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Abstract

The COVID-19 pandemic has left an indelible mark 
on global healthcare systems, with over 760 mil-
lion infections and nearly 7 million deaths reported 
since December 2019. This review delves into the 
profound impact of COVID-19 on kidney transplant 
recipients (KTRs), focusing on the pathophysiology 
of COVID-19-related acute kidney injury (AKI) and 
the long-term consequences for graft function.
Renal involvement in COVID-19 is frequent, with AKI 
reported in up to 36.6% of hospitalized patients, car-
rying an increased risk in those admitted to the ICU 
and associated with higher mortality. Kidney trans-
plant recipients, in particular, face heightened risks, 
with AKI present in 64% of admissions, leading to 
a mortality rate of 20% in hospitalized patients and 
50% in ICU admissions. The multifactorial pathogen-
esis involves direct viral invasion, systemic inflam-
matory response, and potential nephrotoxic effects 
of supportive therapies. Kidney biopsy findings 
reveal acute tubular necrosis, glomerulonephritis, 

and renal thrombotic microangiopathy as common 
occurrences. Acute graft rejection is a significant 
concern, with evidence suggesting an increased 
frequency in patients with preexisting donor-specific 
antibodies. 
Long-term consequences on graft function are still 
under study, but available data suggest stable graft 
function in most recipients at a 6-month follow-up. 
Vaccination has shown safety for organ transplant 
recipients, with no reported rejection episodes post-
booster vaccination.
In conclusion, the lessons learned from the COVID- 
-19 pandemic underscore the necessity of ongoing 
research to understand the long-term implications 
for kidney transplant recipients. These insights will 
inform future practices, therapeutic interventions, 
and immunosuppressive strategies in the face of 
similar infectious disease outbreaks.
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INTRODUCTION

The COVID-19 pandemic has had a pro-
found impact on healthcare systems world-
wide. According to the WHO, since Decem-
ber 2019, over 760 million people have been 
infected, and nearly 7 million have died. As the 
pandemic unfolded, we learned much about 
the virus, the acute course of infection, and 
its long-term complications. We have gained 
insights into the pathomechanisms of the vi-
rus. The kidneys are particularly susceptible to 
the virus. Renal involvement in COVID-19 is 
frequent and clinical presentation can range 
from mild proteinuria to progressive acute kid-
ney injury (AKI). AKI has been reported in up 
to 36.6% of hospitalized patients, and the risk 
of its development is increased in individuals 

admitted to the ICU [1–3]. It is also associated 
with higher mortality [4]. The risk factors in-
clude older age, comorbidities such as diabetes 
and hypertension, and the presence of pre-ex-
isting kidney disease [5].

The pathogenesis of COVID-related AKI 
is multifactorial. The virus can cause direct in-
jury to renal cells through viral invasion, lead-
ing to inflammation, tubular injury, and endo-
thelial dysfunction. Additionally, the systemic 
inflammatory response triggered by the infec-
tion can result in cytokine release, endothelial 
damage, and microvascular thrombosis, fur-
ther compromising kidney function. The use 
of certain COVID-19 supportive therapies, 
such as antiviral medications and some antibi-
otics, may also contribute to kidney injury due 
to their potential nephrotoxic effects [5–8]. 
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The most frequent biopsy findings were acute 
tubular necrosis (ATN), glomerulonephritis, 
and renal thrombotic microangiopathy (TMA) 
[9–11]. 

Therefore, kidney transplant recipients 
(KTRs) require special attention due to their 
increased risk of infections and potential com-
plications [12]. AKI was present in 64% of 
KTRs admitted to the hospital. The mortality 
rate was 20% in hospitalized patients, reaching 
50% in the ICU [13]. Understanding the im-
pact of COVID-19 on graft function in KTRs 
is of utmost importance. This review aims to 
delve into the available literature and provide 
insights into the effects of COVID-19, both 
in the acute phase of the disease and in its 
long-term consequences.

COVID-19-RELATED AKI PATHOPHYSIOLOGY

According to the Kidney Disease Im-
proving Global Guidelines (KDIGO) 2012, 
AKI has been defined by changes in kidney 
function, including serum creatinine (SCr) 
changes and urine output within 48 hours or 
7 days. AKI can have a variety of causes, in-
cluding specific kidney diseases, such as acute 
interstitial nephritis, acute glomerular and vas-
culitic renal diseases; non-specific conditions 
(e.g., ischemia, toxic injury); as well as extrare-
nal pathology [14].

