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A B S T R A C T
Background: Coronary computed tomography angiography (CTA) has high diagnostic accuracy 
in ruling out significant stenosis of coronary arteries. The additional use of CTA- derived fractional 
flow reserve (FFR) further enhances diagnostic utility of coronary CTA. Some patients interrogated 
non-invasively have diseased coronary arteries and undergo further diagnostic testing, including 
invasive coronary angiography (ICA). Patients with one-vessel disease may benefit from invasive 
interrogation limited to the diseased vessel only. 

Aims: We analyzed the impact of a “diseased-vessel-only” selective invasive diagnostic approach in 
100 patients undergoing ICA following coronary CTA (and CT-FFR) as compared to the traditional 
“full ICA” approach. We aimed to compare contrast volume and radiation dose used during ICA 
in both scenarios, seeking potential benefits for the patient in reducing those values by the “dis-
eased-vessel-only” approach.

Results: Sensitivity, specificity, positive predictive value, and negative predictive value of CTA in 
prediction of subsequent revascularization were 96%, 75%, 51%, and 99%, respectively, and for 
CT-FFR 90%, 90%, 69%, and 97%, respectively. Using CTA as a method to guide ICA would reduce 
contrast volume and estimated radiation dose (ED) by 35% and 42.0%, respectively (P <0.0001 for 
both). Taking into consideration CT-FFR results, contrast volume would be reduced by 57% and ED 
by 69% (P <0.0001 for both).

Conclusion: These real-world data support the concept that vessels with <50% diameter stenosis 
on quantitative computed tomography and with hemodynamically insignificant CTA-derived FFR  
result may be omitted during ICA. Such an approach would result in substantial reductions in con-
trast media volume used, as well as patients’ exposure to radiation during ICA, while not leading 
to misdiagnoses.
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INTRODUCTION
Coronary computed tomography angiogra-
phy (CTA) gained acceptance as a first-line 
non-invasive diagnostic modality in the triage 
of patients with chest pain [1]. The method has 
high diagnostic accuracy in ruling out signif-
icant stenosis of coronary arteries in patients 
with an intermediate probability of coronary 

artery disease (CAD) [2–4]. The additional use 
of CTA-derived fractional flow reserve (FFR) 
further enhances diagnostic utility of coro-
nary CTA, mainly by increasing its specificity 
[5–8]. By default, some patients interrogated 
non-invasively have diseased coronary arter-
ies and undergo further diagnostic testing, in-
cluding invasive coronary angiography (ICA). 
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W H A T ’ S  N E W ? 
Coronary computed tomography angiography (CTA) and CTA-derived fractional flow reserve (CT-FFR) may limit invasive coronary 
angiography to just one (diseased) vessel or completely abolish the indication to this invasive procedure. Using CTA and CT-
FFR as a guiding tool in referral to invasive coronary angiography may result in a substantial reduction in iodine contrast media 
volume and radiation exposure used during the coronary artery disease diagnostic process. The aforementioned benefits are 
greater for CT-FFR than CTA. Moreover, such an approach reduces the number of catheters used, consequently reducing costs 
and the number of potential mechanical complications that may occur during catheterization. 

Conceivably, patients scheduled for ICA with one-vessel 
disease may benefit from invasive interrogation limited 
to the diseased vessel only, presumably resulting in lower 
contrast media usage, lower radiation dose, and fewer 
complications related to catheterization. The additional 
use of CT-FFR may further reduce the need for both arteries 
and patients’ invasive interrogations. However, there are 
no guidelines addressing performing ICA after coronary 
CTA, and potential benefits of the sequential diagnostic 
strategies require evaluation.

Therefore, we prospectively sought to analyze the 
impact of a “diseased-vessel-only” selective invasive di-
agnostic approach in patients undergoing ICA following 
coronary CTA (and CT-FFR) as compared to the traditional 
“full ICA” approach. The potential benefits of such an 
approach were defined as a reduction of contrast media 
volume and radiation dose used during ICA, regardless of 
whether the particular vessel was subject to ICA or not. The 
costs of such a novel approach were defined as missing 
significant coronary stenosis defined as either coronary 
stenosis ≥50% or coronary stenosis undergoing subse-
quent revascularization.

