that encode antioxidant (such as superox-
ide dismutase — SOD) and detoxifying enzymes 
[31]. SODs can pass through the dermal mu-
cous membrane and perform an essential function 
as free-radical scavengers. SODs eliminate free 
radicals in the partial derma and enhance the skin 

and mucous membrane’s tolerance dose to relieve 
or avoid a RISI [32]. 

Based on currently available data, exposure of 
cells to ionizing radiation and other toxic stresses 
leads to the simultaneous activation of multiple 
MAPK (Mitogen-Activated Protein Kinase) path-
ways. These signals play crucial roles in controlling 
cell survival and repopulation effects following ir-
radiation [33]. MAPK, is an enzyme family, con-
sisting of three types: extracellular signal-regulat-
ed kinase (ERK), c-Jun N-terminal kinase (JNK), 
and p38 kinase, which are involved in cell prolifer-
ation, differentiation, apoptosis, and inflammation. 
The MAPK pathways also regulate the transcrip-
tion factor activating protein 1 (AP-1), a heterod-
imer comprised of c-Fos and c-Jun, which, in turn, 
up-regulates matrix metalloproteinases (MMPs) 
in the skin [33, 34]. Moreover, recent data confirm 
that activation of MAPK promoted the degrada-
tion of Keap1 depending on p62, enabling Nrf2 to 
dissociate and transfer into the nucleus. Through 
the inhibition of Nrf2 and MAPK pathways, cell 
senescence can be alleviated, and radiation-in-
duced ulcers may be prevented [35]. Preclinical 
studies demonstrated that the best-known trit-
erpenoid, bardoxolone methyl (2-cyano3,12-di-
oxooleana-1,9(11)-dien-28-oic acid (CDDO) 
methylester/CDDO-Me/RTA 402/ is classified as 
an oral “antioxidant inflammation modulator” 
and is the most promising compound for reducing 
or preventing a RISI [31].  

During RT, ROS can activate the other signaling 
pathway: nuclear factor kappa B (NF-κB), which 
plays a crucial role in the inflammatory process, 
immunity, cellular survival, and inhibition of 
apoptosis. NF-κB is a heterodimeric molecule of 
RelA (p65) and p50 subunits, which translocates 
into the nucleus and binds to the promoter region 
of target genes such as inter alia cyclooxygenase 
(COX-2) [36]. In response to radiation, NF-κB 
reduces cell death by promoting the expression of 
antiapoptotic proteins and activating the cellular 
antioxidant defense system. Moreover, constitutive 
activation of NF-κB-associated genes in tumor cells 
enhances radiation resistance, whereas deletion in 
vivo results in hypersensitivity to radiation  [37].  

It is suggested that radiation induces acceler-
ated cellular senescence, also known as stress-in-
duced premature senescence (SIPS), in the re-
gion of the stem cell population of the skin [19]. 
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McCart et al. [19], analyzing the impact of RT on 
skin, demonstrated the upregulation of p21, one 
of major markers of senescence, in keratinocytes. 
Moreover, Iglesias-Bartolome et al. [38] observed 
that the inhibition of radiation-induced stem cell 
senescence reduced RISI in head and neck irradia-
tion. The upregulation of the senescence-associated 
secretory phenotype (SASP), including interleukin 
(IL) -6 and IL-1, are expected outcomes of ioniz-
ing radiation-induced DNA damage, where dermal 
fibroblast and epidermal keratinocytes are iden-
tified as the primary sources of RT-induced IL-6 
[3]. This study concluded that senescence-associ-
ated upregulation of IL-6, IL-1 signaling and IL-17 
upregulation as well as CCR6+-mediated immune 
cell migration, are key elements of RISI. Thus, 
SIPS-related RISI is associated with the loss of tis-
sue homeostasis leading to the dysregulation of 
a normal and timely repair process [3].

In order to fully understand the mechanism of 
radiation-induced skin fibrosis and the differences 
between RISI types, it is necessary to understand 
the signaling pathways controlling many vital pro-
cesses.  Several studies confirm that radiation-in-
duced skin fibrosis are characterized by the de-
regulation of factors and cytokines such as TGF-β 
and Forkhead box O3 (FoxO3). FoxOs belong to 
a family of transcriptional regulators character-
ized by a conserved DNA-binding domain termed 
the forkhead box [39]. When FoxOs are located in 
the nucleus and bound to promoters that contain 
the FoxO consensus motif, they can act as transcrip-
tional activators and repressors. In mammals, four 
FoxO isoforms have been identified: FoxO1, FoxO3, 
FoxO4, and FoxO6, wherein FoxO3 plays an essen-
tial role in various biological processes, including 
development, proliferation, apoptosis, metabolism, 
and differentiation, by regulating a broad spectrum 
of genes. Downregulation of FoxO3 through phos-
phatidylinositol 3-kinase (PI3K) could alleviate ra-
diation-induced skin fibrosis [40]. Moreover, tissue 
damage repair and subsequent fibrosis involve mul-
tiple molecules and signaling pathways (e.g., trans-
forming growth factor β (TGF-β), and Wnt/βcat-
enin) [40]. TGF-β is the primary factor of fibrosis. 
Radiation-induced TGF-β is expressed in skin tis-
sue in a radiation dose–dependent manner. TGF-β 
is combined with its receptor to form a trimeric 
complex, causing tissue fibrosis. Activation of 
TGF-β1 can induce fibrosis via activation of both 