As we know, angiotensin-converting en-
zyme 2 (ACE2) serves as the cellular entry 
receptor for SARS-CoV-2, and for the endo-
cytosis and membrane fusion, transmembrane 
serine protease 2 (TMPRSS2) is used. While 
ACE receptors are present in almost all tissues, 
ACE2 is found in organs rich in blood vessels, 
such as the lungs, kidneys (podocytes, mesan-
gial cells, parietal epithelium of Bowman’s cap-
sule, proximal cell brush border, and collecting 
ducts), as well as in the intestines and brain [15]. 
High level of ACE2 mRNA and protein is ex-
pressed in the testis and kidney tissue, not in the 
lungs [16], therefore the presence of the recep-
tor may explain the most common symptoms 
associated with the infection, such as respira-
tory problems, kidney dysfunction, gastrointes-
tinal, and neurological symptoms.

ACE2, converts angiotensin II (AGII) to 
angiotensin 1-7 (AG1-7), a protein with an-
ti-inflammatory, vasodilatory, antifibrotic, and 
natriuretic activity [17]. An accumulation of 
AGII leads to opposite effects. An imbalance 
in the renin–angiotensin–aldosterone system 
(RAAS) caused by SARS-CoV-2 results in mi-

crocirculatory dysfunction, enhanced inflam-
matory processes, hypercoagulability, fibrosis, 
and tissue damage.

TUBULOINTERSTITIAL DAMAGE
Biopsy findings by Su et al. [9] indicate 

that the SARS-CoV-2 virus can directly infect 
the renal tubular epithelium and podocytes, 
which was associated with AKI and proteinuria 
in COVID-19 patients. A diffuse acute proxi-
mal tubular injury with loss of brush border, 
vacuolar degeneration, luminal dilatation, and 
even areas of necrosis were observed. Another 
study by Diao et al. showed SARS-CoV-2 nu-
cleocapsid protein antigen accumulation in 
kidney tubules [18].

Some authors emphasize other indirect 
mechanisms potentially leading to tubular in-
jury because they found no viral material in 
kidney biopsies [19]. Those causes include rhab-
domyolysis, renal ischemia, low cardiac output, 
hypotension, use of mechanical ventilation, and 
nephrotoxic drugs (e.g. antibiotics). Hypovole-
mia, due to COVID-19 symptoms, e.g. fever, 
hyperventilation, vomiting, or diarrhea, was of-
ten seen in hospitalized patients [20].

COVID-19-ASSOCIATED GLOMERULOPATHY 
Collapsing focal segmental glomerulo-

sclerosis (cFSGS) is one the most frequent CO-
VID-19-associated nephropathy (COVAN) 
and the most common glomerular pathology 
in allografts. Pathophysiology is thought to be 
related to direct viral tropism and immune dys-
regulation (upregulation of interleukins -1β, -6, 
-10, and IFN-γ). A high risk of the APOL1 gen-
otype and ethnic susceptibility is described 
[21]. Even 96% of patients have nephrotic 
syndrome and about half of patients have 
hematuria as a clinical manifestation. Other 
glomerular pathologies that are likely related 
to SARS-CoV-2 infection include podocyto-
pathies (non-collapsing FSGS and minimal 
change disease), membranous nephropathy, 
IgA nephropathy, Pauci-immune crescentic 
glomerulonephritis, lupus and anti-glomerular 
basement membrane nephritis, proliferative 
glomerulonephritis with monoclonal immuno-
globulin deposit and TMA. Diseases occurring 
in transplanted kidneys, besides collapsing glo-
merulopathy, are IgA nephropathy, lupus ne-
phritis, and TMA [22].

VASCULAR DAMAGE AND TMA
Macro- and microvascular thrombotic 

events are well-known complications of COV-
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ID-19 [23]. Endothelial injury (such as pericyte 
detachment, subendothelial space expansion, 
endothelial proliferation without deposits, 
and foam cell accumulation), caused directly 
by the virus and a high level of inflammatory 
molecules, leads to a decrease in vasodilatory 
agents such as nitrous oxide (NO) and activa-
tion of the coagulation cascade [5, 24]. Platelet 
activation is a result of SARS-CoV-2 binding 
platelets via ACE2. Endothelial dysfunction 
may lead to systemic consequences, with re-
nal impairment being a secondary outcome. 
Alternatively, the damage directly affects the 
kidney tissue.

