dostęp otwarty

Tom 16, Nr 3 (2019)
Artykuł przeglądowy
Opublikowany online: 2019-07-18
Pobierz cytowanie

Terapeutyczne zastosowanie wybranych substancji psychoaktywnych

Bartosz Król1, Bogumiła Szewczak1, Emil Bartosz Rozenek1, Karolina Wilczyńska2, Napoleon Waszkiewicz2
Psychiatria 2019;16(3):154-162.
Afiliacje
  1. Studenckie Koło Naukowe przy Klinice Psychiatrii Uniwersytetu Medycznego w Białymstoku, Pl. Brodowicza 1, 16-070 Choroszcz, Polska
  2. Klinika Psychiatrii, Uniwersytet Medyczny w Białymstoku, Pl. Brodowicza 1, 16-070 Choroszcz, Polska

dostęp otwarty

Tom 16, Nr 3 (2019)
Artykuły przeglądowe
Opublikowany online: 2019-07-18

Streszczenie

Większość substancji o dużym potencjale nadużywania jest niedostępnych w legalnym obrocie. Zgodnie z aktualną
wiedzą medyczną wiele z nich może w przyszłości stanowić opcje terapeutyczne w leczeniu powszechnie występujących
schorzeń, których leczenie pomimo ogromnego postępu medycyny w ostatnich kilkudziesięciu latach nie zawsze
przynosi zadowalające efekty. Niniejsza praca jest przeglądem najważniejszych doniesień naukowych poświęconych
możliwościom wykorzystywania substancji psychoaktywnych w terapii. W celu lepszego zrozumienia przytaczanych
treści, przegląd uwzględnia również opis efektów działania uwzględnionych w nim substancji w aspekcie możliwego
potencjału leczniczego względem symptomów różnych zaburzeń.

Streszczenie

Większość substancji o dużym potencjale nadużywania jest niedostępnych w legalnym obrocie. Zgodnie z aktualną
wiedzą medyczną wiele z nich może w przyszłości stanowić opcje terapeutyczne w leczeniu powszechnie występujących
schorzeń, których leczenie pomimo ogromnego postępu medycyny w ostatnich kilkudziesięciu latach nie zawsze
przynosi zadowalające efekty. Niniejsza praca jest przeglądem najważniejszych doniesień naukowych poświęconych
możliwościom wykorzystywania substancji psychoaktywnych w terapii. W celu lepszego zrozumienia przytaczanych
treści, przegląd uwzględnia również opis efektów działania uwzględnionych w nim substancji w aspekcie możliwego
potencjału leczniczego względem symptomów różnych zaburzeń.

Pobierz cytowanie

Słowa kluczowe

substancje psychoaktywne, kannabidiol, psylocybina, THC, MDMA, LSD

Informacje o artykule
Tytuł

Terapeutyczne zastosowanie wybranych substancji psychoaktywnych

Czasopismo

Psychiatria

Numer

Tom 16, Nr 3 (2019)

Typ artykułu

Artykuł przeglądowy

Strony

154-162

Opublikowany online

2019-07-18

Wyświetlenia strony

1111

Wyświetlenia/pobrania artykułu

4065

Rekord bibliograficzny

Psychiatria 2019;16(3):154-162.

Słowa kluczowe

substancje psychoaktywne
kannabidiol
psylocybina
THC
MDMA
LSD

Autorzy

Bartosz Król
Bogumiła Szewczak
Emil Bartosz Rozenek
Karolina Wilczyńska
Napoleon Waszkiewicz