canonical (Smad-based) and non-canonical 
(non-Smad-based) signaling pathways. However, 
recent studies have indicated that the TGF-β/Smad 
pathway is an important/essential signaling path-
way in skin fibrosis. Activated Smad protein trans-
locates to the nucleus activating specific tran-
scription, and triggering fibrosis in the nucleus. 
Moreover, activated TGF-β regulates fibrotic target 
genes by phosphorylating Smad2/Smad3 proteins. 
The TGF-β signaling pathway acts as a therapeutic 
target for radiation fibrosis [41]. 

Recent studies suggest that the effect of TGF-β 
on wound healing is mediated by β-catenin, 
and a similar process of Wnt/β-catenin signal-
ing might contribute to radiation-induced fibro-
sis. The Wnt/βcatenin signaling pathway is vital 
to the physiological processes of early embryonic 
development, organ formation, and tissue regen-
eration in animals. Mutations in vital proteins in 
this signaling pathway can cause abnormal signal 
transduction, causing abnormal development or 
tissue regeneration [42]. Lee et al. [43] demonstrat-
ed that the radiation dose of 15 Gy to the dorsal 
skins of mice may not cause tissue contracture, 
although radiation-induced fibrosis may occur. In 
these experiments they used three groups of mice: 
those receiving phosphate-buffered saline (PBS), 
those receiving control adenovirus, and the third 
group receiving decoy Wnt receptor-express-
ing adenovirus (dE1-k35/sLRP6E1E2). During 
a 16-week observation period, the mice treated 
with sLRP6E1E2-expressing adenovirus showed 
a significant reduction in the excessive deposition 
of type I collagen. These findings provide compel-
ling evidence that modulating the Wnt/β-catenin 
pathway has the capacity to mitigate the severity of 
radiation-induced dermal fibrosis. 

Therefore, further research using large co-
horts, especially genome-wide associated studies, 
are necessary to determine if there is an associa-
tion between the SNP and RT toxicity. This ap-
proach would provide a better dialogue between 
basic researchers and clinicians to develop novel 
treatments. 

Clinical presentation

Acute radiation induced skin injury 
aRISI is skin damage observed within 90 days 

after the first irradiation [8]. The changes to epi-
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dermis integrity with increase transepidermal wa-
ter loss (TEWL), especially with subsequent RT 
sessions and accumulation of dose, lead to a wide 
variety of symptoms including erythema, xerosis, 
desquamation, hyperpigmentation and other sub-
jective symptoms [8, 9, 44].

The first symptom of aRISI is erythema which 
occurs around 10 to 14 days after RT in patients re-
ceiving doses between 6 and 20 Gy. Erythematous 
lesions are usually accompanied by skin oedema 
and fragility. The patient may feel discomfort in 
the form of increased skin tension and/or accom-
panying itching or burning sensation or in some 
cases pain. Additionally, the loss of sebaceous 
glands leads to skin dryness. As a compensation to 
skin damage, after 3–4 weeks of radiation, the in-
creased mitotic activity leads to improper forma-
tion of new cells, which manifests as a desquama-
tion, typically observed in doses higher than 20 Gy. 
Doses above 30 Gy exceed the repair capacity of 
the epidermis that may provoke its detachment with 
possible blisters formation, which is called moist 
desquamation. The impaired skin barrier function 
predisposes also to skin infections, mostly bacte-
rial one. In severe reactions ulceration and even 
necrosis of the irradiated tissue may also be pres-
ent. Depending on the location, mucositis and hair 
loss can be observed. Yet, most cases of aRISI are 
self-limiting and resolve within 2–4 weeks follow-
ing the end of treatment [8, 9].

