Supplementary material

Pruc M, Kubica J, Banach M, et al. Diagnostic and prognostic performance of neutrophil-tolymphocyte ratio in acute coronary syndromes: A meta-analysis of 90 studies including 45 990 patients. Pol Heart J. 2024.

Please note that the journal is not responsible for the scientific accuracy or functionality of any supplementary material submitted by the authors. Any queries (except missing content) should be directed to the corresponding author of the article.

CONTENT

FULL LIST OF PUBLICATIONS INCLUDED IN THE META-ANALYSIS	2
TABLE S1. PRISMA CHECKLIST.	9
TABLE S2. MAJOR CARDIOVASCULAR EVENTS (MACE) DEFINITION ACROSS INCLUDED	
TRIALS.	13
TABLE S3. BASELINE CHARACTERISTICS OF INCLUDED TRIALS.	14

Full list of publications included in the meta-analysis

- 1. Adam AM, Rizvi AH, Haq A, et al. Prognostic value of blood count parameters in patients with acute coronary syndrome. Indian Heart J. 2018;70(2):233-240. doi: 10.1016/j.ihj.2017.06.017.
- 2. Ahmed WMK, Samy E, Radwan WA, et al. Association Between Leukocytes: Absolute and Differential Ratios with Major Adverse Cardiac Cerebrovascular Events in ST-Elevation Myocardial Infarction Patients: Egyptian PCI-Capable Center Experience. The Egyptian Journal of Critical Care Medicine 2020;7(3): 86-91. http://dx.doi.org/10.1097/EJ9.000000000000014.
- 3. Akhter N, Khan AR, Farooq H, et al. Total Neutrophil Count and Neutrophil/Lymphocyte Ratio in Predicting In-Hospital Mortality and Complications after St Segment Elevation Myocardial Infarction. APMC 2023;17(1):1-5. DOI: 10.29054/APMC/2023.1361
- 4. Alamin OASO, AbdAllah Hassan SO, Giha GA. Disparity of risk factors and concordance of NLR with Gensini score in acute coronary syndrome in an Afro-Arab multiethnic nation J. Cardiology Research and Reports 2022; 5(2):1-9; DOI:10.31579/2692-9759/038
- 5. Algın A, Özdemir S. Comparison of the monocyte-to- HDL cholesterol ratio between patients with STEMI and NSTEMI: A retrospective observational study. Journal of Clinical Medicine of Kazakhstan: 2021; 18(6): 45-49. https://doi.org/10.23950/jcmk/11326
- 6. Babes,E.E.; Zaha,D.C.; Tit, D.M; et al. Value of Hematological and Coagulation Parameters as Prognostic Factors in Acute Coronary Syndromes. Diagnostics 2021, 11, 850. https://doi.org/10.3390/ diagnostics11050850
- 7. Bajari R, Tak S. Predictive prognostic value of neutrophil–lymphocytes ratio in acute coronary syndrome. Indian Heart J. 2017; 69 Suppl 1(Suppl 1):S46-S50. doi: 10.1016/j.ihj.2017.01.020.
- Laksman Bandara HGWAP, Jegavanthan A, Kogulan T, et al. The pattern of onadmission hematological cellular response in patients with ST segment elevated myocardial infarction. Journal of the Postgraduate Institute of Medicine 2018; 5 (1): E69 1-10. <u>http://doi.org/10.4038/jpgim.8182</u>
- 9. Bekler A, Ozkan MT, Tenekecioglu E, et al. Increased Platelet Distribution Width Is Associated With Severity of Coronary Artery Disease in Patients With Acute Coronary Syndrome. Angiology. 2015;66(7):638-43. doi: 10.1177/0003319714545779.
- 10. Biccirè FG, Barillà F, Sammartini E, et al. Relationship between non-invasively detected liver fibrosis and in-hospital outcomes in patients with acute coronary syndrome undergoing PCI. Clin Res Cardiol. 2023;112(2):236-246. doi: 10.1007/s00392-022-02078-z.
- 11. Çaltekin I, Demirtaş E. Is platelet to monocyte ratIo a useful Inflammatory determInant of st-elevatIon myocardIal InfarctIon?. Disaster and Emergency Medicine Journal 2020; 5(4): 205–211 DOI: 10.5603/DEMJ.a2020.0045
- 12. Canga Y, Guvenc TS, Calik AN, et al. Systemic inflammatory activation in patients with acute coronary syndrome secondary to nonatherosclerotic spontaneous coronary artery dissection. North Clin Istanb 2018;5(3):186–194.
- 13. Cao J, Li R, He T, et al. Role of combined use of mean platelet volume-to-lymphocyte ratio and monocyte to high-density lipoprotein cholesterol ratio in predicting patients with acute myocardial infarction. J Cardiothorac Surg. 2023 May 6;18(1):172. doi: 10.1186/s13019-023-02268-4.

- Chawla A, Karigoudar MH, Reddy AK, et al. The Study of Correlation between Different Complete Blood Count Parameters in Acute Coronary Syndromes. National Journal of Laboratory Medicine. 2019; 8(4):PO13-PO16. DOI: 10.7860/NJLM/2019/42234:2367
- 15. Chen B, Yuan L, Chen X, et al. Correlations and Prognostic Roles of the Nutritional Status and Neutrophil-to-lymphocyte Ratio in Elderly Patients with Acute Myocardial Infarction Undergoing Primary Coronary Intervention. Int Heart J . 2020;61(6):1114-1120. doi: 10.1536/ihj.20-138.
- 16. Chen Y, Chen S, Han Y, et al. Neutrophil-to-Lymphocyte Ratio and Platelet-to-Lymphocyte Ratio are Important Indicators for Predicting in-Hospital Death in Elderly AMI Patients. J Inflamm Res. 2023;16:2051-2061. doi: 10.2147/JIR.S411086.
- 17. Dong H, Xiao D, Tang Y. Serum cystatin C predicts the risk of non-ST-elevation acute coronary syndrome. J Cardiothorac Surg. 2023; 18(1):351. doi: 10.1186/s13019-023-02465-1.
- 18. Halil Damar IH, Eroz R. May Argyrophilic Nucleolar Organizer Regions be the New Marker of a Hypoxic Response in Non ST Elevation Myocardial Infarction? Konuralp Medical Journal 2022;14(1): 132-141. DOI: 10.18521/ktd.1073568.
- 19. Hoang Ngo T, Tran Khuong Nguyen N, Thi Ngoc Pham N, et al. The combination of CYP2C19 polymorphism and inflammatory cell ratios in prognosis cardiac adverse events after acute coronary syndrome. Int J Cardiol Cardiovasc Risk Prev. 2023; 19:200222.
- 20. Damar, I[.]H.; Eroz, R. Argyrophilic Nucleolar Organizer Regions as New Biomarkers in ST-Elevation Myocardial Infarction. J. Cardiovasc. Dev. Dis. 2022, 9, 58. https://doi.org/10.3390/jcdd9020058
- 21. Dehghani MR, Rezaei Y, Taghipour-Sani L. Superiority of total white blood cell count over other leukocyte differentials for predicting long-term outcomes in patients with non-ST elevation acute coronary syndrome. Biomarkers, 2014; 19(5): 378–384. DOI: 10.3109/1354750X.2014.915429.
- 22. Del Turco, S.; Bastiani, L.; Minichilli, F.; et al. Interaction of Uric Acid and Neutrophil-to-Lymphocyte Ratio for Cardiometabolic Risk Stratification and Prognosis in Coronary Artery Disease Patients. Antioxidants 2022, 11,2163. https://doi.org/10.3390/ antiox11112163
- 23. Erdoğan M, Ozturk S, Tutar EO, et al. Association between Plasma Thiol Parameters and Troponin Levels in Patients with Acute Coronary Syndrome and Prediction of In-Hospital Ventricular Arrhythmia. Arq Bras Cardiol. 2021; 117(3):465-473. DOI: <u>https://doi.org/10.36660/abc.20190672</u>
- 24. Ertürk M, Turhan Caglar FN, B1y1k I, et al. Correlations between hematological indicators and other known markers in acute coronary syndromes. EJCM 2017; 05 (4): 67-74. Doi: 10.15511/ejcm.17.00467.
- 25. Ghaffari S, Nadiri M, Pourafkari L, et al. The Predictive Value of Total Neutrophil Count and Neutrophil/Lymphocyte Ratio in Predicting In-hospital Mortality and Complications after STEMI. J Cardiovasc Thorac Res 2014; 6(1): 35-41. doi: 10.5681/jcvtr.2014.007.
- 26. Gu LF, Gu J, Wang SB, et al. Combination of D-dimer level and neutrophil to lymphocyte ratio predicts long-term clinical outcomes in acute coronary syndrome after percutaneous coronary intervention. Cardiol J. 2023;30(4):576-586. doi: 10.5603/CJ.a2021.0097.
- 27. Guclu K, Celik M. Prognostic Value of Inflammation Parameters in Patients With Non-ST Elevation Acute Coronary Syndromes. Angiology. 2020;71(9):825-830. doi: 10.1177/0003319720936500.