Referencje (85)
  1. Gabay M. The federal controlled substances act: schedules and pharmacy registration. Hosp Pharm. 2013; 48(6): 473–474.
  2. Koppel BS, Brust JCM, Fife T, et al. Systematic review: efficacy and safety of medical marijuana in selected neurologic disorders: report of the Guideline Development Subcommittee of the American Academy of Neurology. Neurology. 2014; 82(17): 1556–1563.
  3. Howlett AC, Barth F, Bonner TI, et al. International Union of Pharmacology. XXVII. Classification of cannabinoid receptors. Pharmacol Rev. 2002; 54(2): 161–202.
  4. Gdzie w Europie medyczna marihuana jest legalna? https://www.polityka.pl (13.09.2018).
  5. Huestis MA, Tyndale RF. Designer Drugs 2.0. Clin Pharmacol Ther. 2017; 101(1): 152–157.
  6. Rice J, Cameron M. Cannabinoids for Treatment of MS Symptoms: State of the Evidence. Curr Neurol Neurosci Rep. 2018; 18(8): 50.
  7. Gloss D. An Overview of Products and Bias in Research. Neurotherapeutics. 2015; 12(4): 731–734.
  8. Hillig KW, Mahlberg PG. A chemotaxonomic analysis of cannabinoid variation in Cannabis (Cannabaceae). Am J Bot. 2004; 91(6): 966–975.
  9. Pearce DD, Mitsouras K, Irizarry KJ. Discriminating the effects of Cannabis sativa and Cannabis indica: a web survey of medical cannabis users. J Altern Complement Med. 2014; 20(10): 787–791.
  10. Karimi-Haghighi S, Dargahi L, Haghparast A. Cannabidiol modulates the expression of neuroinflammatory factors in stress- and drug-induced reinstatement of methamphetamine in extinguished rats. Addict Biol. 2019 [Epub ahead of print].
  11. Yan X, Weng HR. Endogenous interleukin-1β in neuropathic rats enhances glutamate release from the primary afferents in the spinal dorsal horn through coupling with presynaptic N-methyl-D-aspartic acid receptors. J Biol Chem. 2013; 288(42): 30544–30557.
  12. Felger JC, Miller AH. Cytokine effects on the basal ganglia and dopamine function: the subcortical source of inflammatory malaise. Front Neuroendocrinol. 2012; 33(3): 315–327.
  13. Dwarkasing JT, Witkamp RF, Boekschoten MV, et al. Increased hypothalamic serotonin turnover in inflammation-induced anorexia. BMC Neurosci. 2016; 17(1): 26.
  14. Hutson LW, Lebonville CL, Jones ME, et al. Interleukin-1 signaling in the basolateral amygdala is necessary for heroin-conditioned immunosuppression. Brain Behav Immun. 2017; 62: 171–179.
  15. Kim J, Connelly KL, Unterwald EM, et al. Chemokines and cocaine: CXCR4 receptor antagonist AMD3100 attenuates cocaine place preference and locomotor stimulation in rats. Brain Behav Immun. 2017; 62: 30–34.
  16. Saika F, Kiguchi N, Wakida N, et al. Upregulation of CCL7 and CCL2 in reward system mediated through dopamine D1 receptor signaling underlies methamphetamine-induced place preference in mice. Neurosci Lett. 2018; 665: 33–37.
  17. Wakida N, Kiguchi N, Saika F, et al. CC-chemokine ligand 2 facilitates conditioned place preference to methamphetamine through the activation of dopamine systems. J Pharmacol Sci. 2014; 125(1): 68–73.
  18. Li H, Kong W, Chambers CR, et al. The non-psychoactive phytocannabinoid cannabidiol (CBD) attenuates pro-inflammatory mediators, T cell infiltration, and thermal sensitivity following spinal cord injury in mice. Cell Immunol. 2018; 329: 1–9.
  19. Szkutnik-Fiedler D, Sierżant M, Madziała J. The mechanisms of pain. Farm Współ. 2013; 6: 1–3.
  20. de Carvalho CR, Takahashi RN. Cannabidiol disrupts the reconsolidation of contextual drug-associated memories in Wistar rats. Addict Biol. 2017; 22(3): 742–751.
  21. Zajicek J, Fox P, Sanders H, et al. UK MS Research Group. Cannabinoids for treatment of spasticity and other symptoms related to multiple sclerosis (CAMS study): multicentre randomised placebo-controlled trial. Lancet. 2003; 362(9395): 1517–1526.
  22. Zajicek JP, Sanders HP, Wright DE, et al. Cannabinoids in multiple sclerosis (CAMS) study: safety and efficacy data for 12 months follow up. J Neurol Neurosurg Psychiatry. 2005; 76(12): 1664–1669.