According to the National Cancer Institute 
(NCI) of the National Institutes of Health (NIH) 
standardized definitions for adverse events (AEs), 
known as the Common Terminology Criteria for 
Adverse Events (CTCAE, also called “common tox-
icity criteria” [CTC]), the severity of skin toxicity 
for patients under RT can be classified into 5 grades 
(Tab. 1). The five-graded scale was proposed also by 
the Radiation Therapy Oncology Group (RTOG) 
(Tab. 1) [45, 46]. Grade 1 toxicity, which affects 
approximately 90% of patients, remains the major 
concern, while grade 2 is observed in 30% [9]. 

Chronic radiation induced skin injury 
cRISI can appear from months (the earliest 

changes appear 90 days after cessation of RT) to as 
long as 20 or 30 years after treatment. The chang-
es may persist or develop de novo after resolution 
of the acute phase. Unlike aRISI, late toxicity is 
a persistent and, in many cases, progressive com-
plication. It encompasses various morphologies 
and may manifest itself with subjective symp-
toms (such as hypersensitivity and/or pruritus), 
vascular changes (telangiectasia), dermis atrophy 
and fragility, pigmentation changes (poikiloder-
ma), and cicatrical alopecia. While delayed ne-
crosis is rarely observed, it mostly affects the nose, 
ears or scalp. Radiation-induced fibrosis can cause 
skin thickening, lymphedema and reduced range 
of motion [8, 9, 46]. It should be noted that higher 

Table 1. Clinical scales dedicated to early post-radiation reactions

Grade 0 I II III IV V

N
CI

 C
TC

A
E 

v.
5.

0

No skin 
lesions

Faint erythema, dry 
desquamation

Moderate to brisk 
erythema, patchy 

moist desquamation 
that is confined 
to the skin folds 

and creases moderate 
edema

Moist desquamation 
in areas other than 

in the skin folds 
and creases, bleeding 

that is induced by 
a minor trauma 

or abrasion

Skin necrosis 
or ulceration of full 

thickness in the dermis, 
spontaneous bleeding 
from the involved site

Death

RT
O

G

Follicular, faint or dull 
erythema, epilation, 
dry desquamation, 
decreased sweating

Tender or brisk 
erythema, patchy moist 

desquamation that is 
confined to the skin 

folds, moderate edema

Confluent, moist 
desquamation in areas 
other than in the skin 
folds, pitting edema, 
bleeding may occur

Ulceration, hemorrhage 
and necrosis Death

NCI — National Cancer Institute; CTCAE — Common Terminology Criteria for Adverse Events; RTOG — Radiation Therapy Oncology Group
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grades of aRISI are associated with higher grades of 
chronic skin injury, including fibrosis [47].

The Late Effects Normal Tissue Task 
Force-Subjective, Objective, Management 
and Analytic (LENT-SOMA), RTOG and Dische 
scoring systems can be used to assess toxicity 
and skin damage in cRISI. The LENT-SOMA scale 
is the most frequently used and recommended 
(Tab. 2) [48–50]. 

Importantly, various risk factors can influence 
the development of RISI. They can be categorized 
as treatment related and/or patient related [9, 46, 
51] and are presented in Table 3.

Management 

Unfortunately, despite many possible interven-
tions described in the literature, significant dis-
crepancies in clinical practice exist and there are 
no widely accepted recommendations regarding 
the management of the skin of patients under-
going RT [7, 46, 52–54]. Recently, comparison of 
the available clinical practice guidelines was pro-
posed by Finkelstein et al. [46]. In general, there are 
two main elements of RISI’s management: preven-
tion and treatment.

Acute radiation induced skin injury 

Prevention

Treatment-related prevention
The priority in prevention of aRISI at the stage of 

RT planning is to balance protection of all healthy 
organs and tissues, including skin, and deliver-
ing full therapeutic/prophylactic dose for tumor 
and lymph nodes. In terms of treatment plan-
ning the following parameters were identified to 

Table 2. The Late Effects Normal Tissue Task Force-Subjective, Objective, Management and Analytic (LENT-SOMA) scale 
dedicated to late post-radiation reactions (quoted for Mao 2017)

Grade I II III IV

Features

Subjective Hypersensitivity/pruritus Intermittent pain Persistent pain Debilitating dysfunction

Scaliness/roughness Present 
and asymptomatic Symptomatic Requires constant 

attention

Edema Present 
and asymptomatic Symptomatic Secondary dysfunction Total dysfunction

Alopecia Thinning Patchy and permanent Total and permanent

Pigmentation change Transitory Permanent

Erosion/ulcer necrosis Epidermal Dermal Subcutaneous Bone exposed

Telangiectasia Minor Moderate Severe

Fibrosis Present 
and asymptomatic Symptomatic Secondary dysfunction Debilitating dysfunction