In the renal biopsies, a common morpho-
logic finding was erythrocyte stagnation in the 
lumen of glomerular and peritubular capillar-
ies. Also, the viral particles were found with 
electron microscopy in the endothelial cells of 
the kidney [9, 24]. Segmental fibrin thrombi [9] 
and venous thrombosis were other renal find-
ings [25]. Histopathological studies revealed that 
various complement pathways were activated in 
COVID-19 kidneys. In peritubular capillaries, 
mainly the lectin pathway was activated, in renal 
arteries partly a classical pathway, whereas, for 
tubular complement activation, the alternative 
pathway seems to be crucial [26]. 

Although various etiologies can cause 
TMA in native and transplanted kidneys, cases 
of COVID-19-related disease have been also re-
ported [11, 19, 27–29]. Because of unfavorable 
outcomes, clinicians should be aware of this re-
nal manifestation of SARS-CoV-2 infection.

DRUG TOXICITY
Tubular necrosis, interstitial nephritis, 

or thrombotic angiopathy are common causes 
of parenchymal drug-induced renal injury 
[30–32]. Reports from biopsies in patients who 
developed AKI during COVID-19 showed the 
presence of crystals in the proximal kidney tu-
bules and casts [25]. Among patients hospital-
ized due to COVID-19, especially in the early 
stages of the pandemic, a wide range of antibi-
otics in large quantities were administered. It 
should be noted that other nephrotoxic drugs 
such as NSAIDs were also widely used by pa-
tients with mild symptoms. Oxalate nephropa-
thy, as a result of excessive vitamin C adminis-
tration in COVID-19 patients, was reported in 
addition [33].

Many kidney recipients take angioten-
sin-converting enzyme inhibitors (ACEI) and 
angiotensin-receptor blockers (ARBs), among 
other reasons, due to arterial hypertension 

or even to ameliorate the toxicity of CNI. At 
the beginning of the pandemic, it seemed that 
these medications could be dangerous. How-
ever, researchers found no significant associa-
tion between ACEI or ARB use with the risk 
of COVID-19 and its severity [34, 35].

ACUTE GRAFT REJECTION
In Daniel et al. study the most com-

mon cause of allograft dysfunction after CO-
VID-19 among 18 KTRs was an acute rejec-
tion with arthritis. And there was no evidence 
of direct viral invasion in the kidneys [36]. In 
May et al. study the most common diagnosis 
(61.4%) in allograft biopsies was also a rejec-
tion of a transplanted kidney. Subsequently, 
17 out of 44 patients had an antibody-me-
diated rejection, 6 were diagnosed with an 
acute T cell–mediated rejection, and 4 with 
an antibody and a T cell–mediated rejection 
simultaneously. And there was an increased 
frequency of transplant rejection in patients 
with COVID-19, compared to that in pre-pan-
demic biopsies [37]. Authors suggest that 
SARS-CoV-2 infection acts as a second hit in 
patients with preexisting donor-specific anti-
bodies [36]. However, there is a possibility of 
immune stimulation of alloantibody produc-
tion during viral infection [38]. 

It is also important to pay attention to im-
munosuppressive strategies, especially when 
it is known that triple immunosuppression 
has an impact on reducing seroconversion in 
vaccinated patients [39]. Mycophenolic acid 
(MPA) has demonstrated antiviral activity 
against various viruses, including MERS-CoV, 
human coronavirus (HCoV) strains such as 
HCoV-OC43 and HCoV-NL63, dengue virus, 
and mouse hepatitis virus. A study by Kato et 
al. revealed anti-SARS-CoV-2 activity compa-
rable to that against MERS-CoV, albeit at sig-
nificantly higher dosages than therapeutically 
relevant [40]. Notably, an in vitro study found 
that MPA inhibits SARS-CoV-2 replication in 
VeroE6/TMPRSS2 cells, although antimetab-
olites were most frequently withdrawn due to 
their impact on inhibiting T-cell function and 
proliferation [41, 42]. But what is important 
in terms of graft rejection, is that minimizing 
the immunosuppressive regimen did not affect 
kidney function in the long term [43].