METHODS

Study group
From September 2015 to August 2016, we included 
116 consecutive patients who underwent ICA following 
CTA performed at a single center (Institute of Cardiology, 
Warsaw, Poland). ICAs were performed if CTA findings 
suggested significant or borderline coronary artery ste-
nosis (>50% diameter stenosis [DS]) in an artery amenable 
for intervention (at least 2.0 mm reference diameter) in 
the presence of clinical symptoms suggestive of CAD or 
additional tests indicating cardiac ischemia. We excluded 
patients who underwent ICA more than 6 months follow-
ing CTA (n = 10) and those in whom CTA image quality 
prevented evaluation of the coronary artery lumen due to 
motion artifacts or severe calcifications (n = 6). Clinical and 
demographic information, medical history, and cardiovas-
cular risk factors (hypertension, hyperlipidemia, diabetes, 
body mass index, smoking, being male) were prospectively 
collected during the hospital stay of the patients, based 
on their medical records, laboratory blood test analysis, 
and physical examination. The study was approved by the 
institutional ethical committee. 

CTA examination and analysis
Coronary CTA was performed on a dual source 2 × 192-slice 
Somatom Force (Siemens, Forcheim, Germany) scanner. 
Sublingual nitrates were administered before scanning in 
all patients. If necessary, beta-blockers were administered 
intravenously targeting a heart rate of <70 beats per 
minute. The protocol for CTA image acquisition complied  
with the Society of Cardiovascular Computed Tomography 
(SCCT) guidelines [9]. Assessment of luminal diameter 
stenosis was performed using an 18-segment coronary 
model. Quantitative diameter stenosis analysis (QCT) was 
performed with Syngo.via (Siemens Medical Systems) soft-
ware by an experienced investigator blinded for the results 
of ICA. The intraobserver correlation coefficient performed 
in 60 randomly chosen vessels was 0.98 (95% confidence 
interval [CI], 0.97–0.99; P <0.0001 for correlation). Per-ves-
sel maximum stenosis was categorized as 0%, 1%–24%, 
25%–49%, 50%–69%, 70%–99%, and 100% according to 
the SCCT guidelines [10].

CTA-derived FFR computation
CT-FFR analysis was performed by a single observer using 
dedicated software (cFFR v.2.1, Siemens) based on ma-
chine-learning algorithms [8]. A dedicated workstation was 
used to analyze mid-diastolic CTA data. Defining coronary 
lumen was a semi-automatic, two-step process- segmen-
tation of coronary artery centerlines followed by coronary 
mesh delineation, both with manual correction if necessary. 
Tree-dimensional, color-coded models of coronary trees 
were assessed by an observer blinded for quantitative 
computed tomography (QCA) and FFR results. Any ques-
tionable results were consulted with the second observer 
and solved by consensus. In all major coronary arteries with 
stenosis above 40%, a point 40 mm distal to the minimal 
lumen area (MLA) was used as a location to define CT-FFR 
result, as described by Solecki et al. [11]. 