Atrophy Present 
and asymptomatic Symptomatic Secondary dysfunction Debilitating dysfunction

Table 3. Risk factors of acute radiation induced skin injury 
(RISI) [according to 9, 46, 51, 57, 62, 67, 68, 97, 98]

Risk factors of RISI

Treatment related Patient-related

Total dose delivered to 
the skin

Individual patient 
radiosensitivity

Volume of skin irradiated The degree of sun exposure

Dose schedule Smoking status

Radiotherapy technique Nutritional status/overweight 
(BMI)

Quality of radiotherapy Comorbidities e.g. diabetes

Concomitant 
chemotherapy/molecular 

treatment
Tissue volume
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correlate with the grade of aRISI: volume of skin 
irradiated, total dose delivered to the skin, dose 
schedule, RT technique, quality of RT including 
adaptive RT, as well as concomitant chemotherapy 
and/or molecular treatment.

Volume of skin irradiated as well as total dose 
delivered depend on advancement of disease. For 
bulky (> 3 cm in largest diameter) metastatic lymph 
nodes, definitive RT results in the need of deliver-
ing higher dose of irradiation to larger volumes, 
including skin volume. However, there are no ex-
perimentally defined levels of doses and volumes 
correlating with the risk of high grades of aRISI, 
while such dose-volume correlations have been 
established for late effects of RT [55]. Recently, 
Kawamura et al. [56] designed and tested a scor-
ing system for patients irradiated for head and neck 
cancer, based on dosimetric and clinical parame-
ters, evaluating the risk of incidence of grade 3 
aRISI. The most important dosimetric parameter 
was volume of skin irradiated to the dose of 60Gy 
or higher (V60Gy), where 43.4% incidence of grade 
3 aRISI correlated with skin volume greater than 
38cm3 receiving V60Gy [56, 57].

While the impact of dose per fraction on aRI-
SI in head and neck cancer patients is still not well 
documented, it is known from breast cancer RT 
studies that doses higher than 2 Gy per fraction 
induce less dermatitis with higher grade than con-
ventional 2 Gy doses. However, higher doses per 
fraction, i.e. 3–4 Gy, are used mostly in palliative, 
short schedules of RT in head and neck cancer pa-
tients, thus observation from breast postoperative 
RT cannot be extrapolated to patients with head 
and neck cancer treated with definitive RT [58, 59]. 
Also, there is no sufficient evidence for aRISI in ste-
reotactic RT so far, while its use in head and neck is 
still a subject of debate [60].

Yet, Intensity Modulated Radiation Therapy 
(IMRT) is the most often used technique of head 
and neck irradiation. It’s highly conformal way to 
deliver homogenous dose directly to the tumor 
and to spare healthy organs and tissues. The optimal 
treatment plan is achieved by “sculpting” the dose 
in the target region, which allows to minimize 
the dose in the skin region. However, results of 
comparison of IMRT and less conformal methods, 
i.e. Three-Dimensional Conformal RT (3D CRT), 
are conflicting. The reason of those discrepancies 

and observed higher risk of grade 3 aRISI with high-
ly conformal techniques might lie in differences be-
tween RT departments in defining a planning tar-
get volume (PTV), especially those close to the skin 
surface as well as in the use of bolus [61]. Another 
risk factor for grade 3 and 4 aRISI might be altered 
fractionation. RTOG 9003 study reported 11% of 
grade 3 and 4 acute dermatitis with hyperfraction-
ation and accelerated fractionation in comparison 
with standard schedule of RT (7% of grade 3 and 4 
acute dermatitis) [62].

The next step in improving conformality of dose 
delivered is use of protons instead of photons for 
irradiation of selected head and neck cancer pa-
tients. Protons are most often used for patients with 
nasopharyngeal cancer, where sparing of the brain 
stem or optic nerves is of the highest priority. It is 
expected that due to deep dose distribution of pro-
tons the skin will be also better protected from aRI-
SI.  However, there is no available data to clearly 
demonstrate difference between protons and pho-
tons IMRT with regards to aRISI in head and neck 
cancer patients. [63].

Prevention of aRISI starts at the stage of treat-
ment planning. However, efforts to minimize 
the dose delivered to the skin without jeopardizing 
the dose to the tumor continue during the whole 
RT treatment. Accurate delivery of a precise treat-
ment plan requires verification prior to each frac-
tion. Daily imaging of irradiated region is manda-
tory and allows the RT team to observe changes in 
both tumor size and patients’ anatomy. It is espe-
cially important when patients lose weight as a con-
sequence of acute throat and/or oral mucositis 
and difficulties in eating and swallowing. Weight 
loss results in decreasing the distance between skin 
and irradiated lymph nodes shifting the high dose 
region towards the skin. Preparation of a new treat-
ment plan is mandatory in such a situation to bet-
ter protect the skin from unintended dose increase. 
Results of studies investigating the role of adaptive 
radiotherapy in decreasing risk of aRISI have been 
inconclusive so far [64]. However, adaptive radio-
therapy is a state of art approach in head and neck 
irradiation as prevention of increased risk of deliv-
ering higher than planned dose to the skin, which 
can result in higher grades of aRISI [65, 66]. 