AKI OUTCOMES IN KTRS

COVID-19-induced AKI in KTRs can 
have detrimental effects on both the trans-
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planted kidney and the overall health of the 
individual. The risk factors for AKI in this 
population, like the general, include older age, 
comorbidities such as diabetes and hyperten-
sion, and the presence of pre-existing kidney 
disease. However, compared with the general 
population, KTRs have a lower average kidney 
function reserve; thus, they are more suscep-
tible to AKI [44]. The severity of renal impair-
ment can vary, ranging from mild dysfunction 
to complete renal failure requiring temporary 
or permanent dialysis. Among KTRs, AKI oc-
curred in 44% of patients, with 30% of them 
requiring kidney replacement therapy. Dialysis 
was needed in 12% of all KTRs, and 8% lost 
graft function [45]. While 21.8% of patients 
had an increase in creatinine of more than 
25% compared to their pre-COVID-19 base-
line creatinine level, graft survival was good in 
most patients who survived COVID-19. Graft 
failure within 3 months of follow-up was rare 
and occurred at a similar rate in non-hospital-
ized patients (0.7%) and hospitalized patients 
who were not admitted to the ICU (1.0%). In 
patients admitted to the ICU, 10.7% experi-
enced irreversible graft function loss within 
3 months after COVID-19 presentation, while 
89.4% had a functioning graft. Only 0.8% of 
kidney transplant recipients from the ERACO-
DA (European Renal Association COVID- 
-19 Database) had biopsy-proven acute rejec-
tion during SARS-CoV-2 infection, but all of 
them had a functioning graft after 3 months of 
follow-up [46].

Prompt recognition and management 
of AKI in KTRs with COVID-19 are crucial 
because the highest mortality was observed in 
this cohort. Worsening renal function, as indi-
cated by increased KDIGO stage, was associ-
ated with increased mortality [5, 44, 46, 47].

It’s worth noting that, although at the be-
ginning of the pandemic, the incidence of AKI 
among KTRs reached as high as 50%, in sub-
sequent waves, a slight decrease was observed 
[48].

DISTANT CONSEQUENCES

Unfortunately, long-term observations 
of kidney function are limited. In a 6-month 
follow-up, graft function remained stable in 
most kidney transplant recipients [49, 50]. 
Only 7.7% had allograft dysfunction, and 2 out 
of 8 patients remained dialysis-dependent [51]. 
Our recent study revealed that only males with 
acute course of COVID-19 had a statistically 

significant relative eGFR decrease one year 
after infection onset [52]. 

ANTIVIRAL DRUGS AND VACCINATION 

ANTIVIRAL DRUGS
Following the latest guidelines from the 

National Institutes of Health (NIH), USA, 
nonhospitalized patients with mild to mod-
erate COVID-19 who are immunocompro-
mised, should be treated with antiviral drugs 
at the doses and durations recommended 
for the general population [53]. The recom-
mended first-line therapy is ritonavir-boosted 
nirmatrelvir (Paxlovid), initiated as soon as 
possible and within 5 days of symptom onset. 
However, it is crucial to note that ritonavir is 
a potent inhibitor of CYP3A and may increase 
concentrations of certain concomitant medi-
cations during the treatment course and for 
about 3 days after ritonavir is discontinued. As 
a result, general guidance for coadministering 
Paxlovid with concomitant medications in-
cludes temporarily withholding certain immu-
nosuppressive agents (e.g., tacrolimus, evero-
limus, sirolimus) or reducing the dosage (e.g., 
cyclosporine), monitoring the patient closely 
for toxicities, and performing therapeutic 
drug monitoring during and after the 5-day 
treatment course of Paxlovid [54]. However, 
outpatient administration of Paxlovid, with 
monitoring of immunosuppressive drug levels 
in non-hospital settings, may pose challeng-
es. An alternative option remains the selection 
of intravenous administration of remdesivir 
or appropriate monoclonal antibody therapy 
to avoid significant drug-drug interactions, 
as stated in the statement from the Ameri-
can Society of Transplantation [55]. Such an 
approach may be organizationally easier and 
safer for the patient. Another option is Molnu-
piravir, initiated as soon as possible and within 
5 days of symptom onset, although it appears 
to have relatively low efficacy in the high-risk 
population, according to the same document. 
In the treatment of hospitalized patients with 
COVID-19, commonly used drugs are dexa-
methasone (a moderate inducer of CYP3A4), 
and interleukin-6 inhibitors (which may lead 
to increased metabolism of CYP substrates). 
Clinicians should closely monitor the serum 
concentrations of calcineurin and mammalian 
target of rapamycin (mTOR) inhibitors when 
these drugs are used [53]. The toxicity of calci-
neurin inhibitors (CNI) can occur as vasocon-
striction, TMA, tubular vacuolization, epithe-
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lial necrosis, loss of brush border, athero- and 
arteriohyalinosis, tubular atrophy, and intersti-
tial fibrosis [56].