ICA examination and angiographic analysis
ICAs were performed on standard cardiology fluoroscopy 
equipment (Axiom, Siemens Healthcare, Forchheim, Ger-
many), in pulsed fluoroscopy mode with the default frame 
rate of 10 frames per second. Access site and utilization of 
additional tools (i.e. fractional flow reserve [FFR] assess-
ment or intravascular ultrasound [IVUS]) were left to the 
operator’s discretion. Therapy decision was made based 
on angiographic results in the context of the patient’s 
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symptoms and other test results, such as stress ECG or 
echocardiography. Given data from the literature, visual 
vessel assessment during ICA is highly subjective [12, 13]. 
Quantitative Coronary Angiography (QCA) was chosen to 
define diameter stenosis (%DS) in a repetitive manner. ICA 
images were submitted to Qangio XA (Medis, Leiden, the 
Netherlands) software for QCA analysis. Maximum diam-
eter stenosis was automatically defined with subsequent 
manual aligning of the course of the vessel, if necessary. 
Per-vessel maximum stenosis was categorized as 0%, 1%– 
–24%, 25%–49%, 50%–69%, 70%–99%, and 100%. During 
the diagnostic part of ICA, contrast media volume (with 
accuracy of up to 1 ml) used for opacification of each of the 
main vessels (left and right coronary arteries) was record-
ed. Similarly, the radiation doses used during each vessel 
imaging were recorded; air kinetic energy released per unit 
mass (air kerma [AK]; mGy) and the dose area product (DAP; 
µG·m2), both measured using built-in software in the fluor-
oscopy system (Axiom, Siemens Healthcare, Forchheim, 
Germany). Estimation of effective dose (ED) was based on 
a conversion coefficient of 0.185 mSv Gy-1, as calculated by 
Boagert et al. [14]. On QCA, DS of at least 50% was defined 
as CAD, and the quantitative computed tomography (QCT) 
results were compared with the QCA results.

Statistical analysis
The categorical variables were presented as numbers and 
percentages. The continuous variables are expressed as 
mean (SD) or median (interquartile range [IQR]) as appropri-
ate. Descriptive statistics were used to analyze per-patient 
accuracy of CTA. The diagnostic performance of CTA in 
the detection of significant CAD was then determined by 
using the receiver operating characteristic (ROC) curves, 
sensitivity, specificity, positive predictive value (PPV), and 
negative predictive value (NPV) parameters and their cor-
responding 95% confidence intervals (CIs); it was compared 
to QCA >50% DS as the reference standard. The Wilcoxon 
test (for not normally distributed data) was used to assess 
the equality of values in continuous variables. A probability 
value of 0.05 or less was considered significant. All 3 groups 
(“routine”, “no ICA if >50 DS on QCT”, and “no ICA if <0.8 on 
CTA-derived-FFR) were independently analyzed in pairs. All 
statistical analyses were conducted using MedCalc version 
13.0 (MedCalc Software, Mariakerke, Belgium).

RESULTS

Baseline characteristics 
In this study, 116 consecutive patients who underwent 
CTA and subsequently ICA were identified. After applying 
exclusion criteria, the final population consisted of 100 pa-
tients in whom 200 vessels (right coronary artery [RCA] and 
left coronary artery [LCA] for each patient) were assessed. 
The baseline characteristics of the population (mean age 
67.1 [8.8] years, female 33%) are summarized in Table 1. The 
majority of patients (54%) presented with typical angina. 

In this group, Canadian Cardiovascular Society grade 2 was 
most commonly observed. Thirty-nine patients had under-
gone stress tests before coronary imaging: 24 tests had 
been positive electrocardiographically, 6 clinically, 3 had 
been inconclusive, and 6 negative. Among 17 patients with 
percutaneous coronary intervention (PCI) history, all stents 
were imaged by CTA, without significant blooming artifacts 
precluding stent patency evaluation. During ICA, either FFR 
or IVUS was used in 16 cases. Median time interval between 
CTA and ICA was 47 (IQR, 22–82) days. Overall, at least one 
>50% DS stenosis as assessed by QCA (including chronic 
total occlusions) was found in 78 patients. Subsequently, 
64 patients were revascularized, including 52 PCIs and 
12 coronary artery bypass grafting (CABG) procedures.