Patients treated with concomitant chemora-
diation are at higher risk of grade 3 and 4 aRISI. 
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In head and neck cancer cisplatin and cetuximab 
are most often used concomitantly with radiation. 
Cisplatin is a well-known radiosensitizer, which, 
among others, inhibits repair of DNA damages 
caused by radiation. Concomitant treatment in-
creases grade 3 and 4 acute side effects of radiation, 
including dermatitis [57, 67]. Another drug exten-
sively tested in concomitant setting is cetuximab. 
Cetuximab is a recombinant chimeric IgG1 mono-
clonal antibody against the ligand binding domain 
of EGFR. It enhances radiation response in many 
ways, including inhibiting DNA repair by binding 
and blocking EGFR [68]. Blocking the EGFR sig-
naling pathway has an impact not only on cancer 
cells but also on skin components, immune re-
sponse and migration of skin cells enhancing inten-
sity of aRISI caused by radiation [69]. According to 
EORTC survey, grade 3 and/or 4 radiation derma-
titis is observed in 49% of head and neck cancer 
patients treated with cetuximab and concurrent 
RT [70]. There are also no specific treatment relat-
ed methods of prevention of aRISI caused by con-
current drugs.

Skin care-related prevention
Different forms of skin cleansing are recom-

mended upon RT. For example, according to 
MASCC guideline washing with water with or 
without mild soaps or shampoos is strongly rec-
ommended [7, 53]. Oncology Nursing Society 
(ONS), on the other hand, strongly recommends 
the use of soap and water [52]. Washing with wa-
ter alone seems inappropriate because most of 
the contaminants on the skin is insoluble in wa-
ter. More importantly, according to our current 
understanding of skin physiology, water can com-
promise the skin barrier due to the washing away 
of the skin’s natural moisturizing factor [71, 72]. 
This may be of particular importance during RT 
as signs and symptoms of a compromised epi-
dermal barrier have previously been described in 
irradiated patients, even in cases without clinical-
ly obvious aRISI [73]. It is well known that a dis-
rupted skin barrier can lead to inflammation [6]. 
Currently, for washing both healthy and diseased 
skin, it is recommended that soap-free cleaning 
agents with synthetic detergents and an appropri-
ate pH (so-called “syndets”) are used rather than 
classic soap. The high-pH cleansing products can 

further degrade the skin barrier by disrupting lipid 
bilayers and affecting the microbiome. In addition, 
a high-quality product should contain moistur-
izers (to reduce TEWL and improve hydration) 
and omit unnecessary ingredients such as fra-
grances and dyes [71, 72]. A short bath or shower 
in lukewarm water is recommended to avoid dehy-
dration of the epidermis [74, 75] and hand wash-
ing instead of a sponge to avoid potential micro-
trauma and/or superinfection. To sum up, it was 
proven that washing the skin with or without soap 
during RT resulted in less severe RISI and less fre-
quent moist desquamation while reducing the risk 
of secondary infection; [76, 77] however, in our 
opinion, cleansing the skin with water and syndet 
instead of soap is a better way to cleanse and pro-
tect the skin upon RT. Washing the hair is not ex-
pected to affect sensitivity to RT [78], although 
it seems advisable to recommend fragrance-free 
shampoos for sensitive skin.