- 28. Gunes H, Saritas A, Cangur S, et al. Complete Blood Count Parameters for Prediction of non-ST Segment Elevation Myocardial Infarction. J Coll Physicians Surg Pak. 2019;29(8):710-714. doi: 10.29271/jcpsp.2019.08.710.
- 29. Guo TM, Cheng B, Ke L, et al. Prognostic Value of Neutrophil to Lymphocyte Ratio for In-hospital Mortality in Elderly Patients with Acute Myocardial Infarction. Curr Med Sci. 2018;38(2):354-359. doi: 10.1007/s11596-018-1887-0.
- 30. Haque R, Hafiz FB, Habib A, et al. Role of complete blood count, antioxidants, and total antioxidant capacity in the pathophysiology of acute coronary syndrome. Rumana Haque et al. / Afr.J.Bio.Sc. 2022; 4(1): 37-47. doi.org/10.33472/AFJBS.4.1.2022.37-47
- 31. Hartopo AB, Puspitawati I, Setianto BY. On-admission High Neutrophil to Lymphocyte Ratio as Predictor of In-hospital Adverse Cardiac Event in ST-elevation Myocardial Infarction. Acta Med Indones. 2015; 47(1):3-10.
- 32. Her AY, Cho KI, Singh GB, et al. Plaque characteristics and inflammatory markers for the prediction of major cardiovascular events in patients with ST-segment elevation myocardial infarction. Int J Cardiovasc Imaging . 2017;33(10):1445-1454. doi: 10.1007/s10554-017-1135-x.
- 33. Huang G, Zhong XN, Zhong B, et al. Significance of white blood cell count and its subtypes in patients with acute coronary syndrome. Eur J Clin Invest. 2009 May;39(5):348-58. doi: 10.1111/j.1365-2362.2009.02107.x.
- 34. Immanuel S, Ginanjar E, Nurtyas FIP, et al. The Role of Neutrophil Lymphocyte Ratio as a Major Adverse Cardiac Events Predictor and Its Correlation with Coronary Severity in Acute Coronary Syndrome Patients with Chronic Kidney Disease: A Case Control and Cross-Sectional Study. Open Access Maced J Med Sci. 2021 Dec 21; 9(B):1758-1763. <u>https://doi.org/10.3889/oamjms.2021.7488</u>
- 35. Jadhav DV, Muley D, Deshmukh S. Effect of white blood cell indices and glycemia on inhospital prognosis of ST-segment elevated myocardial infarction. J Clin Prev Cardiol 2022;11:10-4. DOI: 10.4103/jcpc.jcpc_52_21
- Kahraman F, Yılmaz AS, Demir M, et al. APACHE II score predicts in-hospital mortality more accurately than inflammatory indices in patients with acute coronary syndrome. Kardiologiia. 2022 Sep 30;62(9):54-59. doi: 10.18087/cardio.2022.9.n1979.
- 37. Karadeniz FÖ, Karadeniz Y, Altuntaş E. Systemic immune–inflammation index, and neutrophil- to-lymphocyte and platelet-to-lymphocyte ratios can predict clinical outcomes in patients with acute coronary syndrome. Cardiovasc J Afr. 2023 May 5:34:1-7. doi: 10.5830/CVJA-2023-011.
- Karaoğlu U, Bulut M, Omar T. Predictive Value of Hematological Parameters in Non-ST Segment Elevation Myocardial Infarction and Their Relationship with the TIMI Risk Score. Journal of Cardiovascular Emergencies 2021;7(4):116-122. DOI: 10.2478/jce-2021-0018
- 39. Konishi T, Funayama N, Yamamoto T, et al. Prognostic Value of Eosinophil to Leukocyte Ratio in Patients with ST-Elevation Myocardial Infarction Undergoing Primary Percutaneous Coronary Intervention. J Atheroscler Thromb. 2017;24(8):827-840. doi: 10.5551/jat.37937.
- 40. Leylek HE, Durak VA, Köksal Ö. Relationship Between Modifiable Risk Factors and Blood Cell Types in Acute Coronary Syndrome and Estimation of Mortality in Emergency Department. Anatolian J Emerg Med 2020;3(4); 111-116.
- 41. Li Z, Wu J, Wei W, et al. Association of Serum miR-186-5p With the Prognosis of Acute Coronary Syndrome Patients After Percutaneous Coronary Intervention. Front. Physiol. 2019; 10:686. doi: 10.3389/fphys.2019.00686

- 42. Li XT, Fang H, Li D, et al. Association of platelet to lymphocyte ratio with in-hospital major adverse cardiovascular events and the severity of coronary artery disease assessed by the Gensini score in patients with acute myocardial infarction. Chin Med J (Engl). 2020; 133(4):415-423. doi: 10.1097/CM9.00000000000650.
- 43. Li Q, Ma X, Shao Q, et al. (2022) Prognostic Impact of Multiple Lymphocyte-Based Inflammatory Indices in Acute Coronary Syndrome Patients. Front. Cardiovasc. Med. 9:811790. doi: 10.3389/fcvm.2022.811790
- 44. Lin G, Dai C, Xu K, et al. Predictive value of neutrophil to lymphocyte ratio and red cell distribution width on death for ST segment elevation myocardial infarction. Sci Rep. 2021; 11(1):11506. doi: 10.1038/s41598-021-91082-w.
- 45. Ling Y, Weng H, Tang S. The relationship between IL-6 levels and the angiographic severity of coronary artery disease following percutaneous coronary intervention in acute coronary syndrome patients. BMC Cardiovasc Disord. 2021; 21(1):578. doi: 10.1186/s12872-021-02406-7.
- 46. Mansiroglu AK, Sincer I, Gunes Y. Assessment of neutrophil and neutrophil/lymphocyte ratio in coronary collateral developed patients with acute coronary syndrome. Rev Assoc Med Bras (1992). 2020; 66(7):954-959. doi: 10.1590/1806-9282.66.7.954.
- 47. Maréchal P, Tridetti J, Nguyen ML, et al. Neutrophil Dynamics in Acute Coronary Syndrome. J. Clin. Med. 2020; 9:1602; doi:10.3390/jcm9051602
- 48. Mayyas FA, Al-Jarrah MI, Ibrahim KS, et al. Level and significance of plasma myeloperoxidase and the neutrophil to lymphocyte ratio in patients with coronary artery disease. Exp Ther Med. 2014; 8(6):1951-1957. doi: 10.3892/etm.2014.2034.
- 49. Monteiro Junior JGdM, Torres DdOC, da Silva MCFC, et al. (2018) Prognostic value of hematological parameters in patients with acute myocardial infarction: Intrahospital outcomes. PLoS ONE 13(4): e0194897. https://doi.org/10.1371/journal.pone.0194897
- 50. Mustafic S, Ibralic AM, Loncar D. Association of Inflammatory and Hemostatic Parameters With Values of High Sensitive Troponin in Patients With Acute Coronary Syndrome. Med Arch. 2022; 76(2):84-89. doi: 10.5455/medarh.2022.76.84-89.
- 51. Nilsson L, Wieringa WG, Pundziute G, et al. Neutrophil/Lymphocyte ratio is associated with non-calcified plaque burden in patients with coronary artery disease. PLoS One. 2014; 9(9):e108183. doi: 10.1371/journal.pone.0108183.
- 52. Oh PC, Eom YS, Moon J, et al. Addition of routine blood biomarkers to TIMI risk score improves predictive performance of 1-year mortality in patients with ST-segment elevation myocardial infarction. BMC Cardiovasc Disord. 2020; 20(1):486. doi: 10.1186/s12872-020-01777-7.
- 53. Oncel RC, Ucar M, Karakas MS, et al. Relation of neutrophil-to-lymphocyte ratio with GRACE risk score to in-hospital cardiac events in patients with ST-segment elevated myocardial infarction. Clin Appl Thromb Hemost. 2015; 21(4):383-8. doi: 10.1177/1076029613505763.
- 54. Özbay S, Coskun A, Eren SH. Can Platelet/Mean Platelet Volume ratio, Neutrophil/ lymphocyte ratio, and Procalcitonin used for Predicting Prognosis in Acute Coronary Syndrome?. J Anesthesiol & Pain Therapy. 2020; 1(1):4-10.
- 55. Oztürk S, Erdem A, Ozlü MF, et al. Assessment of the neutrophil to lymphocyte ratio in young patients with acute coronary syndromes. Turk Kardiyol Dern Ars. 2013; 41(4):284-9. doi: 10.5543/tkda.2013.00344.
- 56. Paul CT, Thyagaraj V, Hegde S. Role of Neutrophil-Lymphocyte Ratio as Short- Term Outcome Prognostic Indicator Following an Acute ST Segment Elevation Myocardial

Infarction-A Prospective Observational Study. Journal of Clinical and Diagnostic Research. 2021; 15(12):OC11-OC15. DOI: 10.7860/JCDR/2021/51766.15719