  23. Zajicek JP, Hobart JC, Slade A, et al. MUSEC Research Group. Multiple sclerosis and extract of cannabis: results of the MUSEC trial. J Neurol Neurosurg Psychiatry. 2012; 83(11): 1125–1132.
  24. Wade DT, Makela P, Robson P, et al. Do cannabis-based medicinal extracts have general or specific effects on symptoms in multiple sclerosis? A double-blind, randomized, placebo-controlled study on 160 patients. Mult Scler. 2004; 10(4): 434–441.
  25. Hussain SA, Zhou R, Jacobson C, et al. Perceived efficacy of cannabidiol-enriched cannabis extracts for treatment of pediatric epilepsy: A potential role for infantile spasms and Lennox-Gastaut syndrome. Epilepsy Behav. 2015; 47: 138–141.
  26. Donat JF, Wright FS. Seizures in series: similarities between seizures of the West and Lennox-Gastaut syndrome. Epilepsia. 1991; 32(4): 504–509.
  27. Claes L, Ceulemans B, Audenaert D, et al. De novo mutations in the sodium-channel gene SCN1A cause severe myoclonic epilepsy of infancy. Am J Hum Genet. 2001; 68(6): 1327–1332.
  28. Mulley JC, Scheffer IE, Petrou S. SCN1A mutations and epilepsy. Hum Mutat. 2005; 25: 535–542.
  29. Dravet C, Bureau M, Oguni H. Severe myoclonic epilepsy in infancy. In: Roger J, Bureau M, Dravet C. ed. Epileptic syndromes in infancy, childhood and adolescence. Libbey, London 202: 81–104.
  30. Devinsky O, Patel AD, Cross JH, et al. GWPCARE3 Study Group. Effect of Cannabidiol on Drop Seizures in the Lennox-Gastaut Syndrome. N Engl J Med. 2018; 378(20): 1888–1897.
  31. FDA approves first drug comprised of an active ingredient derived from marijuana to treat rare, severe forms of epilepsy. https://www.fda.gov (14.09.2018).
  32. Passie T. The early use of MDMA (‘Ecstasy’) in psychotherapy (1977–1985). Drug Science, Policy and Law. 2018; 4: 205032451876744.
  33. Rozporządzenie Ministra Zdrowia z dnia 17 sierpnia 2018 r. w sprawie wykazu substancji psychotropowych, środków odurzających oraz nowych substancji psychoaktywnych. Dz. U. dnia 20 sierpnia 2018 r.
  34. Ustawa z dnia 29 lipca 2005 r. o przeciwdziałaniu narkomanii. Dz. U. 2005 Nr 179 Poz. 1485.
  35. Rusyniak DE, Sprague JE. Toxin-induced hyperthermic syndromes. Med Clin North Am. 2005; 89(6): 1277–1296.
  36. Parrott AC. Oxytocin, cortisol and 3,4-methylenedioxymethamphetamine: neurohormonal aspects of recreational 'ecstasy'. Behav Pharmacol. 2016; 27(8): 649–658.
  37. Quinton MS, Yamamoto BK. Causes and consequences of methamphetamine and MDMA toxicity. AAPS J. 2006; 8(2): E337–E347.
  38. Stein DJ, Ipser J, McAnda N. Pharmacotherapy of posttraumatic stress disorder: a review of meta-analyses and treatment guidelines. CNS Spectr. 2009; 14(1 Suppl 1): 25–31.
  39. Sharpless BA, Barber JP. A Clinician's Guide to PTSD Treatments for Returning Veterans. Prof Psychol Res Pr. 2011; 42(1): 8–15.
  40. Meyer JS. 3,4-methylenedioxymethamphetamine (MDMA): current perspectives. Subst Abuse Rehabil. 2013; 4: 83–99.
  41. Betzler F, Viohl L, Romanczuk-Seiferth N. Decision-making in chronic ecstasy users: a systematic review. Eur J Neurosci. 2017; 45(1): 34–44.
  42. Vollenweider FX, Liechti ME, Gamma A, et al. Acute psychological and neurophysiological effects of MDMA in humans. J Psychoactive Drugs. 2002; 34(2): 171–184.
  43. Hysek CM, Simmler LD, Schillinger N, et al. Pharmacokinetic and pharmacodynamic effects of methylphenidate and MDMA administered alone or in combination. Int J Neuropsychopharmacol. 2014; 17(3): 371–381.
  44. Bedi G, Hyman D, de Wit H. Is ecstasy an "empathogen"? Effects of ±3,4-methylenedioxymethamphetamine on prosocial feelings and identification of emotional states in others. Biol Psychiatry. 2010; 68(12): 1134–1140.
  45. Carhart-Harris RL, Wall MB, Erritzoe D, et al. The effect of acutely administered MDMA on subjective and BOLD-fMRI responses to favourite and worst autobiographical memories. Int J Neuropsychopharmacol. 2014; 17(4): 527–540.