It should be noted, that cleansing without 
the use of emollients may exacerbate xerosis 
and inflammation of the skin [72]. SCoR rec-
ommend using moisturizers on intact skin [46]. 
For decades, emollients have been a cornerstone 
element of the basic therapy in atopic dermati-
tis — a flagship example of dermatosis associat-
ed with skin-barrier defect [75]. However, they 
are recommended in many other skin conditions 
including skin dryness as well as in RISI [9, 79]. 
Emollients provide a temporary restoration of 
the impaired barrier function by reducing TEWL, 
relieving itching, reducing inflammation and act-
ing as a steroid-sparing agents [75, 79]. By defi-
nition, they contain at least humectant (i.e. urea, 
glycerol, isopropyl myristate) and occludent (i.e. 
petrolatum). Other ingredients that can be in-
corporated into emollients include: physiological 
lipids such as ceramides, cholesterol and free fatty 
acids (note: the right ratio between them should 
be maintained, which means approx. a 3:1:1 molar 
ratio), protein-free oat plantlet extracts or bacte-
rial lysates which influence the skin microbiome 
[75, 80]. The latter seem to be of particular inter-
est in the context of RISI, as recent research has 
shown significantly reduced bacterial diversity in 
comparison to controls [81]. Given our contem-
porary understanding of the role of skin-coloniz-
ing microbiota in maintaining normal skin barrier 
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functions, it seems that effort should be focused 
on maintaining/restoring a normal microbiome 
through appropriate skin care [82]. And even if 
an association of Staphylococcus (S.) aureus colo-
nization with the severity of acute radiation der-
matitis is observed [83], it is important to bear 
in mind that secondary infection is a common 
complication, not the cause, of various forms of 
skin inflammation, especially those with accom-
panying exudate [84]. The frequency of S. aureus 
colonization among patients with atopic dermati-
tis ranges from 40–80% and correlates with the se-
verity of the disease. It is effectively reduced by 
topical corticosteroids and calcineurin inhibitors, 
and there is no need to use topical/systemic anti-
biotics unless clinical signs of infection are pres-
ent [75]. However, it should be noted that recently 
Kost et al., in their randomized, controlled study 
(including 123 patients) indicated a beneficial 
effect of bacterial decolonization from the nose 
and skin on the risk of RISI [85]. In this study, 
chlorhexidine was used as an antiseptic, which 
is widely considered to damage the skin barrier 
and potentially cause allergies [86]. For patients 
with atopic dermatitis and recurrent skin infec-
tions, baths with sodium hypochlorite 0.005% are 
recommended, recognized as the least aggressive 
antiseptic [75, 87].

There are also some studies that claim the useful-
ness of skin care products containing Chamomilla 
in preventing/treatment of RISI [88, 89]. It should 
be emphasized, however, that chamomile plant ex-
tracts contain a number of ingredients, including 
anti-inflammatory agents (i.e. bisabolol), but also 
potential sensitizers (i.e. tonghaosu) and there 
are many reports of allergic reactions to topical 
products containing chamomile [90]. Emulsifiers, 
fragrances and preservatives should be avoided as 
they are the main causes of contact allergy. It should 
be noted that the aqueous creams listed in the var-
ious recommendations naturally contain higher 
concentrations of emulsifiers. On the other hand, 
some authors claim that the oil phase of dermo-
cosmetics may block the penetration of the RT 
beam; therefore, they propose the use of gels [91]. 
However, it should be emphasized that gels as well 
as pure oils can exacerbate dryness [75, 92]. Hence, 
emollients with rationally selected ingredients 
seem to be the best option for RISI. Ideally, topical 

emollients should be applied every time directly af-
ter bath or shower following gentle drying (patting 
dry avoiding rubbing) when the skin is slightly hu-
mid (so called soak and smear rule), and the to-
tal number of emollient applications per day (with 
or without prior skin cleansing) should be at least 
two [75, 79]. Importantly, the emollient should be 
applied at least 1 hour before the RT session, oth-
erwise an increased dose of radiation will be deliv-
ered to the epidermis [9].

The patient should also be instructed on the prin-
ciples of photoprotection [9]. These include: (1) 
use sunscreen with a sun protection factor (SPF) 
of 50+ and UVA protection; (2) use the product 
all year round, regardless of the weather (as expo-
sure to UVA rays does not vary much depending 
on the season and cloud cover); (3) multiple appli-
cations per day; (4) use an appropriate amount of 
product, e.g. apply about 5 ml of sunscreen to cover 
the head and neck area [93]. Extreme temperatures 
should also be avoided [91].

Electric razors and loos, soft clothing are rec-
ommended to reduce the risk of skin injuries in 
the treatment area [91]. Currently, the use of de-
odorants/antiperspirants is widely accepted as they 
do not increase the risk of RISI [46, 52, 91, 94], 
however, alcohol-based products, i.e. perfumes, 
should be avoided.