- 57. Pieszko K, Hiczkiewicz J, Budzianowski P, et al. Predicting Long-Term Mortality after Acute Coronary Syndrome Using Machine Learning Techniques and Hematological Markers. Dis Markers. 2019; 2019:9056402. doi: 10.1155/2019/9056402.
- 58. Quisi A, Almadhoun H, Alıcı G, et al. The relationship between serum rheumatoid factor level and SYNTAX score I in patients with acute myocardial infarction. Turk Kardiyol Dern Ars. 2021; 49(8):666-674. doi: 10.5543/tkda.2021.22457.
- 59. Rao BSS, Kumar KS, Shanthi V, et al. Prognostic Significance of Hematological Parameters in Assessing Risk of Myocardial Infarction: Comparative Study in Myocardial Infarction Patients and Healthy Controls. Byna Syam Sundara Rao et al.; Saudi J Pathol Microbiol, Sep. 2019; 4(9): 640-645. DOI:10.36348/SJPM.2019.v04i09.002
- 60. Selanno Y, Darmawaty ER, Wibawa SY, et al. Analysis of NLR, HDL, and Hs-Troponin I as A Diagnostic Marker in STEMI and NSTEMI Patients. Indonesian Journal of Clinical Pathology and Medical Laboratory 2022; 29(1):38 – 42.
- 61. Setianingrum E, Ap P. THE DIFFERENCE BETWEEN ABSOLUTE NEUTROPHILS.NEUTROPHIL/ LYMPHOCYTE RATIO AND PLATELET/LYMPHOCYTE RATIO IN NORMAL, NSTEMI, STEMI PATIENTS. Indonesian Journal of Clinical Pathology and Medical Laboratory 2019; 25(3): 268 -273.
- 62. Sharma KH, Shah KH, Patel I, et al. Do circulating blood cell types correlate with modifiable risk factors and outcomes in patients with acute coronary syndrome (ACS)? Indian Heart J. 2015; 67(5):444-51. doi: 10.1016/j.ihj.2015.06.005.
- 63. Sharma DJ Sr, Nath HJ, Batta A, et al. Neutrophil-to-Lymphocyte Ratio (NLR) Useful as a Cost-Effective Preliminary Prognostic Marker in ST-Elevation Myocardial Infarction (STEMI): An Observational Study From a Tertiary Care Hospital in Northeast India. Cureus. 2023; 15(3):e36885. doi: 10.7759/cureus.36885.
- 64. Sheng J, Liu N, He F, et al. Changes in the neutrophil-to-lymphocyte and plate- let-tolymphocyte ratios before and after percuta- neous coronary intervention and their impact on the prognosis of patients with acute coronary syndrome. Clinics (Sao Paulo). 2021; 76: e2580. doi: 10.6061/clinics/2021/e2580
- 65. Shumilah AM, Othman AM, Al-Madhagi AK. Accuracy of neutrophil to lymphocyte and monocyte to lymphocyte ratios as new inflammatory markers in acute coronary syndrome. BMC Cardiovasc Disord. 2021 Sep 7;21(1):422. doi: 10.1186/s12872-021-02236-7.
- 66. Siddig OMM, Abdalla SE, Homri NKH, et al. Diagnosis and Prognosis of Cardiovascular Disease by Inflammatory Markers (Neutrophil Lymphocyte Ratio and Platelet Lymphocyte Ratio). International Journal of Innovative Science and Research Technology 2020; 5(1): 353-358.
- 67. Sigirci S, Ser ÖS, Keskin K, et al. Comparing the Prognostic Value of Hematological Indices in Patients With ST Segment Elevation Myocardial Infarction: "A Head to Head" Analysis. Angiology. 2021; 72(4):348-354. doi: 10.1177/0003319720977754.
- 68. Siraj J, Ali U, Ahmed T, et al. Frequency of In Hospital Mortality in Patients with High Neutro- phil/Lymphocyte Ratio Presenting with ST Elevation Myocardial Infarction. Pak Heart J 2020; 53(01):58-63.
- 69. Sivri S, Kasapkara HA, Polat M, et al. Dynamic thiol/disulphide homeostasis and its prognostic value in patients with non-ST elevation-acute coronary syndromes. Kardiol Pol. 2018; 76(2):426-432. doi: 10.5603/KP.a2017.0208.

- 70. Sonmez E, Turkdogan KA, Karabacak M, et al. The diagnostic role of signal peptide– C1r/C1s, Uegf, and Bmp1–epidermal growth factor domain-containing protein 1 in non–ST-elevation acute coronary syndrome. Am J Emerg Med. 2015; 33(1):21-4. doi: 10.1016/j.ajem.2014.09.047.
- 71. Sultana S, K M, Prakash V, et al. Evaluation of Uric Acid to Albumin Ratio as a Marker of Coronary Artery Disease Severity in Acute Coronary Syndrome: A Cross-Sectional Study. Cureus 2023; 15(11): e49454. doi:10.7759/cureus.49454
- 72. Tahto E, Jadric R, Pojskic L, et al. Neutrophil-to-lymphocyte Ratio and Its Relation with Markers of Inflammation and Myocardial Necrosis in Patients with Acute Coronary Syndrome. Med Arch. 2017; 71(5):312-315. doi: 10.5455/medarh.2017.71.312-315.
- 73. Tanındı A, Erkan AF, Ekici B, et al. Neutrophil to lymphocyte ratio is associated with more extensive, severe and complex coronary artery disease and impaired myocardial perfusion. Turk Kardiyol Dern Ars. 2014; 42(2):125-30. doi: 10.5543/tkda.2014.18949.
- 74. Tanriverdi Z, Colluoglu T, Dursun H, et al. The Relationship between neutrophil-tolymphocyte ratio and fragmented QRS in acute STEMI patients treated with primary PCI. J Electrocardiol. 2017; 50(6):876-883. doi: 10.1016/j.jelectrocard.2017.06.011.
- 75. Tenekecioglu E, Yilmaz M, Yontar OC, et al. Red blood cell distribution width is associated with myocardial injury in non-ST-elevation acute coronary syndrome. Clinics (Sao Paulo). 2015; 70(1):18-23. doi: 10.6061/clinics/2015(01)04.
- 76. Topf, A.; Mirna, M.; Bacher, N.; et al. Differences of Hemogram Parameters and Their Ratios among Patients with Takotsubo Syndrome, Acute Coronary Syndrome and Healthy Individuals. Life 2022; 12:788. https://doi.org/10.3390/life12060788
- 77. Tsai WC, Wu KY, Lin GM, et al. Clinical Characteristics of Patients Less than Forty Years Old with Coronary Artery Disease in Taiwan: A Cross-Sectional Study. Acta Cardiol Sin. 2017; 33(3):233-240. doi: 10.6515/acs20161026a.
- 78. Turkmen S, Dogdu O, Tekin K, et al. The relationship between neutrophil/lymphocyte ratio and the TIMI flow grade in patients with STEMI undergoing primary PCI. Eur Rev Med Pharmacol Sci. 2013; 17(16):2185-9.
- 79. Wang Z, Wang J, Cao D, et al. Correlation of neutrophil-to- lymphocyte ratio with the prognosis of non-ST-segment elevation in patients with acute coronary syndrome undergoing selective percutaneous coronary intervention. J Int Med Res. 2020; 48(10):300060520959510. doi: 10.1177/0300060520959510.
- 80. Wang Y, Wang W, Jia S, et al. Development of a nomogram for the prediction of inhospital mortality in patients with acute ST- elevation myocardial infarction after primary percutaneous coronary intervention: a multicentre, retrospective, observational study in Hebei province, China. BMJ Open 2022; 12:e056101. doi:10.1136/ bmjopen-2021-056101
- 81. Yan XN, Jin JL, Zhang M, et al. Differential leukocyte counts Open Access and cardiovascular mortality in very old patients with acute myocardial infarction: a Chinese cohort study. BMC Cardiovasc Disord . 2020; 20(1):465. doi: 10.1186/s12872-020-01743-3.
- 82. Yu C, Chen M, Chen Z, et al. Predictive and prognostic value of admission neutrophilto-lymphocyte ratio in patients with CHD. Herz. 2016 Nov;41(7):605-613. doi: 10.1007/s00059-015-4399-8.
- 83. Zazula AD, Précoma-Neto D, Gomes AM, et al. An Assessment of Neutrophils/Lymphocytes Ratio in Patients Suspected of Acute Coronary Syndrome. Arq Bras Cardiol. 2008; 90(1):31-6. doi: 10.1590/s0066-782x2008000100006.

- 84. Zhan Y, Xu T, Tan X. Two parameters reflect lipid-driven inflammatory state in acute coronary syndrome: atherogenic index of plasma, neutrophil–lymphocyte ratio. BMC Cardiovasc Disord. 2016; 16:96. doi: 10.1186/s12872-016-0274-7.
- 85. Zhang GY, Chen M, Yu ZM, et al. Relation between neutrophil-to-lymphocyte ratio and severity of coronary artery stenosis. Genetics and Molecular Research 2014; 13(4):9382-9389.
- Zhang E, Li Z, Che J, et al. Anemia and Inflammation in ST-Segment Elevation Myocardial Infarction. Am J Med Sci. 2015 Jun;349(6):493-8. doi: 10.1097/MAJ.00000000000471.
- 87. Zhang C, Liu H, Wang H, et al. The Predictive Value of Potential Hematological Biomarkers in Acute Coronary Syndrome. Clin. Lab. 2019; 65:1797-1806. DOI: 10.7754/Clin.Lab.2019.181232.
- Zhang L, Hailati J, Ma X, et al. Analysis of risk factors for different subtypes of acute coronary syndrome. J Int Med Res. 2021;49(5):3000605211008326. doi: 10.1177/03000605211008326.
- 89. Zhang JI, Yang R, Zhu Y, Shao Y, Ji Y, Wang FF. Association between the neutrophilto-lymphocyte ratio and risk of in- hospital heart failure and arrhythmia in patients with acute myocardial infarction. Front. Cardiovasc. Med. 2023; 10:1275713. doi: 10.3389/fcvm.2023.1275713.
- 90. Zuin M, Rigatelli G, Picariello C, et al. Correlation and prognostic role of neutrophil to lymphocyte ratio and SYNTAX score in patients with acute myocardial infarction treated with percutaneous coronary intervention: A six-year experience. Cardiovasc Revasc Med. 2017; 18(8):565-571. doi: 10.1016/j.carrev.2017.05.007.