VACCINES
Clinical data indicate that the mRNA 

vaccine and the viral vector vaccine have pro-
vided excellent protection in humans [57, 58], 
but specific groups, such as organ transplant 
recipients, have been excluded from most clin-
ical trials.

The research has shown that lower sero-
conversion in this vulnerable group is due to 
the administration of immunosuppressants, 
especially MMF/MPS [39, 59–62]. Other fac-
tors identified in studies include older age and 
steroid treatment [39], diabetes, worse kidney 
function, and anti-thymocyte globulin treat-
ment during the past year [61–63]. Since even 
35–50% of organ transplant recipients did not 
respond after the second vaccine dose, current 
knowledge suggests the necessity and recom-
mendation of booster doses [62–67].

Centers for Disease Control and Pre-
vention (CDC) recommends using only three 
products: updated 2023–2024 formula of 
mRNA vaccines — SPIKEVAX (Moderna) 
and COMIRNATY (Pfizer-BioNTech), or 
protein subunit vaccine — NUVAVAX Ad-
juvanted. Simultaneously, the CDC recom-
mends specific vaccination schedules for im-
munocompetent individuals, with at least 
one dose of the updated COVID-19 vaccine 
[68]. A large Israeli study suggests a benefit 
of administering COVID-19 boosters every 
6 months in groups with the highest risk of 
COVID–19–related hospitalization or death 
[69].

There are no studies indicating changes 
in the function of the transplanted kidney after 
vaccination. However, available publications 
demonstrate the safety of vaccines for organ 
transplant recipients [61, 64]. In the Taheri ar-
ticle, it was noted that “no rejection episodes 
or graft failure post-booster vaccination were 
reported” [65]. Retrospective studies have 
shown reduced mortality in vaccinated immu-
nosuppressed patients [70].

CONCLUSION

With each subsequent wave of infections, 
the number of infected organ transplant re-
cipients increased. Simultaneously, their hos-
pitalization and mortality rates decreased as 

a consequence of the natural evolution of the 
virus  as well as the introduction of protective 
vaccinations, and the emergence of effective 
antiviral drugs [71]. However, it is important to 
remember the particular situation of patients 
using immunosuppressive drugs, which due to 
numerous interactions may act toxically. Tele-
medicine, enabling coordinated outpatient 
care, also significantly impacted this trend. 
Remote monitoring technologies can facili-
tate regular follow-ups, reduce the burden of 
hospital visits, and provide interventions when 
necessary [72].

Even though WHO declared the end of 
the COVID-19 pandemic on May 5, 2023 [73], 
in November and December 2023, Poland re-
corded the highest number of infections in the 
last six months [74]. Therefore, it is important 
to remember the importance of preventive 
measures. According to NIH guidelines, pa-
tients should take precautions to reduce the 
risk of infection (wearing masks, practicing 
good hand hygiene, avoiding crowded places) 
as well as protective vaccinations should be ad-
ministered. Due to the lower seroconversion 
rate, additional doses are recommended for 
immunocompromised individuals [53].

The lessons learned during the 
SARS-CoV-2 pandemic can also contribute to 
shaping future practices and preparedness for 
similar infectious disease outbreaks. Under-
standing the potential long-term implications 
of the infection for kidney transplant recipi-
ents is essential. Solid long-term studies are 
necessary to assess the durability of graft func-
tion and long-term outcomes in this vulnerable 
population. Understanding the mechanisms by 
which COVID-19 affects graft function will 
help guide therapeutic interventions and re-
fine immunosuppressive strategies in the fu-
ture.
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