Prophylactic use of non-absorbing film form-
ing dressing, topical glucocorticosteroids, silver 
sulfadiazine as well as semipermeable dressings 
is suggested by some guidelines but with vary-
ing degrees of recommendation [46, 52, 53, 95]. 
Rosenthal et al. [96] suggest the use of topical glu-
cocorticosteroids, such as mometasone furoate, 
twice a day from the first day of RT until 2 weeks 
following the end of RT. However, prolonged use 
of topical glucocorticosteroids can lead to thin-
ning of the skin and the appearance of telangiec-
tasias. Therefore, the proactive therapy regimens 
proposed for atopic dermatitis may be worth con-
sidering. Currently, in asymptomatic atopic der-
matitis, topical application of calcineurin inhibi-
tors (tacrolimus, pimecrolimus) once daily twice 
weekly (e.g. Monday and Friday) is recommended 
to reduce subclinical inflammation [75]. However, 
it should be emphasized that no studies on the pro-
phylactic use of topical calcineurin inhibitors in 
RISI have been published so far. Therefore, their 
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inclusion should be considered very cautiously. 
Alternatively, low- to medium-potency topical 
glucocorticosteroids may be used instead of topi-
cal calcineurin inhibitors. When topical glucocor-
ticoids are used in proactive therapy, a weekend 
regimen is sometimes proposed (once a day on 
Saturday and Sunday).

Other forms of prevention
Body mass index > 25 is considered an inde-

pendent predictor of severe aRISI, however, weight 
loss during RT is an independent predictor of cRISI 
[97]. On the other hand, there is a higher likelihood 
of cRISI development among patients with elevated 
BMI. A relationship between smoking and the risk 
of RISI was also demonstrated [51, 98]. The signif-
icance of both factors in the development of RISI 
does not seem surprising, as both are well-under-
stood skin barrier disruptors [99, 100].

In conclusion, we believe that regular, daily care 
with syndets, emollients and sunscreens, together 
with smoking cessation and careful BMI control 
can reduce the risk of aRISI and should be consid-
ered as basic therapy in all patients undergoing RT. 
In patients at high risk of developing RISI (Tab. 3), 
proactive therapy with low- or medium-potency 
topical glucocorticosteroids may be considered.

Treatment
There are many therapeutic strategies suggest-

ed to be useful for RISI, ranging from topical-
ly applied products (often containing plant-de-
rived substances), to topical glucocorticosteroids 
and hydrogel dressings, to experimental therapies 
such as hyperbaric oxygen therapy and mesenchy-
mal stem cells [96].

Proper skin care should be continued [46], how-
ever, direct application of emollients to inflamed 
skin may cause skin stinging/burning [75]. In such 
a situation, it is suggested to use solely anti-inflam-
matory therapy for the first few days with tempo-
rary discontinuation of emollients.

Potent and very potent topical glucocorticoste-
roids (i.e. mometasone furoate and betamethasone 
17-valerate respectively) remain the mainstay of 
RISI therapy. They are recommended to alleviate 
symptoms of grade 1 aRISI, such as erythema, pru-
ritus, and dry desquamation, and reduce the risk 
of grade 2 and 3 of aRISI [46, 53, 96]. However, 

as mentioned above, their prolonged use can lead 
to thinning of the skin and the appearance of tel-
angiectasias. Topical calcineurin inhibitors are used 
as an alternative to topical glucocorticosteroids 
in many dermatological indications. Unfortunately, 
there is only one study in the available literature 
on the use of calcineurin inhibitors in the manage-
ment of radiation-induced injury. Rajaganapathy 
et al. [101] demonstrated that intravesical liposo-
mal tacrolimus protects against radiation cystitis in 
a rat model. When discussing topical calcineurin 
inhibitors in the context of RT, it should be empha-
sized that topical calcineurin inhibitors (contrary 
to topical corticosteroids) lead to an improvement 
of the skin barrier condition in patients with atopic 
dermatitis [102, 103]. Additionally, we do not cur-
rently believe that these group of drugs increase 
the risk of developing non-melanoma skin cancers 
[104, 105]. Therefore, topical calcineurin inhibi-
tors may bring potential benefits; however, further 
research is needed before they can be recommended.

There is no consensus concerning the use 
of hydrogels and dressings, however, some au-
thors and guidelines suggest usefulness of the use 
of hydrogels as well as hydrocolloid, silicon-based 
and moisture-retentive dressings to reduce moist 
desquamation or treat ulceration [46, 53, 95, 106]. 
The advantage of dressings is the creation of a sta-
ble, moist environment that enables faster re-epi-
thelialization. The selection of the dressing should 
be based primarily on exudate level and be con-
sistent with the T.I.M.E. protocol (tissue manage-
ment, infection/inflammation control, moisture 
balance, promotion of epithelialisation) commonly 
accepted in wound treatment [95, 107].