Table S1. PRISMA checklist

Section and Topic	Item #	Checklist item	Location where item is reported
TITLE	I		
Title	1	Identify the report as a systematic review.	1
ABSTRACT	1		
Abstract	2	See the PRISMA 2020 for Abstracts checklist.	2
INTRODUCTI	ON		
Rationale	3	Describe the rationale for the review in the context of existing knowledge.	3
Objectives	4	Provide an explicit statement of the objective(s) or question(s) the review addresses.	3
METHODS			
Eligibility criteria	5	Specify the inclusion and exclusion criteria for the review and how studies were grouped for the syntheses.	3
Information sources	6	Specify all databases, registers, websites, organisations, reference lists and other sources searched or consulted to identify studies. Specify the date when each source was last searched or consulted.	3
Search strategy	7	Present the full search strategies for all databases, registers and websites, including any filters and limits used.	4
Selection process	8	Specify the methods used to decide whether a study met the inclusion criteria of the review, including how many reviewers screened each record and each report retrieved, whether they worked independently, and if applicable, details of automation tools used in the process.	4
Data collection process	9	Specify the methods used to collect data from reports, including how many reviewers collected data from each report, whether they worked independently, any processes for obtaining or confirming data from study investigators, and if applicable, details of automation tools used in the process.	4
Data items	10a	List and define all outcomes for which data were sought. Specify whether all results that were compatible with each outcome domain in each study were sought (e.g. for all measures, time points, analyses), and if not, the methods used to decide which results to collect.	4

Section and Topic	Item #	Checklist item	Location where item is reported
	10b	List and define all other variables for which data were sought (e.g. participant and intervention characteristics, funding sources). Describe any assumptions made about any missing or unclear information.	4
Study risk of bias assessment	11	Specify the methods used to assess risk of bias in the included studies, including details of the tool(s) used, how many reviewers assessed each study and whether they worked independently, and if applicable, details of automation tools used in the process.	4
Effect measures	12	Specify for each outcome the effect measure(s) (e.g. risk ratio, mean difference) used in the synthesis or presentation of results.	4
Synthesis methods	13a	Describe the processes used to decide which studies were eligible for each synthesis (e.g. tabulating the study intervention characteristics and comparing against the planned groups for each synthesis (item #5)).	4
	13b	Describe any methods required to prepare the data for presentation or synthesis, such as handling of missing summary statistics, or data conversions.	4
	13c	Describe any methods used to tabulate or visually display results of individual studies and syntheses.	4
	13d	Describe any methods used to synthesize results and provide a rationale for the choice(s). If meta-analysis was performed, describe the model(s), method(s) to identify the presence and extent of statistical heterogeneity, and software package(s) used.	4
	13e	Describe any methods used to explore possible causes of heterogeneity among study results (e.g. subgroup analysis, meta-regression).	4
	13f	Describe any sensitivity analyses conducted to assess robustness of the synthesized results.	4
Reporting bias assessment	14	Describe any methods used to assess risk of bias due to missing results in a synthesis (arising from reporting biases).	4
Certainty assessment	15	Describe any methods used to assess certainty (or confidence) in the body of evidence for an outcome.	4
RESULTS			
Study	16a	Describe the results of the search and selection process, from the number of records identified in the search to the	5

Section and Topic	Item #	Checklist item	Location where item is reported
selection		number of studies included in the review, ideally using a flow diagram.	
	16b	Cite studies that might appear to meet the inclusion criteria, but which were excluded, and explain why they were excluded.	5
Study characteristics	17	Cite each included study and present its characteristics.	5
Risk of bias in studies	18	Present assessments of risk of bias for each included study.	5
Results of individual studies	19	For all outcomes, present, for each study: (a) summary statistics for each group (where appropriate) and (b) an effect estimate and its precision (e.g. confidence/credible interval), ideally using structured tables or plots.	5
Results of	20a	For each synthesis, briefly summarise the characteristics and risk of bias among contributing studies.	5
syntheses	20b	Present results of all statistical syntheses conducted. If meta-analysis was done, present for each the summary estimate and its precision (e.g. confidence/credible interval) and measures of statistical heterogeneity. If comparing groups, describe the direction of the effect.	5
	20c	Present results of all investigations of possible causes of heterogeneity among study results.	5
	20d	Present results of all sensitivity analyses conducted to assess the robustness of the synthesized results.	5
Reporting biases	21	Present assessments of risk of bias due to missing results (arising from reporting biases) for each synthesis assessed.	5
Certainty of evidence	22	Present assessments of certainty (or confidence) in the body of evidence for each outcome assessed.	5
DISCUSSION			
Discussion	23a	Provide a general interpretation of the results in the context of other evidence.	6
	23b	Discuss any limitations of the evidence included in the review.	7
	23c	Discuss any limitations of the review processes used.	7

Section and Topic	Item #	Checklist item	Location where item is reported
	23d	Discuss implications of the results for practice, policy, and future research.	7
OTHER INFO	RMAT	ION	
Registration and protocol	24a	Provide registration information for the review, including register name and registration number, or state that the review was not registered.	3
	24b	Indicate where the review protocol can be accessed, or state that a protocol was not prepared.	3
	24c	Describe and explain any amendments to information provided at registration or in the protocol.	-
Support	25	Describe sources of financial or non-financial support for the review, and the role of the funders or sponsors in the review.	1
Competing interests	26	Declare any competing interests of review authors.	1
Availability of data, code and other materials	27	Report which of the following are publicly available and where they can be found: template data collection forms; data extracted from included studies; data used for all analyses; analytic code; any other materials used in the review.	1

						MACE type						
STUDY	non - fat al MI	myocard ial re- infarctio n	re- hospitalizati on	cardiac arrhythmi as	strok e	target vessel revascularizat ion	cardioge nic shock	Hear t failu re	PEA / asysto le	Acute pulmona ry edema	Cardi ac death	All cause mortali ty
Adam et												
al.,												
2018												
Ahmed												
2020												
Biccirè												
et al.,												
2023												
Chen et												
al.,												
2020												
Dehgha												
ni 2014												
Gu 2023												
Hartopo												
2015												
Her												
2017												
Huang												
2009												
Hoang												
Ngo												
2023	1			1							1	

Table S2. Major	c cardiovascular events (MACE) definition	across included trials
-----------------	---------------------------	------------------	------------------------

Immanu						
el 2021						
Karaden						
iz 2023						
Karaoğl						
u 2021						
Konishi						
2017						
Li 2020						
Li 2022						
Oncel						
2015						
Wang						
2020						
Zhang						
2015						

Table S3. Baseline characteristics of included trials

Study	Country	Study design	Study group	No. of patients	Age, mean (SD)	Male, %	LVEF, %	HNT, %	Dyslipidemia, %	Diabetic mellitus, %	Smoking, %	NOS score
Adam et al., 2018	Delvictor	DS	MACE (+)	102	54.49±11.41	68 (66.7%)	NS	66 (64.7%)	NS	37 (36.3%)	29 (28.4%)	0
	Pakistan PS	гэ	MACE (-)	195	55.82±10.50	120 (61.5%)	NS	144 (73.8%)	NS	71 (36.4%)	63 (32.3%)	0
Ahmed et al., 2020	Equat	DC	MACE (+)	79	61.4±12.4	NS	NS	249 (47.2%)	185 (35.0%)	184 (34.8%)	349 (66.1%)	0
	Egypt H	KS	MACE (-)	528	57.2±11.0	NS	NS	47 (59.5%)	28 (35.4%)	38 (48.1%)	46 (58.2%)	0
	Pakistan	CSS	Survived	154	59±11.2	NS	NS	NS	NS	NS	NS	7

Akhter et al., 2023			Decreased	5	63.43±15	NS	NS	NS	NS	NS	NS	
Al-Sayed et al., 2022			UA	23	57 (50-64.5)	10 (43.5%)	NS	13 (56.5%)	4 (17.4%)	10 (43.5%)	1 (4.3%)	
	Sudan	CSS	NSTEMI	49	60 (53.5- 65.3)	29 (59.2%)	NS	28 (57.1%)	4 (8.2%)	21 (42.9%)	12 (24.5%)	9
			STEMI	58	57 (46-65)	42 (72.4%)	NS	23 (39.7%)	7 (12.1%)	26 (44.8%)	19 (32.8%)	
Algın et al., 2021	Turkov	DC	NSTEMI	79	59 (50-74)	49 (62.0%)	NS	33 (41.8%)	8 (10.1%)	34 (43.0%)	9 (11.4%)	o
	Turkey	KS	STEMI	30	60 (48-69)	23 (76.7%)	NS	10 (33.3%)	2 (6.7%)	9 (30.0%)	6 (20.0%)	0
Babes et al., 2021	Bomonio	DC	Survived	849	$\begin{array}{c} 64.90 \pm \\ 11.56 \end{array}$	559 (65.8%)	47.09 ± 8.63	595 (70.1%)	360 (42.4%)	261 (30.7%)	201 (23.7%)	o
	Komama	KS	Decreased	87	$\begin{array}{c} 72.98 \pm \\ 11.60 \end{array}$	42 (48.3%)	34.4 ± 9.87	30 (34.5%)	64 (73.6%)	33 (37.9%)	23 (26.4%)	0
Bajari et al., 2017	India	DS	Survived	353	59.1 ± 11.48	261 (73.93%)	NS	122 (34.6%)	81 (22.9%)	75 (21.2%)	118 (33.4%)	0
	muta	гъ	Decreased	47	68.82 ± 12.49	27 (57.45%)	NS	26 (55.3%)	8 (17.0)%	13 (27.7%)	16 (34.0%)	0
Bandara et al., 2018		CEE	STEMI	350	61.27± 11.64	259 (74.0%)	NS	45 (12.9%)	82 (23.4%)	73 (20.9%)	NS	0
	Sri Lanka	C33	Control	250	59.80±11.90	178 (71.2%)	NS	18 (7.2%)	36 (14.4%)	32 (12.8%)	NS	8
Bekler et al., 2014			UA	142	60 (30-88)	65 (45.8%)	55 (28- 70)	58 (40.8%)	NS	41 (28.9%)	47 (33.1%)	
	Turkey	RS	NSTEMI	238	64 (19-90)	104 (43.7%)	50 (25- 70)	129 (54.2%)	NS	73 (30.7%)	90 (37.8%)	9
			STEMI	122	63 (29-89)	92 (75.4%)	50 (30- 70)	57 (46.7%)	NS	56 (45.9%)	41 (33.6%)	
Biccirè et al., 2023	Italy	PS	MACE (+)	71	68.8 ± 14.7	54 (76.1%)	34.83 ± 9.47	314 (78.9%)	NS	115 (28.9%)	165 (41.7%)	9