Table 1. Baseline patient characteristics and clinical assessment

n = 100

Age, years, mean (SD) 67.1 (8.8)

Male sex, % 67

Height, m, mean (SD) 1,70 (0.09)

Body weight, kg, mean (SD) 82.1 (13.2)

Body mass index, kg/m2, mean (SD) 28.5 (4.15)

Hypertension, % 91

Diabetes mellitus, % 32

Hyperlipidemia, % 89

Smoking history, % 68

Pack-years, years, median (IQR) 20 (14–35)

Current smoker, % 15

Ejection fraction, %, median (IQR)a 60 (60–65)

Atypical angina, % 46

Typical angina, % 54

CCS 1, n (%) 7/54 (13.0)

CCS 2, n (%) 28/54 (51.9)

CCS 3, n (%) 16/54 (29.6)

CCS 4, n (%) 3/54 (5.6)

Chronic kidney disease, % 35

PCI history, % 17

CABG history, % 6

AMI history, % 13

Family history of CAD, % 28

Stress electrocardiograph:

Performed, % 39

Clinically positive, n (%) 6/39 (15.4)

ECG-positive, n (%) 24/39 (61.5)

Negative, n (%) 6/39 (15.4)

Inconclusive, n (%) 3/39 (7.7)

Serum total cholesterol, mmol/l, mean (SD) 4.3 (1.1)

Low-density lipoprotein cholesterol, mmol/l,  
mean (SD)

2.5 (0.9)

High-density lipoprotein cholesterol, mmol/l,  
mean (SD)

1.4 (0.4)

Statin, % 90

ACE-inhibitor or ARB, % 86

Calcium channel blocker, % 44

β-blockers, % 85

Acetylsalicylic acid use, % 100

Abbreviations: ACE, angiotensin-converting enzyme; AMI, acute myocardial infarc-
tion; ARB, angiotensin II receptor blocker; CABG, coronary artery bypass grafting; 
CAD, coronary artery disease; CCS, Canadian Cardiovascular Society; ECG, electro-
cardiography; IQR, interquartile range; PCI, percutaneous coronary intervention 
aData available for 81 patients
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Selective “diseased-vessel-only” diagnostics 
strategy based on CTA
Based on the ROC curve (AUC, 0.977; 95% CI, 0.957–0.989; 
P <0.001), sensitivity, specificity, positive predictive value 
(PPV) and negative predictive value (NPV) of CTA in de-
tecting 50% DS on QCA were 99%, 97%, 94%, and 100%, 
respectively (Table 2). 

Based on the ROC curve (AUC, 0.849; 95% CI, 0.810– 
–0.882; P <0.001), sensitivity, specificity, positive predictive 
value (PPV), and negative predictive value (NPV) of CTA in 
prediction of subsequent revascularization were 96%, 75%, 
51%, and 99%, respectively.

If CTA angiographic results had been considered before 
ICA, 43 (43%) patients would have undergone single (“dis-
eased”) vessel diagnostic strategy, and 19 (19%) patients 
would not have undergone ICA at all. 

Comparisons of radiation doses and volume of con- 
trast media used during the traditional diagnostic strategy 
vs. “diseased-vessel-only” ICA are presented in Figure 1 (ra-
diation dose) and Figure 2 (contrast media volume). During 
the invasive procedure, a median of 57.5 (IQR, 44–70) ml of 
contrast agent and a median radiation dose of 6.17 (IQR, 
3.64–8.56) mSv were used (Figure 1). Using CTA as a method 

Table 2. Diagnostic accuracy of CTA in detection of lesions >50%DS on QCA

Per artery (n = 200) Sensitivity (%) Specificity (%) PPV (%) NPV (%)

>50% on QCT 99 97 94 100

Per patient (n = 100)

> 50% on QCT 100 77 94 100

Abbreviations: CTA, coronary computed tomography angiography; NPV, negative predictive value; PPV, positive predictive value; QCA, quantitative coronary angiography

ICA deferral: <50% in QCT or <0.8 in CT–FFR

Only left coronary artery ICA

Only right coronary artery ICA

ICA of both coronary arteries

37%

22%

28%

13%

35%

39%

16%

10%

QCT CT–FFR

61% 78%

Figure 1. Changes in invasive diagnostics based on non-invasive testing

Abbreviations: CT-FFR, computed tomography fractional flow reserve; ICA, invasive coronary angiography; QCT, quantitative computed 
tomography

to guide ICA would translate into reducing median contrast 
volume and radiation dose by 35% (from 57.5 ml to 37.5 ml) 
and 42.0% (from 6.17 mSv to 3.60 mSv), respectively 
(P <0.0001 for both) (Figures 2 and 3). None of the arteries 
assessed by QCT as stenosed <50% was subsequently 
described as stenosed >50% by QCA, and none was sub-
sequently treated invasively.