In case of superinfection, the use of silver sulfa-
diazine or topical/oral antibiotics is suggested, but 
with varying degrees of recommendation [46, 53]. 
It should be noted, that there are many conflicting 
opinions in the literature regarding the usefulness 
of silver sulfadiazine in the treatment of wounds 
and ulcerations. Currently, it is recommended 
for use no longer than 14 days (as it slows down 
re-epithelization) and it is not recommended for 
prophylaxis [108,109]. In cases of critically colo-
nized wounds or wounds at risk of infection, poly-
hexanide is preferred over silver sulfadiazine [109]. 
Finally, some dressings also have antimicrobial 
properties [95].
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Oral analgesics can be given for pain [46]. 
However, when considering topical analgesics, their 
potential to induce phototoxic reactions should be 
borne in mind [110]. The following topically applied 
nonsteroidal anti-inflammatory drugs have photo-
toxic potential: arylpropionic acid analogs (e.g. ibu-
profen, ketoprofen, naproxen), pyrazolidinedione 
derivatives (e.g. phenylbutazone) [110, 111].

The literature also mentions the potential use-
fulness of photobiomodulation therapy (PBMT). 
This method is used primarily in aesthetic med-
icine. The meta-analysis focused on the utility of 
PBMT in RISI discusses 5 publications, with 4 
originating from a single center. In the analyzed 
studies, it is often emphasized that improvement 
was achieved but without statistical significance, or 
assuming that a significant difference was reached 
at p = 0.05. In 2 out of 5 studies, the authors do not 
find evidence of the method’s effectiveness. No ad-
verse effects other than RISI are discussed in any of 
the studies [112].

The oral enzyme mixture also appears in 
the MASCC recommendations [53]. However, 
the only study meeting RCT standards did not con-
firm the product’s effectiveness [113].

The negative recommendations include gentian 
violet, paraffin, or petroleum-based dressing use 
[46, 53], aloe vera [46, 53, 94, 114], trolamine [96, 
115], calendula, emu oil [94], chamomile, ascor-
bic acid, pantothenic acid, sucralfate [96]. There 
are also several other agents (e.g., hyaluronic acid, 
epidermal growth factor, granulocyte and mac-
rophage colony-stimulating factor) that may be 
potentially useful, but further studies are needed 
before a recommendation can be made [96]. It is 
worth noting that in many cases creams containing 
specific additional substances not only fail to deliv-
er a better effect than standard emollients, but are 
also often more expensive.

It seems reasonable to use the “step-up approach” 
when selecting the treatment option. According to 
this method, the treatment option should be cho-
sen based on the signs/severity of RISI. In grade 1 
aRISI the usefulness of topical glucocorticosteroids 
in alleviating symptoms is suggested, in grade 2 
or 3 properly selected dressings are recommend-
ed. ISNCC recommends to use topical betameth-
asone 17-valerate and mometasone furoate even 
in high-grade aRISI [46]. In the case of infection, 

silver sulfadiazine, topical and / or oral antibiot-
ics are recommended [46, 53]. Figure 1 presents 
the proposed step-by-step procedure for patients 
undergoing RT.

Chronic radiation induced skin injury
Unfortunately, there is much less to offer to cRISI 

patients. Last year, a consensus on the management 
of cRISI was proposed [116]. Of the 63 questions 
or statements, strong consensus was reached  only 
for 15, while for 32 statements no consensus was 
reached. It was agreed that the proper skin care (in-
cluding sunscreen) should be continued. Pulsed dye 
laser and/or intense pulsed light are recommended 
to reduce persistent erythema and telangiectasia, 
and Q-switched laser may be considered for hy-
perpigmentation [9, 46, 116]. In the case of fibro-
sis and contractures physiotherapy,  autologous fat 
grafting and fractional ablative laser therapy may 
be considered [116, 117]. Additionally, some ex-
perts suggest the use of oral pentoxifylline and vita-
min E in combination with physical therapy [116], 
while ulcers should be treated with properly select-
ed dressings in accordance with the T.I.M.E. proto-
col [95]. Importantly, RT also increases the risk of 
non-melanoma skin cancers (NMSCs) in the irra-
diated area [118–121]; therefore, although NMSCs 
are not part of the RISI picture, it seems reasonable 
to recommend a dermatological assessment with 
obligatory dermoscopy at least once a year.

Conclusions

Unfortunately, despite our extensive knowledge 
of the mechanisms underlying RISI and the many 
possible therapeutic interventions described in 
the literature, we still do not have universally ac-
cepted recommendations for skin management 
during RT. More well-designed studies are neces-
sary to validate current recommendations. It seems, 
however, that proper skin care (including regular, 
daily care with syndets, emollients, sunscreens, 
smoking cessation etc.) as well as topical glucocor-
ticosteroids and dressings matched to the degree of 
exudate are currently the standard of care during 
RT. Additionally, it is worth emphasizing the need 
for annual dermatological check-ups for possible 
early detection of skin cancer for all patients after 
completed RT treatment. 
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