			MACE (-)	398	65 2 + 12 6	307 (77 1%)	46.02 ±	63	NS	27	22	
				570	05.2 ± 12.0	507 (77.170)	8.46	(88.7%)	115	(38.0%)	(31.9%)	
Çaltekin et	Turkey	RS	STEMI	86	61 ± 13	NS	NS	NS	NS	NS	NS	7
al., 2020	Тиксу	K5	Control	82	62 ± 12	NS	NS	NS	NS	NS	NS	7
Canga et al.,			ACS	50	47.0 + 7.0	22(44.20())	NS	17	ϵ (11 50/)	8	19	
2018	Trudeser	DC		32	47.9 ± 7.9	23 (44.2%)		(32.7%)	0(11.3%)	(15.4%)	(36.5%)	0
	Тигкеу	KS	Control	20	45.6 . 0.1	12 (20.00/)	NS	9	$\mathbf{O}(\mathbf{C},\mathbf{T}0)$	4	5(16,70)	8
				30	45.6 ± 9.1	12 (30.0%)		(30.0%)	2 (6.7%)	(13.3%)	5 (16.7%)	
Cao et al.,			AMI	20.4	61.27 ±	007 (00 50()	NS	157	155 (54.6%)	56	177	
2023	C1 :	DC		284	12.01	237 (83.5%)		(55.3%)	× ,	(19.7%)	(62.3%)	0
	China	RS	Control	01	59.10 ±		NS	51	46 (50.6%)	15	23	8
				91	11.96	51 (56.0%)		(56.0%)		(16.5%)	(25.3%)	
Chawla et	т 1'	DC	ACS	116	NS	NS	NS	NS	NS	NS	NS	Г
al., 2019	India	PS	Control	116	NS	84	NS	NS	NS	NS	NS	/
Chen et al.,			MACE	20	76.5 (69.5-	14 (70.00()	49.15 ±	15	2 (15 00()	5	15	
2020	C1 :	DC	(+)	20	78)	14 (70.0%)	4.34	(75.0%)	3 (15.0%)	(25.0%)	(75.0%)	0
	China	RS	MACE (-)	07		72 (00.00()	52.83 ±	55		14	30	8
				87	/2 (6/-//)	72 (90.0%)	5.57	(63.2%)	/ (8.1%)	(13.1%)	(34.5%)	
Chen et al.,			Survived	1410	70 5 . 0.0	71 (46.20()	NS	85	NG	68	NG	
2023		DC		1418	12.5 ± 8.3	/1 (46.2%)		(64.3%)	NS	(51.5%)	INS	0
	China	RS	Decreased	100	70 55 0 70	055 (20 70()	NS	994	NG	603	NG	8
				132	19.55 ± 8.78	855 (39.7%)		(70.1%)	NS	(42.5%)	INS	
Damar et al.,			NSTEMI	(2)	58.03 ±	42 (69 20()	$50.65 \pm$	40		24	36	
2022	T 1	DC		63	10.07	43 (68.3%)	8.18	(63.5%)	35 (55.6%)	(38.1%)	(57.1%)	0
	Тигкеу	PS	Control	()	56.69 ±	10 (61 50())	63.87 ±	35	26 (50, 10/)	13	18	8
				62	11.17	40 (64.5%)	2.78	(56.5%)	36 (58.1%)	(21.0%)	(29.0%)	
Damar et al.,			STEMI	75	58.96 ±		47.69 ±	40		26 (100()	37	
2022b	T 1	DC		/5	10.37	60 (80%)	7.89	(53.3%)	38 (50.7%)	36 (48%)	(49.3%)	0
	Turkey	PS	Control		56.29 ±	52 (2001)	63.62 ±	37	22 (50.00())	21	31	8
				65	10.14	52 (80%)	2.91	(56.9%)	33 (50.8%)	(32.3%)	(47.7%)	
Dehghani et	T	DC	MACE	0.1	(0 () 10 1	10 (60 50()	NS	54	12 (1 < 00/)	31	24	0
al., 2014	Iran	PS	(+)	81	60.6 ± 13.1	49 (60.5%)		(66.7%)	13 (16.0%)	(38.3%)	(29.6%)	8

			MACE (-)	409	60.4 ± 12.9	240 (58.7%)	NS	223	74 (18.1%)	114	105	
Dol Turco ot	Itoly	DC	AMI				16 + 11	(54.5%)		(27.9%)	(25.7%)	
al., 2022	Italy	KS	Alvii	361	66 ± 12	276 (76.5%)	40 ± 11	(52.1%)	289 (80.1%)	(35.7%)	(50.1%)	
,			Control	206	65 + 11	ACC (57 Q0/)	53 ± 12	437	416(51.60/)	162	276	9
				806	05 ± 11	400 (57.8%)		(54.2%)	410 (51.0%)	(20.1%)	(34.2%)	
Dong et al.,	China	PS	AMI	212	64.23 ±	133 (62 7%)	NS	105	NS	40	75	
2023				212	14.34	133 (02.170)		(49.5%)	115	(18.9%)	(35.4%)	8
			Control	60	63.64 + 8.01	37 (61.7%)	NS	29	NS	15	20	0
					00101 = 0101			(48.3%)	1.00	(25.0%)	(33.3%)	
Erdoğan et	Turkey	CSS	STEMI	94	58.7±11.1	80 (85.1%)	43.9±8.5	39	NS	22	65	
al., 2021								(41.5%)		(23.4%)	(69.1%)	9
			NSTEMI	97	62.1±13.7	71 (73.2%)	49±11.2	61	NS	43	44	
F (" 1 (1	T 1	000	A.C.C.			. ,		(62.9%)		(44.3%)	(45.4%)	
Erturk et al.,	Тигкеу	CCS	ACS	319	56.6 ± 11.4	219 (68.7%)	NS	145	NS	(17.0%)	156	
2017			IIA	11/	NS	NS	NC	(43.3%) NS	NC	(17.9%) NS	(40.9%)	-
			UA	114	INS NS	INS NS	INS NC	INS NC	INS NS	INS NC	INS NS	0
			STEMI	101	NS NS	NS	INS NS	INS NS	NS	INS NS	NS NS	0
			Control	104			INS NS	102	CIL	20	107	-
			Control	283	47.3 ± 13.6	181 (64.0%)	IND	(36.0%)	NS	(13.8%)	(44.9%)	
Ghaffari et	Iran	CSS	Survived				38 + 10	148		95	177	
al., 2014		000	Survivea	389	58.7 ± 12.9	321 (82.5%)	00 - 10	(38.1%)	109 (28.0%)	(24.4%)	(45.5%)	0
,			Decreased	15	657 + 124	7(46,70())	27 ± 12	9	5 (22 20/)	6	2 (20.00/)	8
				15	05.7 ± 13.4	7 (40.7%)		(60.0%)	5 (33.3%)	(40.0%)	3 (20.0%)	
Gu et al.,	China	RS	MACE				61.95	67		21	37	
2023			(+)	98	67 (61–75)	76 (77.6%)	(51.8–	(68.4%)	69 (70.4%)	(21.4%)	(37.8%)	
							64)	(00.470)		(21.470)	(37.070)	8
			MACE (-)				63.30	373		140	199	Ŭ
				552	63 (55–70)	398 (72.1%)	(60.90 -	(67.6%)	80 (70.2%)	(25.4%)	(36.1%)	
							65.60)	```		, ,	, ,	