Selective “diseased-vessel-only” diagnostics 
strategy based on CT-FFR
Diagnostic performance of CTA-FFR in prediction of subse-
quent revascularization (AUC, 0.899; 95% CI, 0.864–0.927; 
P <0.001) expressed as sensitivity, specificity, PPV, and NPV 
was 90%, 90%, 69%, and 97%, respectively.

Additional use of CTA-derived FFR as a method to guide 
ICA would result in deferral of ICA in 28 cases and excluding 
one of the coronary arteries from ICA in 50 cases (Figure 1). 
Investigated parameters’ medians would be reduced: con-
trast volume by 57% (from 57.5 ml to 25 ml) and ED by 69% 
(from 6.17 mSv to 1.97 mSv; P <0.0001 for both) (Figures 
2 and 3). Eight vessels, assessed with CTA-derived FFR as 
not significantly stenosed (>0.8), were eventually revascu-
larized. On the other hand, 19 vessels with CTA-derived FFR 
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result ≤0.8 were treated conservatively mainly due to small 
vessel caliber <2 mm (n = 15). Moreover, all those values 
ranged within the grey zone (0.75 and 0.8).

DISCUSSION
It is estimated that 126 million people live with coronary 
artery disease worldwide, including 18 million in the US, 
accounting for 366 000 deaths and estimated $218 billion 
in direct and indirect costs in the US only [15]. CTA used 
to diagnose CAD non-invasively is a rapidly expanding 
diagnostic modality, translating globally into substantial 
numbers of patients [1]. At least 10% of those patients (and 
due to changed pre-test-probability calculators in the latest 
European guidelines, likely more) may be diagnosed with 
>50% coronary stenosis and referred to ICA [16]. 

CAD diagnostic process with both CTA and ICA is asso-
ciated with the use of radiation and contrast media. Con-
sidering their possible detrimental effect on the skin, bone 
marrow, and kidney function, different ways of minimizing 
their utilization are being developed, both on hardware and 
procedural level [17, 18]. There are no guidelines address-
ing performing ICA after CTA, and most interventionalists 
tend to catheterize all main epicardial coronary arteries in 
such situations (anecdotal information). Considering the 
vast number of patients suspected of CAD, any change in 
contemporary diagnostic practice may profoundly affect 
radiation doses and the amount of contrast media volume 
used in the process. 

In this single-center investigation of patients suspected 
of CAD, we sought to determine how CTA findings may 
influence further invasive diagnostics in terms of contrast 
media volume and radiation exposure. In the present study, 
sensitivity, specificity, PPV, and NPV for coronary CTA were 
99%, 97%, 94%, and 100%, respectively, for diagnosis of 
>50% coronary stenosis on ICA. These values are similar 
to those reported in previous studies and confirm that 
CTA has reliable accuracy for both exclusion and diagnosis 
of significant CAD [19–21]. Given the high NPV reported 
here and in previous studies, we hypothesized that ves-
sels assessed by CTA as free of >50% stenosis may not be 
examined during ICA.

The findings from our study indicate that consideration 
of CTA results to guide ICA may benefit patients with CAD 
by a significant reduction of contrast media usage and ra-
diation exposure. This benefit was most pronounced in the 
case of excluding LCA from ICA, as its visualization requires 
multiple contrast injections in different projections. Restrict-
ing ICA to the RCA only would result in contrast media vol-
ume reduction by 64% if guided by CTA and 73% if guided 
by CTA-derived FFR. In the case of LCA-ICA-only, radiation 
exposure in an analogous scenario would be decreased by 
61% and 78% for CTA and CTA-derived FFR, respectively.