  46. Thal SB, Lommen MJJ. Current Perspective on MDMA-Assisted Psychotherapy for Posttraumatic Stress Disorder. J Contemp Psychother. 2018; 48(2): 99–108.
  47. Mithoefer MC, Wagner MT, Mithoefer AT, et al. The safety and efficacy of {+/-}3,4-methylenedioxymethamphetamine-assisted psychotherapy in subjects with chronic, treatment-resistant posttraumatic stress disorder: the first randomized controlled pilot study. J Psychopharmacol. 2011; 25(4): 439–452.
  48. Mithoefer MC, Wagner MT, Mithoefer AT, et al. Durability of improvement in post-traumatic stress disorder symptoms and absence of harmful effects or drug dependency after 3,4-methylenedioxymethamphetamine-assisted psychotherapy: a prospective long-term follow-up study. J Psychopharmacol. 2013; 27(1): 28–39.
  49. Hake HS, Davis JKP, Wood RR, et al. 3,4-methylenedioxymethamphetamine (MDMA) impairs the extinction and reconsolidation of fear memory in rats. Physiol Behav. 2019; 199: 343–350.
  50. Oehen P, Traber R, Widmer V, et al. A randomized, controlled pilot study of MDMA (± 3,4-Methylenedioxymethamphetamine)-assisted psychotherapy for treatment of resistant, chronic Post-Traumatic Stress Disorder (PTSD). J Psychopharmacol. 2013; 27(1): 40–52.
  51. Kuypers K, Ramaekers J. Transient memory impairment after acute dose of 75mg 3.4-Methylene-dioxymethamphetamine. Journal of Psychopharmacology. 2016; 19(6): 633–639.
  52. Jager G, de Win MM, Vervaeke HK, et al. Incidental use of ecstasy: no evidence for harmful effects on cognitive brain function in a prospective fMRI study. Psychopharmacology (Berl). 2007; 193(3): 403–414.
  53. Greene SL, Kerr F, Braitberg G. Review article: amphetamines and related drugs of abuse. Emerg Med Australas. 2008; 20(5): 391–402.
  54. Passie T. The early use of MDMA (‘Ecstasy’) in psychotherapy (1977–1985). Drug Science, Policy and Law. 2018; 4: 205032451876744.
  55. American Psychiatric Association. Diagnostic and statistical manual of mental Disorders. 5th Edition. American Psychiatric Association Publishing, Washington 2013.
  56. Bouso JC, Doblin R, Farré M, et al. MDMA-assisted psychotherapy using low doses in a small sample of women with chronic posttraumatic stress disorder. J Psychoactive Drugs. 2008; 40(3): 225–236.
  57. Eliade M. Schamanismus und archaische Ekstasetechnik. Suhrkamp, Frankfurt 1975.
  58. Schultes RE, Hofmann A. Plants of the Gods: Origins of Hallucinogenic Use. Hutchinson, London 1980.
  59. Liechti ME. Modern Clinical Research on LSD. Neuropsychopharmacology. 2017; 42(11): 2114–2127.
  60. Nichols DE. Psychodelics. Pharmacol Rev. 2016; 68(2): 264–355.
  61. Dyck E. ‘Hitting Highs at Rock Bottom’: LSD Treatment for Alcoholism, 1950–1970. Social History of Medicine. 2006; 19(2): 313–329.
  62. Dyck E. Prairie psychedelics mental health research in Saskatchewan, 1951-1967. In: Moran JE, Wright D. ed. Mental Health and Canadian Society Historical Perspectives. McGill-Queen’s University Press, Montreal 2006.
  63. Krebs TS, Johansen PØ. Lysergic acid diethylamide (LSD) for alcoholism: meta-analysis of randomized controlled trials. J Psychopharmacol. 2012; 26(7): 994–1002.
  64. Rösner S, Hackl-Herrwerth A, Leucht S, et al. Acamprosate for alcohol dependence. Cochrane Database Syst Rev. 2010(9): CD004332.
  65. Rösner S, Hackl-Herrwerth A, Leucht S, et al. Opioid antagonists for alcohol dependence. Cochrane Database Syst Rev. 2010(12): CD001867.
  66. Krampe H, Ehrenreich H. Supervised disulfiram as adjunct to psychotherapy in alcoholism treatment. Curr Pharm Des. 2010; 16(19): 2076–2090.
  67. Gasser P, Kirchner K, Passie T. LSD-assisted psychotherapy for anxiety associated with a life-threatening disease: a qualitative study of acute and sustained subjective effects. J Psychopharmacol. 2015; 29(1): 57–68.