Turkey	PS	Survived	148	61.5 ± 10.6	120 (92 3%)	NS	76	106 (86 9%)	98	64	
			110	01.5 ± 10.0	120 ()2.370)		(86.4%)	100 (00.970)	(66.2%)	(84.2%)	9
		Decreased	22	68.09 + 18.7	10.45.5%)	NS	12	16 (72,7%)	16	12	,
				00.09 = 10.7	10 10.0707		(54.5%)	10 (12.170)	(72.7%)	(54.5%)	
Turkey	PS	NSTEMI	120	NS	NS	NS	NS	NS	NS	NS	7
		Control	410	NS	NS	NS	NS	NS	NS	NS	,
China	RS	UA	216	69 92+7 30	161 (74 5%)	NS	164	NS	65	112	
			210	07.72±1.50	101 (74.370)		(75.9%)		(30.1%)	(51.9%)	
		NSTEMI	261	637 ± 124	189 (72 4%)	NS	184	NS	90	142	
			201	03.7 ± 12.4	107 (72.470)		(70.5%)		(34.5%)	(54.4%)	0
		STEMI	307	58.7 ± 12.2	373 (81 4%)	NS	221	NS	121	241)
			391	J0.7 ± 12.2	323 (81.4%)		(55.7%)		(30.5%)	(60.7%)	
		SA	126	68 17+6 81	90(71.4%)	NS	86	NS	44	63	
			120	08.47±0.84	90 (71.4%)		(68.3%)		(34.9%)	(50.0%)	
Bangladesh	PS	ACS	128	50.01 ± 0.7	120 (04 2%)	NS	64	NS	NS	71	
			130	50.91 ± 9.7	130 (94.2%)		(46.3%)			(70.6%)	0
		Control	124	49.1 + 0.54	126 (04 0%)	NS	20	NS	NS	27	0
			134	40.1 ± 9.34	120 (94.0%)		(14.6%)			(20.0%)	
Indonesia	RS	MACE	40	580+88	34 (60 4%)	NS	33	NS	19	17	
		(+)	49	30.9 ± 0.0	34 (09.4%)		(67.3%)	INS	(38.8%)	(34.7%)	0
		MACE (-)	116	577 0 2	07	NS	74	NC	26	65	0
			110	51.1 ± 9.2	97		(63.8%)	INS	(22.4%)	(56.0%)	
South Korea	PS	MACE	27	62.0 + 12.2	10 (70 4%)	$48.4 \pm$	13	10(27.00%)	4	6 (22 20%)	
		(+)	21	02.9 ± 12.2	19 (70.4%)	11.5	(48.1%)	10(37.0%)	(14.8%)	0(22.2%)	0
		MACE (-)	145	561 + 121	101 (92 40/)	54.1 ±	59	11 (20 60/)	26	34	9
			143	30.1 ± 12.1	121 (83.4%)	9.2	(40.7%)	44 (30.0%)	(17.9%)	(23.4%)	
Viet Nam	CSS	MACE	44	$68.27 \pm$	24 (54.5%)	NS	33	31 (70.5%)	22	14	
		(+)		12.49			(75.0%)		(50.0%)	(31.8%)	7
		MACE (-)	98	(6.0 + 12)	60 (61.2%)	NS	84	35 (35.7%)	18	29	/
				00.9 ± 13			(85.7%)		(18.4%)	(29.6%)	
China	RS	MACE	167	72 (49.95)	100 (65 20/)	NS	103	NC	36	49	0
		(+)	10/	/3 (48-83)	109 (05.3%)		(61.7%)	IND	(21.6%)	(29.3%)	ð
	Turkey Turkey China Bangladesh Indonesia South Korea Viet Nam China	TurkeyPSTurkeyPSChinaRSBangladeshPSIndonesiaRSSouth KoreaPSViet NamCSSChinaRS	TurkeyPSSurvived DecreasedTurkeyPSNSTEMI ControlChinaRSUANSTEMISTEMISTEMISTEMISASABangladeshPSACSIndonesiaRSMACE (+)South KoreaPSMACE (+)South KoreaPSMACE (+)Viet NamCSSMACE (+)Viet NamCSSMACE (+)ChinaRSMACE (+)ChinaRSMACE (+)	TurkeyPSSurvived148Decreased22TurkeyPSNSTEMI120Control41010ChinaRSUA216NSTEMI261STEMI397SA126STEMI397SA126SA126BangladeshPSACS138Control134134134IndonesiaRSMACE (+)49MACE (-)116South KoreaPSSouth KoreaPSMACE (+)27MACE (-)145145Viet NamCSSMACE (+)44ChinaRSMACE (+)98ChinaRSMACE (+)167	$\begin{array}{ c c c c c c } \hline Turkey & PS & Survived & 148 & 61.5 \pm 10.6 \\ \hline Decreased & 22 & 68.09 \pm 18.7 \\ \hline Turkey & PS & NSTEMI & 120 & NS \\ \hline Control & 410 & NS \\ \hline China & RS & UA & 216 & 69.92 \pm 7.30 \\ \hline NSTEMI & 261 & 63.7 \pm 12.4 \\ \hline STEMI & 397 & 58.7 \pm 12.2 \\ \hline SA & 126 & 68.47 \pm 6.84 \\ \hline Bangladesh & PS & ACS & 138 & 50.91 \pm 9.7 \\ \hline Control & 134 & 48.1 \pm 9.54 \\ \hline Indonesia & RS & MACE & 49 & 58.9 \pm 8.8 \\ \hline MACE (-) & 116 & 57.7 \pm 9.2 \\ \hline South Korea & PS & MACE & 27 & 62.9 \pm 12.2 \\ \hline MACE (-) & 145 & 56.1 \pm 12.1 \\ \hline Viet Nam & CSS & MACE & 44 & 68.27 \pm \\ \hline MACE (-) & 98 & 66.9 \pm 13 \\ \hline China & RS & MACE & 44 & 68.9 \pm 13 \\ \hline \end{array}$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

			MACE (-)	456	65 (47-87)	291 (63.8%)	NS	244	NS	94	117	
								(53.5%)	112	(20.6%)	(25.7%)	
Immanuel et al 2021	Indonesia	CSS	MACE (+)	31	60.68 ± 12.27	25 (80.6%)	NS	23 (74.2%)	97 (22.6%)	9 (29.0%)	18 (58.1%)	
ull., 2021			MACE (-)	28	58.11 + 8.07	21 (75.0%)	NS	17	9 (32 1%)	14	16	8
				20	50.11 ± 0.07	21 (75.070)		(60.7%)) (32.170)	(50.0%)	(57.1%)	
Jadhav et al., 2022	India	RS	Survived	332	55.78 ± 12.18	245 (73.8%)	NS	63 (18.97%)	66 (19.9%)	56 (16.9%)	115 (34.6%)	
			Decreased	68	61.83 ±	30 (44.1%)	NS	12	13 (19.1%)	13	15	8
77.1		DC			14.45			(17.7%)		(19.1%)	(22.1%)	
Kahraman et al., 2022	Turkey	RS	Survived	475	64.7 ± 12.2	352 (74.1%)	55 (46- 60)	228 (48.0%)	NS	(36.4%)	NS	0
			Decreased	50	71.6 ± 10.5	29 (58.0%)	35 (27-	24	NS	20	NS	8
							47)	(48.0%)		(40.0%)		
Karadeniz et al 2023	Turkey	RS	MACE	195	77.3 ± 10.6	123 (63.1%)	NS	97 (49.7%)	86 (44.1%)	57 (29.2%)	23	
un, 2020			MACE(-)				NS	495		250	189	
			MITCL ()	908	66.3 ± 11.8	636 (70.0%)	115	(54.5%)	539 (59.4%)	(27.5%)	(20.8%)	0
			STEMI	403	67.7 ± 12.6	304 (75.4%)	NS	192	239 (59.3%)	97	109	9
						· · · ·		(47.6%)	· · · ·	(24.1%)	(27.0%)	
			NSTEMI	700	68.5 ± 12.2	455 (65.0%)	NS	400	386 (55.1%)	210	103	
						((57.1%)		(30.0%)	(14.7%)	
Karaoğlu et al 2021	Turkey	RS	MACE	60	61.7 ± 12.4	43 (71.7%)	NS	50 (83.3%)	28 (46.7%)	27 (45.0%)	14	
un, 2021			MACE(-)				NS	157		75	61	8
			MITCL ()	199	60.0 ± 11.8	145 (72.9%)	115	(78.9%)	81 (40.7%)	(37.7%)	(30.7%)	
Konishi et	Japan	RS	MACE	68	73.1 ± 12.6	13 (63 2%)	50.2 ±	43	51 (75.0%)	25	35	
al., 2017			(+)	08	75.1 ± 12.0	43 (03.2%)	13.6	(63.2%)	51 (75.0%)	(36.8%)	(51.5%)	0
			MACE (-)	262	657 + 124	200 (70 5%)	$54.4 \pm$	186	210(82.20%)	95	158	0
				203	03.7 ± 12.4	209 (19.3%)	10.5	(70.7%)	219 (03.3%)	(36.1%)	(60.1%)	
Leylek et al., 2020	Turkey	PS	STEMI	49	57 (39-76)	44 (89.8%)	NS	20 (40.8%)	2 (4.1%)	9 (18.4%)	24 (49.0%)	8