In the analyzed group, no artery described as stenosed 
<50% DS on QCT was subsequently assessed as stenosed 
>50% DS on QCA. 

In the present study, the basic and more advanced 
non-invasive diagnostics provided incremental benefits 
in consequent qualification for ICA. Implementing CTA-de-
rived FFR would lead to a greater number of deferred 
and “single-vessel-only” procedures. Consequently, the 
reduction in the investigated parameters was significantly 
higher for the CTA-derived FFR algorithm than the CTA-
alone-based algorithm. The additive value of considering 
CTA-derived FFR results in the diagnostic process is de-
picted in Figure 4. 

Importantly, refraining from unnecessary catheter 
manipulation/exchange and vessel ostium intubation 
may reduce rare but very serious complications, including 
iatrogenic vessel dissection or embolic events.

Given the increasing numbers of patients undergoing 
CTA, the “diseased vessel” invasive diagnostic strategy 

P <0.001

Estimated e�ective radiation dose used 
during coronary angiography, mSv

3.60
IQR 

(1.52–
–6.01)

30

32
14

6

1.97
IQR

(0–4.64)

6.17
IQR 

(3.64–
–8.56)

P <0.001

Routine No ICA if <50% DS 
in QCT

No ICA if <0.8 
in CTA-derived FFR

0

5

1

3

7

8

4

2

6

Figure 2. Estimated effective radiation dose used during coronary 
angiography routinely and in comparison with two strategies based 
on non-invasive testing

Abbreviations: see Figure 1

P <0.001

Contrast media volume used 
during coronary angiography, ml

37.5
IQR 

(18–53)

30

32
14

6

25
IQR

(0–45)

57.5
IQR 

(44–70)

P <0.001

Routine No ICA if <50% DS 
in QCT

No ICA if <0.8 
on CTA-derived FFR

0

50

10

30

70

80

40

20

60

Figure 3. Contrast media volume used during coronary angiogra-
phy routinely and in comparison with the two strategies based on 
non-invasive testing

Abbreviations: see Figure 1
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may lead to a significant decrease in contrast media us-
age, radiation exposure as well as, possibly, subsequent 
complications and procedural adverse events, without 
any deleterious consequences. Appreciating recent evi-
dence that CTA is a highly useful modality also in patients 
with a high risk of CAD, one may anticipate the discussed 
matter will prove to be even more important [22]. Further 
improvement in the selection of patients requiring ICA 
may be achieved with additive information obtained with 
CT-based volumetric quantification of myocardial perfu-
sion, which is a complementary functionality of modern 
CT equipment [23].

Study limitations
We acknowledge several limitations of the current study. 
The sample size was limited and was derived from a sin-
gle center. The study was conceived as an observational, 
non-randomized project, based on prospectively collected 
data. Non-randomization and the fact that several oper-
ators performed ICAs may have influenced procedural 
aspects such as projection selection, number of contrast 
injections, and additional tools (i.e. FFR, IVUS) utilization, 
which may have affected the radiation exposure and con-
trast media administration. This, however, reflects everyday 
practice. Moreover, an agreement between non-invasive 
and invasive FFR measurements was performed based on 
only 12 cases. Nonetheless, robust evidence in the literature 
indicates good accordance between the two methods.

Recognizing its inherent limitations, the study does 
have the advantage of representing daily practice in a di-
verse patient population, as no clinical exclusion criteria 
were applied. 

We are aware that implementation of proposed chang-
es in routine procedures may be deemed a deviation from 
the standard of care. Further, large-scale randomized inves-
tigations are needed to confirm the safety of the presented 
concept and provide well-established endpoints (i.e. differ-

ences in the incidence of contrast-induced nephropathy, 
mechanical complications of ICA, etc.).

These real-world data support the concept that vessels 
with <50% DS on QCT and not hemodynamically significant 
on CTA-derived FFR may be omitted during ICA. Such an 
approach would result in substantial reductions in con-
trast media volume usage, as well as patients’ exposure to 
radiation during ICA, while not leading to misdiagnoses.
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