  68. Passie T, Seifert J, Schneider U, et al. The pharmacology of psilocybin. Addict Biol. 2002; 7(4): 357–364.
  69. Madsen MK, Fisher PM, Burmester D, et al. Correction: Psychedelic effects of psilocybin correlate with serotonin 2A receptor occupancy and plasma psilocin levels. Neuropsychopharmacology. 2019; 44(7): 1336–1337.
  70. Carhart-Harris RL, Erritzoe D, Williams T, et al. Neural correlates of the psychedelic state as determined by fMRI studies with psilocybin. Proc Natl Acad Sci U S A. 2012; 109(6): 2138–2143.
  71. Nichols DE. Hallucinogens. Pharmacol Ther. 2004; 101(2): 131–181.
  72. Qesseveur G, Petit AC, Nguyen HT, et al. Genetic dysfunction of serotonin 2A receptor hampers response to antidepressant drugs: A translational approach. Neuropharmacology. 2016; 105: 142–153.
  73. Petit AC, Quesseveur G, Gressier F, et al. Converging translational evidence for the involvement of the serotonin 2A receptor gene in major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2014; 54: 76–82.
  74. Carhart-Harris RL, Roseman L, Bolstridge M, et al. Psilocybin for treatment-resistant depression: fMRI-measured brain mechanisms. Sci Rep. 2017; 7(1): 13187.
  75. Raichle ME, MacLeod AM, Snyder AZ, et al. A default mode of brain function. Proc Natl Acad Sci U S A. 2001; 98(2): 676–682.
  76. Andrews-Hanna JR, Reidler JS, Huang C, et al. Evidence for the default network's role in spontaneous cognition. J Neurophysiol. 2010; 104(1): 322–335.
  77. Greicius MD, Krasnow B, Reiss AL, et al. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci U S A. 2003; 100(1): 253–258.
  78. Long XY, Zuo XN, Kiviniemi V, et al. Default mode network as revealed with multiple methods for resting-state functional MRI analysis. J Neurosci Methods. 2008; 171(2): 349–355.
  79. McKiernan KA, Kaufman JN, Kucera-Thompson J, et al. A parametric manipulation of factors affecting task-induced deactivation in functional neuroimaging. J Cogn Neurosci. 2003; 15(3): 394–408.
  80. Salvador R, Suckling J, Schwarzbauer C, et al. Undirected graphs of frequency-dependent functional connectivity in whole brain networks. Philos Trans R Soc Lond B Biol Sci. 2005; 360(1457): 937–946.
  81. Mulders PCR, van Eijndhoven PFP, Pluijmen J, et al. Default mode network coherence in treatment-resistant major depressive disorder during electroconvulsive therapy. J Affect Disord. 2016; 205: 130–137.
  82. Carhart-Harris RL, Muthukumaraswamy S, Roseman L, et al. Neural correlates of the LSD experience revealed by multimodal neuroimaging. Proc Natl Acad Sci U S A. 2016; 113(17): 4853–4858.
  83. Wilcox JA, Wilcox JA. Fluoxetine and obsessive-compulsive disorder: a naturalistic study. J Psychoactive Drugs. 1990; 22(3): 355–356.
  84. Moreno FA, Wiegand CB, Taitano EK, et al. Safety, tolerability, and efficacy of psilocybin in 9 patients with obsessive-compulsive disorder. J Clin Psychiatry. 2006; 67(11): 1735–1740.
  85. Nutt D, King LA, Saulsbury W, et al. Development of a rational scale to assess the harm of drugs of potential misuse. Lancet. 2007; 369(9566): 1047–1053.

Regulamin

Ważne: serwis https://journals.viamedica.pl/ wykorzystuje pliki cookies. Więcej >>

Używamy informacji zapisanych za pomocą plików cookies m.in. w celach statystycznych, dostosowania serwisu do potrzeb użytkownika (np. język interfejsu) i do obsługi logowania użytkowników. W ustawieniach przeglądarki internetowej można zmienić opcje dotyczące cookies. Korzystanie z serwisu bez zmiany ustawień dotyczących cookies oznacza, że będą one zapisane w pamięci komputera. Więcej informacji można znaleźć w naszej Polityce prywatności.

Czym są i do czego służą pliki cookie możesz dowiedzieć się na stronie wszystkoociasteczkach.pl.

Wydawcą serwisu jest VM Media Group sp z o.o., ul. Świętokrzyska 73, 80–180 Gdańsk

tel.:+48 58 320 94 94, faks:+48 58 320 94 60, e-mail:  viamedica@viamedica.pl