			NSTEMI	51	58 (40-85)	38 (74.5%)	NS	32 (62.7%)	5 (9.8%)	15 (29.4%)	19 (37.3%)	
Li et al., 2019	China	RS	UA	10	60.8 ± 12.1	9 (9.0%)	60.9 ± 7.3	9 (90.0%)	4 (40.0%)	4 (40.0%)	6 (60.0%)	
			NSTEMI	20	65.0 ± 13.0	15 (75.0%)	58.5 ± 8.2	12 (60.0%)	12 (60.0%)	12 (60.0%)	13 (65.0%)	8
			STEMI	62	62.7 ± 10.7	54 (87.1%)	55.3 ± 8.1	45 (72.6%)	17 (27.4%)	24 (38.7%)	29 (46.8%)	
Li et al., 2020	China	RS	MACE (+)	81	64 (52-72.3)	57 (70.4%)	53 (41- 58)	41 (50.6%)	NS	26 (32.1%)	37 (45.7%)	0
			MACE (-)	421	61.5 (52-69)	315 (74.8%)	60 (57- 62)	236 (56.1%)	NS	110 (26.1%)	213 (50.6%)	8
Li et al., 2022	China	PS	MACE (+)	107	25.3 ± 11.4	78 (72.9%)	60 (53- 66)	75 (70.1%)	91 (85.0%)	52 (48.6%)	45 (42.1%)	0
			MACE (-)	1594	25.7 ± 9.4	1227 (77%)	65 (60- 68)	1107 (63.2%)	1268 (79.5%)	731 (45.9%)	709 (44.5%)	9
Lin et al., 2021	China	RS	Survived	157	63.57 ± 11.63	131 (83.4%)	NS	53 (33.76%)	NS	34 (21.66%)	NS	o
			Decreased	24	68.19 ± 10.72	21 (87.5%)	NS	7 (29.17%)	NS	5 (20.83%)	NS	0
Ling et al., 2021	China	RS	ACS	201	65 (57-71)	136 (67.7%)	62 (58- 65)	127 (63.2%)	NS	49 (24.4%)	30 (14.9%)	0
			SA	145	65 (57-72)	83 (57.2%)	64 (60- 66)	95 (65.5%)	NS	27 (18.6%)	14 (9.7%)	8
Mansiroglu et al., 2020	Turkey	RS	UA	102	64 ± 12	79 (77.4%)	NS	67 (65.7%)	NS	39 (38.2%)	42 (41.2%)	
			NSTEMI	221	67 ± 12	146 (66.1%)	NS	139 (62.9%)	NS	83 (37.6%)	81 (36.7%)	8
			STEMI	103	67 ± 13	76 (73.8%)	NS	53 (51.5%)	NS	27 (26.2%)	35 (34.0%)	
Maréchal et al., 2020	Belgium	PS	UA	19	67 ± 11	17 (89.5%)	NS	16 (84.2%)	13 (68.4%)	8 (42.1%)	12 (63.2%)	

			NSTEMI	25	62 + 12	10(76.0%)	NC	14	12(52.00%)	5	15	
					03 ± 12	19 (70.0%)	IND	(56.0%)	15 (52.0%)	(20.0%)	(60.0%)	
			STEMI	27	64 + 10	20(74.1%)	NS	18	13 (48 1%)	8	22	
					04 ± 10	20 (74.170)		(66.7%)	15 (40.170)	(29.6%)	(81.5%)	
			SA	37	69 + 9	25 (67 6%)	NS	29	25 (67 6%)	13	24	
					07 ± 7	25 (07.070)	110	(78.4%)	23 (07.070)	(35.1%)	(64.9%)	
Mayyas et	Jordan	PS	NSTEMI	41	NS	NS	NS	NS	NS	NS	NS	7
al., 2014			STEMI	41	NS	NS	NS	NS	NS	NS	NS	,
Monteiro Jr	Brazil	PS	Survived	411	NS	NS	NS	NS	NS	NS	NS	7
et al., 2018			Decreased	55	NS	NS	NS	NS	NS	NS	NS	/
Mustafic et	Bosnia and	PS	ACS	59	$65.77 \pm$	NS	NS	NS	NS	NS	NS	
al., 2020	Herzegovina				10.53							8
			SA	23	52.83 ±	NS	NS	NS	NS	NS	NS	0
					18.77							
Nilsson et	Netherlands	PS	NSTEMI	20	67 ± 10	15(75.0%)	NS	7	NS	1(5.0%)	NS	
al., 2014					07 ± 10	15 (75.070)		(35.0%)		1 (3.070)		
			SA	30	64 + 9	26 (86 7%)	NS	21	NS	4	NS	8
					04 ± 7	20 (80.770)		(70.0%)		(13.3%)		
			Control	37	64 ± 8	28 (75.7%)	NS	0 (0.0%)	NS	0 (0.0%)	NS	
Oh et al.,	Korea	RS	Survived	982	50.7 ± 12.0	784 (79.8%)	$48.0 \pm$	452	NS	250	NS	
2020					57.7 ± 12.7	704 (77.070)	11.5	(46.0%)	115	(25.5%)	115	8
			Decreased	75	70.8 ± 11.0	53 (70 7%)	$35.7 \pm$	44	NS	29	NS	0
					70.0 ± 11.0	55 (10.170)	14.9	(58.7%)	115	(38.7%)	115	
Oncel et al.,	Turkey	RS	MACE	11	$70.27 \pm$	9 (81 8%)	NS	8	3(27.3%)	3	7 (63.6%)	
2015			(+)		10.24) (01.070)		(72.7%)	5 (27.570)	(27.3%)	7 (05.070)	8
			MACE (-)	90	$56.47 \pm$	72 (80.0%)	NS	34	31 (3/ 1%)	20	50	0
					11.64	72 (80.070)		(37.8%)	51 (54.470)	(22.2%)	(55.6%)	
Özbay et al.,	Turkey	RS	UA	399	61.7 ± 12.8	215 (53.9%)	$59.8 \pm$	NS	NS	NS	NS	
2020					01.7 ± 12.0	213 (33.770)	9.6					8
			NSTEMI	141	67.8 ± 10.4	85 (60 3%)	$47.7 \pm$	NS	NS	NS	NS	0
					07.0 ± 10.4	05 (00.5%)	13.8					

			STEMI	225	64.0 ± 11.3	167 (74.2%)	49.6 ± 11.9	NS	NS	NS	NS	
			AMI	148	65.8 ± 11.9	100 (67.6%)	44.5 ± 8.0	NS	NS	NS	NS	
Öztürk et al., 2013	Turkey	RS	UA	44	38.4 ± 4.9	30 (68.2%)	NS	15 (34.1%)	NS	5 (11.3%)	27 (61.3%)	
			NSTEMI	40	38.9 ± 4.4	29 (72.5%)	NS	17 (42.5%)	NS	5 (12.5%)	30 (75.0%)	8
			Control	40	39.8 ± 3.9	28 (70.0%)	NS	8 (20.0%)	NS	1 (2.5%)	16 (40.0%)	
Paul et al., 2021	India	PS	Survived	92	64.76 ± 15.12	69 (42.4%)	NS	61 (66.3%)	35 (38.04%)	63 (68.48%)	NS	0
			Decreased	10	58.2 ± 10.56	8 (80.0%)	NS	8 (80.0%)	5 (50.0%)	9 (90.0%)	NS	9
Pieszko et al., 2019	Poland	RS	Survived	4287	65.5 (59.4- 73)	2908 (67.8%)	NS	NS	NS	1181 (27.5%)	NS	0
			Decreased	766	72.1 (64.4- 79.8)	493 (64.4%)	NS	NS	NS	263 (34.3%)	NS	0
Quisi et al., 2021	Turkey	PS	NSTEMI	200	56.3 ± 8.6	161 (80.5%)	57.3 ± 6.6	87 (43.5%)	73 (36.5%)	83 (41.5%)	92 (46.0%)	0
			STEMI	218	54.5 ± 7.7	203 (93.1%)	51.5 ± 6.8	70 (32.1%)	83 (38.1%)	56 (25.7%)	121 (55.5%)	9
Rao et al., 2019	India	PS	AMI	48	60.25 ± 7.56	35 (72.9%)	NS	36 (75%)	11 (22.92%)	18 (37.5%)	32 (66.7%)	8
			Control	48	53.41 ± 9.03	32 (66.7%)	NS	0 (0.0%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	
Selanno et	Indonesia	RS	NSTEMI	93	NS	NS	NS	NS	NS	NS	NS	7
al., 2022			STEMI	152	NS	NS	NS	NS	NS	NS	NS	/
Setianingrum	Indonesia	CSS	NSTEMI	24	NS	NS	NS	NS	NS	NS	NS	
et al., 2019			STEMI	35	NS	NS	NS	NS	NS	NS	NS	7
			Control	38	NS	NS	NS	NS	NS	NS	NS	
Sharma et	India	PS	Survived	863	NS	NS	NS	NS	NS	NS	NS	7
al., 2015			Decreased	96	NS	NS	NS	NS	NS	NS	NS	,

Sharma et al., 2023	India	PS	Survived	863	58.78 ± 15.3	582 (67.4%)	NS	610 (70.7%)	NS	488 (56.5%)	441 (51.1%)	0
			Decreased	96	54.89 ± 18.33	64 (66.7%)	NS	69 (71.9%)	NS	69 (71.9%)	59 (61.5%)	8
Sheng et al., 2021	China	PS	UA	156	63.6 ± 10.6	108 (69.2%)	NS	113 (72.4%)	NS	51 (32.7%)	31 (19.9%)	
			NSTEMI	25	66.5 ± 10.8	18 (72.0%)	NS	16 (64.0%)	NS	9 (36.0%)	3 (12.0%)	9
			STEMI	24	71.1 ± 9.8	12 (50.0%)	NS	13 (54.2%)	NS	3 (12.5%)	3 (12.5%)	
Shumilah et al., 2021	Yemen	CCS	ACS	100	55.5 ± 15	60 (60.0%)	NS	NS	NS	NS	62 (62.0%)	0
			Control	100	54.1 ± 15	60 (60.0%)	NS	NS	NS	NS	45 (45.0%)	ð
Siddig et al.,	Sudan	CSS	UA	15	63.6 ± 10.6	NS	NS	NS	NS	NS	NS	
2020			NSTEMI	15	66.5 ± 10.8	NS	NS	NS	NS	NS	NS	7
			STEMI	70	71.1 ± 9.8	NS	NS	NS	NS	NS	NS	
Sigirci et al., 2020	Turkey	RS	Survived	1086	63.5 (55- 78.2)	898 (82.7%)	48 (40- 55)	483 (44.5%)	422 (38.9%)	342 (31.5%)	281 (29.4%)	
			Decreased	102	55 (48-74)	76 (74.5%)	38 (32.5- 50)	50 (49.0%)	10 (9.8%)	33 (32.4%)	30 (29.4%)	8
Siraj et al.,	Pakistan	CSS	Survived	106	58.32	NS	NS	NS	NS	NS	NS	7
2020			Decreased	23	68.91	NS	NS	NS	NS	NS	NS	/
Sivri et al.,	Turkey	PS	NSTEMI	210	61.94 ±	NS	NS	141	NS	74	NS	
2018					12.52			(67.1%)		(35.2%)		0
			Control	185	59.84 ±	NS	NS	115	NS	63	NS	0
					12.74			(62.1%)		(34.0%)		
Sonmez et	Turkey	PS	STEMI	45	58 ± 15	24 (53.3%)	NS	NS	NS	NS	NS	
al., 2015			NSTEMI	65	59 ± 13	36 (55.4%)	NS	NS	NS	NS	NS	8
			Control	45	60 ± 14	26 (57.8%)	NS	NS	NS	NS	NS	
	India	CSS	STEMI	55	NS	NS	NS	NS	NS	NS	NS	7

Sultana et			NSTEMI	33	NS	NS	NS	NS	NS	NS	NS	
al., 2023			UA	12	NS	NS	NS	NS	NS	NS	NS	
Tahto et al.,	Bosnia and	CSS	AMI	50	68.6 ± 10.0	NS	NS	NS	NS	NS	NS	7
2017	Herzegovina		UA	50	64.8 ± 10.6	NS	NS	NS	NS	NS	NS	/
Tanındı et	Turkey	PS	ACS	58	612 ± 140	17(20.20%)	NC	36	21 (58 60/)	23	33	
al., 2014					01.2 ± 14.9	17 (29.3%)		(62.1%)	34 (38.0%)	(39.7%)	(56.9%)	0
			SA	93	50.5 ± 12.5	13 (16 7%)	NS	50	48 (51 6%)	27	46	9
					<i>39.3</i> ± 12.3	43 (40.270)		(53.8%)	40 (31.0%)	(93.0%)	(49.5%)	
Tanriverdi et	Turkey	RS	Survived	338	NS	NS	NS	NS	NS	NS	NS	7
al., 2017			Decreased	30	NS	NS	NS	NS	NS	NS	NS	/
Tenekecioglu et al., 2015	Turkey	RS	UA	83	56.2 ± 10.8	50 (60.2%)	55.6 ± 8.5	34 (41%)	NS	19 (23%)	42 (51%)	0
			NSTEMI	101	58.6 ± 12.2	59 (58.4%)	50.3 ± 9.6	40 (39%)	NS	16 (15%)	50 (50%)	8
Topf et al., 2022	Austria	PS	ACS	63	64 (56-72)	22 (34.9%)	50 (45- 66.8)	53 (84.1%)	NS	12 (19.0%)	18 (28.6%)	
			Control	68	65 (54-71.8)	56 (82.3%)	67 (62.8- 74)	59 (86.8%)	NS	19 (27.9%)	28 (41.2%)	9
Tsai et al., 2017	Taiwan	RS	ACS	131	35.0 ± 4.9	121 (92.9%)	NS	37 (28.2%)	40 (30.5%)	17 (13.0%)	90 (68.7%)	0
			Control	114	31.8 ± 7.0	99 (86.8%)	NS	36 (31.6%)	31 (27.2%)	18 (15.8%)	50 (43.9%)	8
Turkmen et al., 2013	Turkey	PS	STEMI	145	58.2 ± 12.3	104 (71.7%)	NS	50 (34.5%)	22 (15.2%)	28 (19.3%)	27 (18.6%)	o
			Control	101	56.0 ± 7.8	43 (42.6%)	NS	31 (30.7%)	5 (4.8%)	23 (22.8%)	23 (22.8%)	8
Wang et al., 2020	China	RS	MACE (+)	32	70.78 ± 8.00	26 (81.3%)	59.06 ± 6.11	26 (81.3%)	NS	8 (25.0%)	11 (34.4%)	o
			MACE (-)	182	64.58 ± 8.11	122 (67.0%)	63.48 ± 7.17	134 (73.6%)	NS	66 (36.3%)	36 (19.8%)	ð
	China	RS	Survived	368	59.8 ± 12.4	NS	NS	NS	NS	NS	NS	8

Wang et al., 2022			Decreased	91	70.2 ± 11.3	NS	NS	NS	NS	NS	NS	
Yan et al., 2020	China	PS	Survived	370	82.55 ± 2.55	220 (59.5%)	54.29 ± 9.79	275 (74.3%)	NS	136 (36.8%)	141 (38.1%)	0
			Decreased	153	83.32 ± 3.11	109 (71.2%)	49.47 ±11.86	134 (87.6%)	NS	85 (55.6%)	71 (46.4%)	9
Yu et al., 2016	China	RS	ACS	349	66.78 ± 12.35	261 (74.8%)	NS	233 (66.8%)	45 (12.9%)	103 (29.5%)	185 (53.0%)	
			SA	342	66.44 ± 9.79	182 (53.2%)	NS	257 (75.2%)	44 (12.9%)	183 (53.5%)	102 (29.8%)	8
			Control	251	60.89 ± 9.68	110 (53.8%)	NS	153 (57.8%)	35 (13.9%)	55 (21.9%)	67 (26.7%)	
Zazula et al.,	Brazil	PS	UA	65	59 ± 11	56 (86%)	NS	56 (86%)	37 (57%)	21 (32%)	NS	
2007			NSTEMI	33	69 ± 13	26 (79%)	NS	26 (79%)	12 (36%)	9 (27%)	NS	0
			STEMI	35	61 ± 10	22 (63%)	NS	22 (63%)	13 (37%)	9 (26%)	NS	8
			Control	45	56 ± 14	30 (67%)	NS	30 (67%)	15 (33%)	10 (22%)	NS	
Zhan et al.,	China	RS	ACS	376	(2, 0, 11, 74)	206 (54.90/)	NS	168	NS	84	NS	
2016					03.0 ± 11.74	200 (34.8%)		(44.7%)		(22.3%)		0
			Control	378	50.91 + 0.47	100 (52 70/)	NS	184	NS	46	NS	8
					59.81 ± 9.47	199 (52.7%)		(48.7%)		(12.2%)		
Zhang et al.,	China	PS	ACS	76	64.2 + 12.2	50 (77 6%)	NS	49	NS	15	42	
2014					04.2 ± 12.2	39 (77.0%)		(64.5%)		(17.1%)	(55.3%)	7
			SA	92	61.42 ± 0.38	54 (58 7%)	NS	61	NS	21	30	/
					01.42 ± 9.30	34 (38.7%)		(66.3%)		(22.8%)	(32.6%)	
Zhang et al.,	China	PS	MACE	36	64.2 ± 11.2	24 (66 7%)	$43.4 \pm$	20	NS	7	NS	
2015			(+)		07.2 ± 11.2	24 (00.770)	8.7	(55.6%)		(19.4%)		8
			MACE (-)	212	61.0 ± 10.7	162 (76.4%)	$48.7 \pm$	110	NS	60	NS	0
					01.0 ± 10.7	102 (70.470)	7.1	(51.9%)		(28.3%)		
Zhang et al.,	China	RS	UA	150	63.92 ± 9.95	82 (54 7%)	NS	85	NS	35	33	
2019					05.72 ± 7.75	02 (34.770)	110	(56.5%)		(23.3%)	(22.0%)	8
			NSTEMI	100	$62.26 \pm$	70 (70 0%)	NS	61	NS	27	29	0
					10.90	, 0 (10.070)	110	(61.0%)		(27.0%)	(29.0%)	

			STEMI	59	61.34 ±	50 (94 70/)	NC	22	NS	12	17	
					11.74	50 (84.7%)	IND	(37.3%)		(20.3%)	(28.8%)	
Zhang et al.,	China	RS	UA	98	57.65 ±	71(72.5%)	$61.26 \pm$	55	NS	18	40	
2021					12.64	/1 (/2.3%)	3.91	(58.1%)		(18.4%)	(40.8%)	
			NSTEMI	96	62.39 ±	72(75.00%)	$60.83 \pm$	53	NIC	29	35	0
					11.87	12 (13.0%)	4.01	(55.2%)	IND	(30.2%)	(36.5%)	0
			STEMI	102	58.54 ±	77(75.5%)	58.11 ±	33	NS	21	43	
					12.40	11 (13.3%)	5.64	(32.4%)	IND	(20.6%)	(42.2%)	
Zhang et al.,	China	RS	STEMI	604	60.7 ± 14.1	400 (81 1%)	$50.9 \pm$	370	NS	147	297	
2023					00.7 ± 14.1	490 (81.1%)	8.9	(61.3%)	IND	(24.3%)	(49.2%)	0
			NSTEMI	386	63.6 ± 13.3	274(71.004)	$54.3 \pm$	255	NS	109	165	0
					05.0 ± 15.5	274 (71.0%)	9.8	(66.1%)	IND	(28.2%)	(42.7%)	
Zuin et al.,	Italy	RS	STEMI	2341	$64.42 \pm$	1724	NS	NS	663 (28 30/)	404	NS	
2017					11.79	(73.6%)	IND	IND	003 (28.3%)	(17.3%)		0
			NSTEMI	4219	64.33 ±	3177	NS	NS	1200 (28 4%)	597	NS	0
					11.76	(73.9%)		110	1200 (20.4%)	(14.2%)	110	